当前位置:文档之家› 陶瓷的强化与增韧

陶瓷的强化与增韧

陶瓷的强化与增韧
陶瓷的强化与增韧

陶瓷材料的强化

影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量研究。从对材料的形变及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E,断裂功(断裂表面能)和裂纹尺寸。其中E是非结构敏感的,与微观结构有关,但对单相材料,微观结构对的影响不大,唯一可以控制的是材料中的微裂纹,可以把微裂纹理解为各种缺陷的总和。所以强化措施大多从消除缺陷和阻止其发展着手。值得提出的有下列几个方面。

(1)微晶, 高密度与高纯度为了消除缺陷,提高晶体的完整性,细、密、匀、纯是当前陶瓷发展的一个重要方面。近年来出现了许多微晶、高密度、高纯度陶瓷,例如用热压工艺制造的陶瓷密度接近理论值,几乎没有气孔,特别值得提出的是各种纤维材料及晶须。

(2)预加应力人为地预加应力,在材料表面造成一层压应力层,就可提高材料的抗张强度。脆性断裂通常是在张应力作用下,自表面开始,如果在表面造成一层残余压应力层,则在材料使用过程中表面受到拉伸破坏之前首先要克服表面上的残余压应力。

(3)化学强化如果要求表面残余压应力更高,则热韧化的办法就难以做到,此时就要采用化学强化(离子交换)的办法。这种技术是通过改变表面的化学组成,使表面的摩尔体积比内部的大。由于表面体积胀大受到内部材料的限制,就产生一种两向状态的压应力。

4)陶瓷材料的增韧

所谓增韧就是提高陶瓷材料强度及改善陶瓷的脆性,是陶瓷材料要解决的重要问题。与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。

韧化的主要机理有应力诱导相变增韧,相变诱发微裂纹增韧,残余应力增韧等。几种增韧机理并不互相排斥,但在不同条件下有一种或几种机理起主要作用。

相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。例如,利用的马氏体相变来改善陶瓷材料的力学性能,是目前引人注目的研究领域。研究了多种?的相变增韧,由四方相转变成单斜相,体积增大3% 5%,如部分稳定,四方多晶陶瓷(TZP), 增韧陶瓷(ZTA), 增韧莫来石陶瓷(ZTM), 增韧尖晶石陶瓷, 增韧钛酸铝陶瓷, 增韧陶瓷,增韧以及增韧等。其中PSZ陶瓷较为成熟,TZP,ZTA,ZTM研究得也较多,PSZ,TZP,ZTA等的新裂韧性已达,有的高达,但温度升高时,相变增韧失效。

当部分稳定陶瓷烧结致密后,四方相颗粒弥散分布于其他陶瓷基体中(包括本身),冷却时亚稳四方相颗粒受到基体的抑制而处于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力的诱发作用下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有增加外力做功才能使裂纹继续扩展,于是材料强度和新裂韧性大幅度提高。

因此,这种微结构会产生三种不同的增韧机理。在氧化锆中具有亚稳态四方相的盘状沉淀的微粒,如图1-55所示。首先,随着裂纹发展导致的应力增加。会使四方结构的沉淀相通过马氏体相变转变为单斜结构,这一相变吸收了能量并导致体积膨胀产生张应力。这种微区的形变在裂纹附近尤为明显。其次,相变的粒子周围的应力场会吸收额外的能量,并形成许多微裂纹。这些微结构的变化有效地降低了裂纹尖端附近的有效应力强度。第三,由于沉淀颗粒对裂纹的阻滞作用和局域残余应力场的效应,会引起裂纹的偏转。裂纹偏转又引起裂纹的表面积和有效表面能增加,从而增加材料的韧性。上述的情况同样适甩于粒子和短纤维强化的复合材料中。

微裂纹增韧:部分稳定ZrO2陶瓷在烧结冷却过程中,存在较粗四方相向单斜相的转变,引起体积膨胀,在基体中产生弥散分布的裂纹或者主裂纹扩展过程中在其尖端过程区内形成的应力诱发相变导致的微裂纹,这些尺寸很小的微裂纹在主裂纹尖端扩展过程中会导致主裂纹分叉或改变方向,增加了主裂纹扩展过程中的有效表面能,此外裂纹尖端应力集中区内微裂纹本身的扩展也起着分散主裂纹尖端能量的作用,从而抑制了主裂纹的快速扩展,提高了材料的韧性。

表面残余压应力增韧:陶瓷材料可以通过引入残余压应力达到增强韧化的目的。控制含弥散四方颗粒的陶瓷在表层发生四方相向单斜相相变,引起表面体积膨胀而获得表面残余压应力。由于陶瓷断裂往往起始于表面裂纹,表面残余压应力有利于阻止表面裂纹的扩展,从而起到了增强增韧的作用。

弥散增韧: 在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧的效果,这称为弥散增韧。这种细粉料可能是金属粉末,加入陶瓷基体以后,以其塑体变形,来吸收弹性应变能的释放量,从而增加了断裂表面能,改善了韧性。细粉末也可能是非金属颗粒,在与基体生料颗粒均匀混合之后,在烧结或热压时,多半存在于晶界相中,以其高弹性模量和高温强度增加了整体的断裂表面能,特别是高温断裂韧性。

