当前位置:文档之家› 柠檬酸生产工艺简介

柠檬酸生产工艺简介

柠檬酸生产工艺简介
柠檬酸生产工艺简介

柠檬酸生产工艺简介第一节概述

一、柠檬酸的用途

(一)在食品工业的应用

1、饮料

据统计75%~80%的柠檬酸用于饮料工业。

2、果酱与果冻

3、糖果

4、冷冻食品

5、酿造酒

6、冰淇淋和酸奶

7、脂肪与油

8、腌制品

9、罐头食品和水果加工

10、豆制品和调味品

(二)柠檬酸在药物、美容品、化妆品上应用

1、药物

“999胃泰”

2、发蜡与化妆品

(三)柠檬酸在工业上应用

1、金属净化

2、去垢剂

3、无土栽培农艺

4、矿物

5、……

二、乳酸的用途

L-乳酸聚合成聚乳酸(PLA)

三、L-苹果酸的用途

三、葡萄糖酸的用途

四、琥珀酸的用途

我国柠檬酸发展简史

1968年我国第一家以淀粉为原料深层发酵柠檬酸成功投产的厂是上海酵母厂。同期,天津工微所开展了以适合我国国情的薯干原料深层发酵柠檬酸的研究工作。之后,上海工微所用该所的“东酒2号”黑曲霉为出发菌株,用薯干粉做培养基,很快选出了我国第一代深层发酵柠檬酸生产菌种AL558,由原轻工业部立项,组织上海、天津两个工微所、上海复旦大学生物系、上海新型发酵厂(筹)、上海酵母厂、天津柠檬酸厂(筹)、南通油洒厂(南通发酵厂前身)等单位,在南通油酒厂展开了善于深层发酵、全离交提取工艺的中、大型试验工作,并取得了成功,因而推动了我国柠檬酸工业于20世纪70年代初形成了工业体系。70年代中期到80年代是我国柠檬酸菌种选育的高峰期,先后选育出5代薯干原料高产菌株和适应淀粉、木薯、葡萄糖母液、糖蜜等原料的优良菌株。上海、天津两工微所和上海复旦大学生物系为此做出了很大贡献。各生产厂的广大科技人员和生产工人通过不懈地努力,提高了柠檬酸行业的整体水平,特别在缩短发酵周期、提高单产方面成绩突出,使我国柠檬酸发酵技术处于世界领先地位。无锡轻工业学院和天津轻工业学院为柠檬酸行业培养了一大批科技力量,已成为行业发展的骨干。1995年金其荣与蚌埠柠檬酸厂共同开发了玉米去渣发酵新工艺。同年黑龙江甘南柠檬酸厂于脱胚玉米去渣发酵工艺也成功投产。玉米新工艺的成功,使我国的柠檬酸工业进入一个

新时期。

柠檬酸的命名

第二节柠檬酸发酵机制与代谢调控

黑曲霉柠檬酸生物合成途径

黑曲霉利用糖类发酵生成柠檬酸其生物合成途径是,葡萄糖经EMP、HMP途径降解生成丙酮酸,丙酮酸一方面氧化脱羧生成乙酰CoA,另一方面经CO2固定化反应生成草酰乙酸,草酰乙酸与乙酰CoA缩合生成柠檬酸。

(1)生长期与产酸期都存在EMP与HMP途径,前者EMP:HMP=2:1,后者EMP:HMP=4

(2)黑曲霉柠檬酸产生菌中存在TCA循环与乙醛酸循环,在以糖质原料发酵时,当柠檬酸积累时,TCA和乙醛酸循环被阻断或减弱。

(3)由于TCA和乙醛酸循环被阻断或减弱,草酰乙酸是由丙酮酸(PYR)或磷酸烯醇式丙酮酸(PEP)羧化生成的。即由两个CO2固定化反应体系,其中以丙

酮酸羧化酶作用下固定化CO2生成草酰乙酸为主。

柠檬酸生物合成的理想途径

黑曲霉柠檬酸发酵的代谢调控

(一)柠檬酸积累的调节

1、糖酵解及丙酮酸代谢的调节

已清楚,其活性不受代谢产物的调节。

2、三羧酸循环的调节

(1)柠檬酸合成酶的调节

柠檬酸合成酶是TCA环中的第一个酶,但黑曲霉中柠檬酸合成酶没有调节

作用。

(2)顺乌头酸水合酶、异柠檬酸脱氢酶的调节

顺乌头酸水合酶、NAD、NAD-异柠檬酸脱氢酶在柠檬酸产生与不产生时,这3种酶均存在,而当铜离子0.3mg/L,铁离子2mg/L和pH2.0情况下,这3种酶均不出现活力,发酵中柠檬酸正是在这个pH条件下积累的。

顺乌头酸水合酶是催化柠檬酸<>顺乌头酸<>异柠檬酸正逆反应的酶,研究表明,黑曲霉中有一种单纯的位于线粒体上的顺乌头酸水合酶,它在催化时能建立下面的平衡:柠檬酸:顺乌头酸:异柠檬酸=90:3:7。并发现在柠檬酸发酵中,无论培养基中是否存在铁离子,顺乌头酸水合酶催化的反应总是趋向柠檬酸一侧,保证柠檬酸得到充分积累。一旦柠檬酸积累到一定水平.细胞内的PH下降,就能抑制顺乌头酸水合酶和异柠檬酸

脱氢酶的活性,就抑制了柠檬酸自身的进一步分解。

黑曲霉中的异柠檬酸脱氢酶有三种:一种NAD异柠檬酸脱氢酶.活力很低。两种NAD异柠檬酸脱氢酶,其一在细胞质中,不受柠檬酸抑制,其二在线粒体中.与TCA循环有关,它受生理浓度的柠檬酸抑制,所以当柠檬酸积累到一定水平时,就抑制此酶的活力,从而更加促进柠檬酸的积累。NAD异柠檬酸脱氢酶的抑制作用在碱性pH和30mmol/L锰离子时被解除,这就是国外菌种柠檬酸积累受锰离子毒害的缘故

之一。

(3)α-酮戊二酸脱氢酶酌调节在黑曲霉柠檬酸产生菌中,TCA循环的一个显著特点是。α-酮戊二酸脱氢