当基体的第二相为弥散颗粒时,增髯机制可能是裂纹受阻或裂纹偏转、相变增韧和弥散增韧。影响第二相颗粒增韧效果的主要因素是基体与第二相颗粒大弹性模量和热膨胀系数之差以及两相之间的化学相容性。其中,化学相容性是要求既不出现过量的相间化学反应,同时又能保证较高的界面结合强度,这是颗粒产生有效增韧效果的前提条件。

当陶瓷基体中加入的颗粒具有高弹性模量时就会产生弥散增韧。其机制为:复合材料受拉伸时,高弹性模量第二相颗粒阻止基体横向收缩。为达到横向收缩协调,必需增大外加纵向拉伸压力,即消耗更多外界能量,从而起到增韧作用。颗粒弥散增韧与温度无关,因此可以作为高温增韧机制。纤维增强增韧复合材料,将在下节陈述。

在过去的20年中,人们在陶瓷材料的增韧方面做了大量的工作,通过对材料微结构的控制,成功的提高了断裂韧性和多晶、多相陶瓷的强度。到目前为止人们已经得到强度约1GPa,断裂韧性6~l0Mpa.m1/2的氮化硅;微粒稳定氧化锆和四方多晶氧化锆的断裂韧性和强度已可分别达到6~l0MPa.m1/2和0.6~lGPa;具有金属韧性的易延展陶瓷(金属的体积百分含量不超过30%)显示出更高的断裂韧性(10~15 MPa.m1/2)。而利用纤维增强的复合材料则因为其复合结构能在材料发生断裂前吸收大量的断裂功,有更加惊人的韧性,标准的屈服测量结果显示其断裂韧性可以达到20~25 MPa.m1/2。但值得注意的是复合材料的断裂过程与Griffith 理论所描述的尖锐裂纹的传播过程是不同的。所有这些断裂韧性的进步使陶瓷材料增加了许多新的在结构方面的应用。例如,氮化硅在汽车部件(涡轮压缩机转子等)及高温汽轮机上的应用、形变增韧多晶氧化锆及其复合材料在大范围的低温条件下的应用,及纤维状或须状纤维增强的玻璃、玻璃状陶瓷和多晶陶瓷在发动机部件、切割工具、轴承等许多方面上的应用。

(4)陶瓷的理论强度和实际断裂强度相差1-3个数量级。

引起陶瓷实际抗拉强度较低的原因是陶瓷中因工艺缺陷导致的微裂纹,在裂纹尖端引起很高的应力集中,裂纹尖端之最大应力可达到理论断裂强度或理论屈服强度(因陶瓷晶体中可动位错少,位错运动又困难,所以,一旦达到屈服强度就断裂了)。因而使陶瓷晶体的抗拉强度远低于理论屈服强度

陶瓷增韧机理

陶瓷作业 姓名:王槐豪 学号:1071900220 班级:0719201

陶瓷韧化机理 陶瓷最致命缺点是脆性,低可靠性和低重复性,这些不足严重影响陶瓷材料的应用范围。只有改善陶瓷的断裂韧性,提高其可靠性和使用寿命,才能是陶瓷真正成为一种广泛应用的新型材料,因此陶瓷增韧技术一直是陶瓷研究的热点。 陶瓷的断裂主要是由于裂纹扩展导致的,阻止间断裂纹的扩展的方法有三种。其一为分散裂纹尖端应力;其二为消耗裂纹扩展的能量,增大裂纹扩展所需克服的能垒;最后问转换裂纹扩展的能量。 相变韧化 受相变诱发塑性钢,即TRIP (transformation induced plasticity)钢的启发,将ZrO 2 t →m 相变M s 点稳定到比室温稍低,而M d 点比室温高,使其在承载时由应力诱发产生t →m 相变,由于相变产生的体积膨胀效应和形状效应,而吸收大量的能量,从而表现出异常高的韧性。这就是相变韧化(transformation toughening )的概念。韧化机理分析: 1.相变韧化(?K ICT ) ; d i

陶瓷材料闪烧技术研究进展

第45卷第9期 2017年9月 硅 酸 盐 学 报 Vol. 45,No. 9 September ,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.doczj.com/doc/0916398786.html, DOI :10.14062/j.issn.0454-5648.2017.09.01 陶瓷材料闪烧技术研究进展 傅正义,季 伟,王为民 (武汉理工大学材料复合新技术国家重点实验室,武汉 430070) 摘 要:总结了闪烧研究中所涉及的实验内容(包括平台、制度和材料体系等)和烧结机理(包括焦耳热效应、快速升温致密化、接触点局部热效应和缺陷作用理论等),比较了闪烧和传统烧结制得材料的微观形貌和力学性能,展望了闪烧技术的发展趋势和方向。结果表明:闪烧技术可广泛应用于离子导体、绝缘体、半导体和类金属导电陶瓷等多种陶瓷材料的制备中,闪烧制备的陶瓷材料较传统烧结具有更精细的微观形貌和更优异的力学性能。 关键词:闪烧;超快速烧结;致密化行为;烧结机理 中图分类号:TB33 文献标志码:A 文章编号:0454–5648(2017)09–1211–09 网络出版时间:2017–07–27 18:07:57 网络出版地址:https://www.doczj.com/doc/0916398786.html,/kcms/detail/11.2310.TQ.20170727.1807.001.html Recent Progress in Flash Sintering Technology of Ceramic Materials FU Zhengyi , JI Wei , WANG Weimin (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China) Abstract: This review paper represents recent experimental work (i .e ., apparatus, regimes and materials) and the possible mechanisms in flash sintering (i .e ., thermal runaway of joule heating, rapid heating for densification, local heating of the contact point and effect of lattice defects). The microstructures and properties of materials obtained by flash sintering and conventional sintering were described. Some aspects for further investigation were prospected. It is indicated that flash sintering is applied to fabricate some ceramic materials like ionic conductors, insulators, semiconductors and metallic-like ceramics. Ceramics fabricated by flash sintering show a finer microstructure and better mechanical properties, compared to those by conventional sintering. Keywords: flash sintering; ultra-fast sintering; densification behavior; sintering mechanisms 传统的陶瓷烧结方法,是指紧密堆积的陶瓷粉体在高温热驱动力的作用下,通过原子扩散排出晶粒间的气孔从而致密化的过程。但在高温条件下,原子扩散作用在帮助材料致密化的同时,也会不可避免地导致晶粒长大现象。对于多晶材料,高的密实度意味着更好的力学性能,而晶粒长大则会造成性能的劣化,影响材料的应用,长时间的高温烧结也使得陶瓷行业成为一种高耗能产业。 闪烧(Flash sintering)技术是近几年出现的一种 新型电场辅助陶瓷烧结方法。“Flash sintering ”一词最早的出现于1952年Hill 的文章[1]中,文中描述了一种在压力辅助条件下,将电流直接通过迅速升温的金属陶瓷坯体,来制备金属陶瓷块体材料的方法。 现在所说的闪烧是一个新的烧结概念,第1篇文献于2 010年由Cologna 等报道[2],在此文及其后续的研究论文中[3],作者描述了1个典型的闪烧实验平台,如图1所示。利用这一平台,Cologna 将氧化锆[3%(摩尔分数) Y 2O 3–ZrO 2,3YSZ]陶瓷坯体 收稿日期:2017–06–16。 修订日期:2017–06–23。 基金项目:国家自然科学基金(51521001, 51402097);科技部国际合作 项目(2015DFR50650)和武汉理工大学自主创新基金(2017II17XZ ,2017III03)资助。 第一作者:傅正义(1963—),男,教授。 通信作者:季 伟(1986—),男,讲师。 Received date: 2017–06–16. Revised date: 2017–06–23. First author: FU Zhengyi (1963–), male, Ph.D., Professor. E-mail: zyfu@https://www.doczj.com/doc/0916398786.html, Correspondent author: JI Wei(1986–), male, Lecturer. E-mail: jiwei@https://www.doczj.com/doc/0916398786.html,

陶瓷的强化与增韧

陶瓷材料的强化 影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量研究。从对材料的形变及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E,断裂功(断裂表面能)和裂纹尺寸。其中E是非结构敏感的,与微观结构有关,但对单相材料,微观结构对的影响不大,唯一可以控制的是材料中的微裂纹,可以把微裂纹理解为各种缺陷的总和。所以强化措施大多从消除缺陷和阻止其发展着手。值得提出的有下列几个方面。 (1)微晶, 高密度与高纯度为了消除缺陷,提高晶体的完整性,细、密、匀、纯是当前陶瓷发展的一个重要方面。近年来出现了许多微晶、高密度、高纯度陶瓷,例如用热压工艺制造的陶瓷密度接近理论值,几乎没有气孔,特别值得提出的是各种纤维材料及晶须。 (2)预加应力人为地预加应力,在材料表面造成一层压应力层,就可提高材料的抗张强度。脆性断裂通常是在张应力作用下,自表面开始,如果在表面造成一层残余压应力层,则在材料使用过程中表面受到拉伸破坏之前首先要克服表面上的残余压应力。 (3)化学强化如果要求表面残余压应力更高,则热韧化的办法就难以做到,此时就要采用化学强化(离子交换)的办法。这种技术是通过改变表面的化学组成,使表面的摩尔体积比内部的大。由于表面体积胀大受到内部材料的限制,就产生一种两向状态的压应力。 4)陶瓷材料的增韧 所谓增韧就是提高陶瓷材料强度及改善陶瓷的脆性,是陶瓷材料要解决的重要问题。与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。 韧化的主要机理有应力诱导相变增韧,相变诱发微裂纹增韧,残余应力增韧等。几种增韧机理并不互相排斥,但在不同条件下有一种或几种机理起主要作用。 相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。例如,利用的马氏体相变来改善陶瓷材料的力学性能,是目前引人注目的研究领域。研究了多种?的相变增韧,由四方相转变成单斜相,体积增大3% 5%,如部分稳定,四方多晶陶瓷(TZP), 增韧陶瓷(ZTA), 增韧莫来石陶瓷(ZTM), 增韧尖晶石陶瓷, 增韧钛酸铝陶瓷, 增韧陶瓷,增韧以及增韧等。其中PSZ陶瓷较为成熟,TZP,ZTA,ZTM研究得也较多,PSZ,TZP,ZTA等的新裂韧性已达,有的高达,但温度升高时,相变增韧失效。 当部分稳定陶瓷烧结致密后,四方相颗粒弥散分布于其他陶瓷基体中(包括本身),冷却时亚稳四方相颗粒受到基体的抑制而处于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力的诱发作用下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有增加外力做功才能使裂纹继续扩展,于是材料强度和新裂韧性大幅度提高。 因此,这种微结构会产生三种不同的增韧机理。在氧化锆中具有亚稳态四方相的盘状沉淀的微粒,如图1-55所示。首先,随着裂纹发展导致的应力增加。会使四方结构的沉淀相通过马氏体相变转变为单斜结构,这一相变吸收了能量并导致体积膨胀产生张应力。这种微区的形变在裂纹附近尤为明显。其次,相变的粒子周围的应力场会吸收额外的能量,并形成许多微裂纹。这些微结构的变化有效地降低了裂纹尖端附近的有效应力强度。第三,由于沉淀颗粒对裂纹的阻滞作用和局域残余应力场的效应,会引起裂纹的偏转。裂纹偏转又引起裂纹的表面积和有效表面能增加,从而增加材料的韧性。上述的情况同样适甩于粒子和短纤维强化的复合材料中。

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

陶瓷材料科学论文

学号: 1004230213 专业素质教育 2012 ~ 2013 学年秋季学期 学院:材料学院 专业班级:无机10—02班 姓名:宋海彬 透明陶瓷的研究现状与发展展望 摘要:陶瓷具有广大的发展前景,透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。 关键词:性能透明材料前景组成陶瓷透光性制备工艺应用 前言:1962年RLC首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用。 透明陶瓷的分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1氧化物透明陶瓷

对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。2非氧化物透明陶瓷 对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。 与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧化物透明陶瓷的研究势在必行。 透明陶瓷的制备工艺 透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。为了达到陶瓷的透光性,必须具备以下条件〔4〕:(1)致密度高;(2)晶界没有杂质及玻璃相,或晶界的光学性质与微晶体之间差别很小;(3)晶粒较小而且均匀,其中没有空隙;(4)晶体对入射光的选择吸收很小; (5)无光学各向异性,晶体的结构最好是立方晶系;(6)表面光洁度高。因此,对制备过程中的每一步,都必须精确调控,以制备出良好的透明陶瓷材料。

透明陶瓷材料

透明陶瓷材料 在我们《材料学导论》课上,何老师介绍了一种材料叫做无色透明陶瓷,这个让我惊奇,因为在我的潜意识里,我一直觉得陶瓷是白色的,又或者是镶嵌一些其他的色彩,比如我们日常生活里见到的碗、盘子、花瓶、酒盅之类的,都不是无色的,因此透明陶瓷引起了我的兴趣。 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的,原因是其内部存在有杂质和气孔,前者能吸收光,后者令光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉(Al2O3)、氧化镁{MgO)、氧化铍(BeO)、氧化钇(Y2O3)、氧化钇-二氧化锆(Y2O3-ZrO2)等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。 这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2000℃以上。如氧化钍-氧化钇透明陶瓷的熔点高达3100℃,比普通硼酸盐玻璃高1500℃。透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源。高压钠灯的工作稳定高达1200℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。透明陶瓷的制造是有意识地在玻璃原料中加入一些微量的金属或者化合物(如金、银、铜、铂、二氧化钛等)作为结晶的核心,在玻璃熔炼、成型之后,再用短波射线(如紫外线、X射线等)进行照射,或者进行热处理,使玻璃中的结晶核心活跃起来,彼此聚结在一起,发育成长,形成许多微小的结晶,这样,就制造出了玻璃陶瓷。用短波射线照射产生结晶的玻璃陶瓷,称为光敏型玻璃陶瓷,用热处理办法产生结晶的玻璃陶瓷,称为热敏型玻璃陶瓷。 透明陶瓷的机械强度和硬度都很高,能耐受很高的温度,即使在一千度的高温下也不会软化、变形、析晶。电绝缘性能、化学稳定性都很高。光敏型玻璃陶瓷还有一个很有趣的性能,就是它能象照相底片一样感光,由于这种透明陶瓷有这样的感光性能,故又称它为感光玻璃。并且它的抗化学腐蚀的性能也很好,可经受放射性物质的强烈辐射。它不但可以象玻璃那样透过光线,而且还可以透过波长10微米以上的红外线,因此,可用来制造立体工业电视的观察镜,防核爆炸闪光危害的眼镜,新型光源高压钠灯的放电管。 透明陶瓷的用途十分广泛,在机械工业上可以用来制造车床上的高速切削刀,汽轮机叶片,水泵,喷气发动机的零件等,在化学工业上可以用作高温耐腐蚀材料以代替不锈钢等,在国防军事上,透明陶瓷又是一种很好的透明防弹材料,还可以做成导弹等飞行器头部的雷达天线罩和红外线整流罩等;在仪表工业上可用作高硬度材料以代替宝石,在电子工业上可以用来制造印刷线路的基板和镂板,在日用生活中可以用来制作各种器皿,瓶罐,餐具等等。 透明陶瓷最早是使用在灯具上。高压钠灯是一种发光效率很高的电光源,但在钠蒸气放电时产生1000℃以上的高温,具有很强的腐蚀性,玻璃灯管根本没法耐受,所以高压钠灯一直没能问世,直到有了透明陶瓷,高庄钠灯才得到实际应用,除高压钠灯外,透明陶瓷还使用于其它新型灯具,如艳灯、铷灯、钾灯等。响尾蛇导弹头部的红外探测器,外面有一个整流罩,它不仅要有足够的强度,还要能透过红外线,以确保导弹能跟踪敌机辐射的红外线。担当此任的材料只有透红外陶瓷,响尾蛇导弹的整流罩就是用透红外陶瓷做的。电焊工人操作时,要不断地把面罩举起拿下,十分不方便。有一种锆钛酸铅镧透明铁电陶瓷,能透光,耐高温,用它造成具有夹层的护目镜,能根据光线的亮暗自动进行调节,有了这种护目镜,电焊工人工作起来就十分方便。这种护目镜,正在核试验工作人员和飞行员中得到广泛的作用。新型材料进入市场的商标为ALON,

陶瓷材料论文

透明陶瓷的研究现状与发展展望 摘要:透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。 综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。 关键词:透明陶瓷透光性制备工艺应用 前言:自1962年R.L.Coble首次报导成功地制备了透明氧化铝陶瓷材料以来, 为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用〔1〕。近38年来,世界上许多国家,尤其是美国、日本、英国、俄罗斯、法国等对透明陶瓷材料作了大量的研究工作,先后开发出了Al2O3、Y2O3、MgO、CaO、TiO2、ThO2、ZrO2等氧化物透明陶瓷以及AlN、ZnS、ZnSe、MgF2、CaF2等非氧化物透明陶瓷. 透明陶瓷的分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1氧化物透明陶瓷 对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。 2非氧化物透明陶瓷 对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。 与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧

陶瓷材料复习题

1、分别以Al2O3、ZrO 2、Si3N4为例,从结合键的角度分析这上述陶材料的切削加工性。 2、分别根据鲍林第一、第二、第三规则,分析CsCl、NaCl、CaF2、TiO2晶体结构的稳定性。 3、分别分析纤锌矿结构(wurtzite型,ZnS型)、β-方石英结构的特点。 4、分析刚玉型结构的特点。 5、硅酸盐晶体结构有哪些特点? 6、分析绿宝石Be3A12(Si6O18)结构的归类、结构特点,标出六节环结构。 7、分析透辉石的结构特点,标出链状结构。 8分析蒙脱石的结构特点,讨论其插层原理。 9根据XRD原理,解释晶态、非晶态XRD谱线的区别。 10根据TEM原理,分析非晶、晶态结构衍射花样差异的原因。 11非晶态材料有何结构特点?可采用哪些方法进行表征?论述其表征机理。 12 (1) 绘出典型非晶材料的示差扫描量热(DSC)曲线, 标出玻璃转变温度(Tg)、晶化温度(Tx)及过冷液态区(ΔTx)。(2) 阐述非晶材料在Tg,Tx温度点所发生的物理性质变化规律。(3) 非晶态材料在过冷液态区有哪些特殊性质,利用该性质可以作哪些应用,举例说明。 13 根据下图,选择适于制备耐火材料的成分,并据此成分,分析其冷却析晶过程。

14 根据上图,分析30% Al2O3含量组分的冷却析晶过程。 15 分析下图中,M1,M2,M3的冷却析晶过程。 16 根据下图: 1)分析图中不同成分熔体冷却时的析晶图。 2)为什么水泥烧成后总是采用急速冷却的办法?

CS—CaO·SiO2(偏硅酸钙或硅灰石) C3S2—3CaO·2SiO2(二硅酸三钙) C2S—2CaO·SiO2(硅酸二钙) C3S—3CaO·SiO2(硅酸三钙) 17 分别分析以下系列相图中,M点的冷却析晶过程。

闪光釉

LUSTER是一种白色粉沫状的有机金属化合物,以网印方式印于陶瓷釉上,经烘烧后有机物分解烧光,留下金属薄膜(约0.1um厚),烧成后发出金属般颜色的闪光.,进而提升陶瓷的装饰及美化效果. 一、产品编号、烧成温度 1、GS-L610:900~1050℃; 2、GS-L620:980~1100℃; 3、GS-L650:1050~1150℃ 4、GS-L660:1050~1150℃ 5、GS-L680:1100~1230℃ 二、印刷釉浆的调制 1、闪光印刷釉粉:一般印油=100:60~65,稍加研磨可得更好 的效果,印油的选择以印花釉浆流动性适中、具保湿性、 不易沉淀或分层者为宜。 2、调合印油时,有机粘剂和水的用量尽可能降低,否则易使闪 光釉印刷釉,印刷表面显色度较差,模糊变色,油针孔较 多的现象。 三、网版的选择 1、一般而言,闪光印刷釉都运用在最后一道印刷,使用100~120 目的网版居多,在某些效果及印刷釉浆的配合下,也可以 使用150目的网版;因闪光效果的表现多为线条和全开的 色块,所以,网版开度在100~60%,最容易表现闪光的质 感。 2、网版的膜厚目数因定时印刷釉的比重粘度、稠度、做适当的 微调。可达成砖面全层光泽,较会饱和的折射效果。 四、釉面效果的调整 1、可适量调整加入色料改变闪光反射的色系;加入量约在 0.3~3% . 2、若因印刷处产生凹陷不平整,可外加1~15%的高岭土或叶长 石,使之较为平整。但印刷则会有半光亮缎面质感的产生。

3、除上述的调整外亦可用高温、中温、低温不同范围的闪光印 刷釉粉,互调适当比例,达到砖面平整及亮度的要求。 五、注意事项 1、烧成方式与一般釉面烧方式相同,大量生产时,若因坯体翘 曲,釉上温度可酌降3-5℃,改善负翘曲的现象。 2、印花釉中不宜外加不必要的生料釉或熔块釉,以免闪光效果 降低或消失。 3、化妆土施釉前的喷水量与调合印油所加入的水过多会间接 影响闪光釉的亮度,所以入窑前的预热烘干或窑炉预热带时间加长有利于闪光效果的稳定。 4、闪光釉在中性到氧化完全的窑炉气氛中较能有好的效果,若 窑炉烧成正压(还原)气氛时,则会使闪光效果减低或变色。 六、储存及期限: 置于干燥阴凉处,12个月以上 七、包装规格 25㎏\包

陶瓷复合材料的增韧

陶瓷基复合材料的增韧研究进展(综述) 摘要:陶瓷材料具有高强度、耐高温、耐腐蚀等优异性能,但是陶瓷材料的脆性问题一直制约着陶瓷材料的发展。近年来,人们在提高陶瓷的韧性方面取得了众多成果。本文介绍了近五年来国内外关于纳米陶瓷基复合材料的增韧问题的研究进展,并对陶瓷基复合材料的增韧进行了前景展望。 关键词:陶瓷基复合材料;增韧;研究进展 Research and Development of Toughening of Ceramic Matrix Composites (A Review) Zhou Kui State Key Laboratory of Material Processing and Die&Mould Technology, Huazhong university of science and technology Abstract:Ceramic materials have outstanding performance at strength, high temperature resistance, corrosion resistance, but the development of ceramic materials has been restricted by the brittleness of ceramic materials.In recent years,many achievements in improving ceramic toughness has been made.In this paper,the research status about ceramic matrix composite toughening problem at home and abroad had been introduced and the prospect of ceramic matrix composite toughening was also proposed. Keywords:ceramic matrix composites;toughening;research status 1、引言 陶瓷材料不管是在古代还是当今社会都是不可缺少的材料,它和金属材料、高分子材料并列为当代三大固体材料。[1]陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点,不仅可用作结构材料,由于其还具有某些特殊的性能,因此它也可作为功能材料。[2] 目前,新型的陶瓷材料正在以往使用金属的领域中得到应用,如发动机零部件、高温喷嘴、磨球、轴承、耐磨部件、刀具等。由于结构陶瓷固有的脆性,其具有灾难性破坏的致命弱点,使其可靠性较差,因此,改善陶瓷材料的韧性就成为直接关系到陶瓷材料在高科技领域中应用的关键。近年来,围绕陶瓷材料韧化这一关键性问题,已进行了大量而深入的基础研究,取得了不少突破性的进展。主要表现在以下几个方面:[3] (1)发展了高纯、超细、均质的陶瓷粉体制备技术,最终提升陶瓷的韧性; (2)开发出了流延法成型、轧膜成型、注射成型、挤制成型以及近年来出现的胶态成型等实用新型成型工艺; (3)发展了热压烧结、热等静压烧结、气压烧结、微波烧结、自蔓延高温合成、等离子放电烧结等烧结新技术;

闪烁材料研究进展

第23卷专辑中国稀土学报2005年12月 V01.23Spee.IssueJOURNALOFTHECHINESERAREEARTHSOCIETYDec.2005 闪烁材料研究进展 李喜坤1’孙,邱关明1’3,丘泰1,刘晶2,修稚萌4,孙旭东4 (1.南京工业大学,江苏南京210009;2.沈阳理工大学,辽宁沈阳110168;3.长春理工大学,吉林长春130022;4.东北大学,辽宁沈阳110004) 摘要:综述了闪烁材料的研究发展的3个阶段:第一阶段,早期随着伦琴发现X射线出现了闪烁体caWO。。第二阶段,随着光电倍增管的发展和萘的闪烁现象出现Hofstadter研制出铊激发Nal闪烁体。第三阶段,随着高能物理上精确量热技术和医学成像高的光输出技术需求闪烁材料进入大复兴阶段。总结了闪烁体的主要性能:透明性、光输出、发光效率、精细的时间分辨率、探测效率和灵敏度、良好的能量分辨能力、X射线阻止本领、衰减速度和余辉、辐照损伤、温度效应、材料的可获得性等。介绍了几种重要闪烁材料:陶瓷闪烁体、玻璃闪烁体和塑料闪烁体等,指出研制高性能闪烁陶瓷材料来逐步取代目前广泛使用的单晶闪烁材料和玻璃闪烁材料是研究闪烁体目前重要的研究方向。 关键词:闪烁体;闪烁性能;闪烁陶瓷;闪烁玻璃 中图分类号:TQl74文献标识码:A文章编号:1000—4343(2005}一0037—09 闪烁材料是指能吸收高能粒子或射线发出可见光子的材料。无机闪烁材料广泛应用于电离辐射探测。在过去的几十年中,闪烁材料在高能物理热量精确测定和医疗成像领域中增长迅速。随着锗酸铋(Bi。Ge,O。:)闪烁现象的发现,及高密度材料在探测领域的应用,国际上好多研究机构在短短10年之内致力于锗酸铋特性和应用方面的研究,而且锗酸铋被欧洲粒子物理研究所用作L3探测器的闪烁材料。L3探测器由11400根长22cm、重超过10公吨的锗酸铋晶体组成。今天锗酸铋却不能满足欧洲粒子学会建造CMS探测器的需要,取而代之的是80,000个25em长的钨酸铅晶体。此外,在医疗成像领域(planarX.ray,X.rayCT,SPECT和PET)每年大约需求175吨闪烁体材料[I。]。 1闪烁材料的发展 利用辐射探测的闪烁现象的历史有100年了。闪烁体的发展分为3个阶段,如图1:首先伦琴用钨酸钙发现了x射线时,Becquerel用铀酰盐发现了放射性,Crookes研究ZnS时,Rutherford研究a粒子散射时发现并计算了放射性。在此期间用闪烁法测定放射性强度的研究以光电倍增管的出现而结束陆圳。萘的闪烁现象的发现使闪烁材料发展进入了第二阶段,进而引发了Hofstadters用铊激发NaI晶体[9“1|。在随后的几年中科学家对许多纯的或掺杂的碱卤酸盐的闪烁特性掀起了研究高潮。在20世纪50年代含锂化合物用于探测中子以及第一个掺ce闪烁玻璃也开始了研究。包括快速闪烁体BaF:等。第三阶段,在过去的20年问,由于高能物理研究需要精确热量测定、数字医疗成像需要高光产额的闪烁材料、地球物理勘探以及各种科学工业应用,这样闪烁材料发展进入了真正复兴阶段,主要闪烁体的发展如图1【1扣15]。 图1是闪烁材料的发展顺序。其他材料包括铈离子激活的氟化玻璃,一种用于中子探测的致密的硫氧化物Lu2S3:Ce,LiBaF3和Li6Gd(B033:Ce。近年来,有报道一种钙钛铁矿类型的卤化铅基的有机无机混合化合物能够产生衰减时间不变的半导体似的激子发光[1£16]。与此同时,同步加速器辐射和激光光谱已经使人们对激子固有的复杂性、缺欠的形成和大量的闪烁过程有了更深的理解。这些物理过程现在很好理解,尽管某些具体材料还缺乏好多细节。不同阶段的闪烁过程也许可以归纳为:首先吸收高能光子或粒子,在附近就会产 收稿日期:2005—09—05;修订日期:2005—09—20 基金项目:国家自然基金资助项目(501720lO) 作者简介:李喜坤(1971一),男,辽宁本溪人,博士,副教授;研究方向:陶瓷材料*通讯联系人(E.mail:kunm@163.COrn)

陶瓷材料的结构与特性

陶瓷材料的結構與特性 【摘要】一般稱為陶瓷的材料是泛指「非金屬的無機固相物質」,它通常是一種化合物,由兩種或兩種以上的帶電離子鍵結所構成。由於離子種類不同,合成的物質具有與金屬材料截然不同的機械、電、磁、光等特性。 英文ceramic(陶瓷)一字源自希臘字"keramikos",意指「燒過的東西」。在中國的工藝辭彙裡,「陶」與「瓷」卻指不同的燒成品:前者是指燒結後的物品,例如瓦罐,它仍具有表面孔隙,在潮濕的環境中會吸收水分;「瓷」一字指的是表面燒結緻密,不會滲水的日用器皿,其表面常覆蓋著一層玻璃質的釉料,在高溫的燒成後,表層可以隔離水氣的入侵。 陶瓷材料與人類文明的發展息息相關 建築業採用大量的水泥材料,外牆及室內裝飾的壁磚、地磚,以及有利採光與美觀的多色玻璃門窗或幕帷,隨處可見。日常電器用品或資訊產品中,做為個人電腦386/486中央處理器多層電路隔板的氧化鋁基板、電阻材料、多層電容器,都是由高純度的陶瓷所製成。由於某些陶瓷具有優異的抗腐蝕性,這種材料又可用來製作強酸、強鹼的容器,或是製成人工關節,來取代人體內不堪使用的關節。陶瓷的高硬度,使得許多容易磨蝕的組件漸漸採用陶瓷,而且它的熔點比一般的金屬與高分子材料來得高,所以高溫的隔熱材料或是廢熱的熱交換器,都可使用陶瓷材料。其他在國防工業或航太工業,精密陶瓷都有其特定的用途。 如果了解陶瓷材料的原子結構與金屬及高分子材料的不同後,大家一定不會對陶瓷性質的多樣性感到懷疑。一次世界大戰以前,陶瓷產品只限於日常的器物如磚瓦、混凝土或是玻璃器皿。但1940年以後,陶瓷領域已擴展到微電子、電腦、資訊、國防、航太的範圍之中。由於對陶瓷的物、化性質的了解,改善純化與合成的技術,並發展出新的陶瓷製造工程,才使得簡單的建築與日常使用的陶瓷材料,擴展為特定用途的精密陶瓷組件。 最常見的陶瓷原料是天然風化的礦石,像是黏土或石英砂,主要的成分是氧化矽,其次是氧化鋁、氧化鈣、氧化鎂,或是鹼金屬的氧化物。由於大自然長年風化作用的結果,將火山岩漿形成的花崗岩分解,經雨水及二氧化碳作用將其中的長石(含鉀鋁矽的氧化物)部分溶解,殘留的鋁矽酸物轉成高嶺土(一種常見的陶瓷黏土)。這種黏土的基本成分是Al2O3.2SiO2.2H2O,因為含有氧化鐵的雜質,常呈棕褐色,又在自然環境的分離作用下,細小的晶粒(小至1mm的1/1000)沈積成黏土礦,其中混雜著有機質,成為傳統陶瓷原料的主要來源。由於含有有機質(像木質素或藻膠),細緻的黏土很容易與水混合,形成的泥漿也有適當的黏性,由泥漿注模成形的坯體也有相當的強度,可以移入窯爐裡,燒出精緻、美觀的瓷器。 細小的陶瓷顆粒,有些呈圓形,有些呈鬚晶或板片狀,但都有其固定的結晶構造。因為顆粒夠小的關係,燒陶瓷生坯時,不必達到它的熔點就能將陶瓷燒結緻密。緻密的陶瓷器不僅不易吸水,其他的強度、硬度、透明度等性質都能提高不少。 此外,利用燒瓷溫度與時間的調整,細小的陶瓷顆粒在燒結時會逐漸靠近,達到緻密化的目的;晶粒也會逐漸長大,或是長成「柱晶」狀,例如許多白色瓷器的坯體都有的「富鋁紅柱石」(mullite,又稱「莫來石」)。不同的熱處理方法,包括改變加熱的溫度、時間、氣氛,可造成晶粒與孔隙的變化。不同的晶粒大小、分布與晶界間的現象,我們統稱「微結構」,這種結構的尺度就比原子的結構或是晶體結構大上數百倍,乃至數千倍以上。陶瓷材料的性質即決定於陶瓷化合物的「原子結構」、「晶體結構」,以及不同製程產生的「微結構」。 以下按陶瓷的基本分子結構、結晶結構與微結構,由小而大,分階段舉例說明與陶瓷特性間的關係。 陶瓷的分子結構 前面提及最常見的陶瓷材料是以黏土為主的氧化物,包括氧化矽、氧化鋁或氧化鉀的分子,這些分子都含有一定量的陰及陽離子。兩個異性的離子由於游離或吸引電子的能力不同的關係,當它們接近時,除了可藉由共同擁有原子軌道上的電子達到穩定的效果外,這種對價電子親和能力(又稱「陰電性」)也會影響兩個相吸的異性離子的鍵結特性,我們常以「游離率」或「陰電性差值」來表示。 當陰陽離子的陰電性相差愈多,它們形成的化合物的「離子鍵性」愈高,反之則「共價鍵性」高。所以除了少數的例外,大部分的陶瓷材料的分子鍵結形態多屬兩種鍵性的混成。完全的共價鍵材料極少,結晶形的鑽石(碳)即是一例;而接近完全離子鍵的化合物,像食鹽(氯化鈉)則只有非常微弱的共價鍵性。稍後,我們將介紹共價與離子鍵性比例的高低,將直接影響陶瓷材料的熔點、基本分子結構、導電性及其他許多物理性質。

陶瓷材料的强韧化方法概述

陶瓷材料的强韧化方法概述 鉴于本人在研究生阶段的研究方向与陶瓷材料有关,故本篇所选择的主要内容为陶瓷材料的强韧化方法。 与传统材料相比陶瓷材料具有耐高温、耐腐蚀、耐磨损等优异特性,但它也存在脆性大、易断裂的缺点,从而大大限制了陶瓷材料在实际生产中的应用。因此改善陶瓷材料的脆性、增大强度、提高其在实际应用中的可靠性成为其能否广泛应用的关键。近年来,陶瓷材料的强韧化课题已经受到国内学者的高度重视。目前已有的强韧化主要措施如下所述。 1、氧化锆相变增韧:当材料受到外力作用时,裂纹扩展到亚稳的t-ZrO2粒子,这会促发t-ZrO2粒子向m-ZrO2的相变,由此产生的相变应力又会反作用于裂纹尖端,降低尖端的应力集中程度,减缓或完全抑制了裂纹的扩展,从而提高断裂韧性; 2、微裂纹增韧:由于温度变化引起的热膨胀差或相变引起的体积差会在陶瓷基体相和分散相之间产生的弥散均布裂纹。当导致断裂的主裂纹扩展时,这些均匀分布的微裂纹会促使主裂纹分叉,使得其扩展路径变得曲折,增加了扩展过程的表面能,从而使裂纹快速扩展受到了阻碍,增加了材料的韧性; 3、裂纹偏转增韧:在发生裂纹偏转时,裂纹平面会在垂直于施加张应力方向上重新取向,这就意味着裂纹扩展路径将被增长。同时,由于裂纹平面不再垂直于张应力方向而使得裂纹尖端的应力降低,因而可以增大材料的韧性; 4、裂纹弯曲增韧:在裂纹扩展过程中,如果遇到基体相中存在的断裂能更大的第二相增强剂就会被其阻止,裂纹前沿如需继续扩展便要越过第二障碍相而形成裂纹弯曲。这也会使裂纹快速扩展受到了阻碍,从而增加材料的韧性; 5、裂纹桥接增韧:所谓的裂纹桥接是指由增强元连接扩展裂纹的两表面形成裂纹闭合力而导致脆性基体材料增韧的方法。其增强元可分为两种:一种为刚性第二相,另一种则是韧性第二相; 6、韧性相增韧:韧性相会在裂纹扩展中起到附加吸收能量的作用,这就使得裂纹进一步扩展所需的能量远远超过形成新裂纹表面所需的净热力学表面能。同时裂纹尖端高应力区的屈服流动使应力集中得以部分的消除,抑制了原先所能达到的临界状态,相应的提高了材料的抗断裂能力; 7、纤维、晶须增韧:纤维和晶须具有高弹性和高强度,当它作为第二相弥散于陶瓷基体构成复合材料时,纤维或晶须能为基体分担大部分外加应力而产生强化。纤维和晶须的存在也使得裂纹扩展途径出现弯曲从而使断裂能增加。此外在裂纹尖端附近由于应力集中,纤维或晶须也可能从基体中拔出。拔出时以拔出功的形式消耗部分能量,同时在尖端后部,部分未拔出或未断裂的纤维或晶须则起到了桥接的作用。而且在裂纹尖端,由于应力集中可使基体和纤维或晶须发生

相关主题
文本预览
相关文档 最新文档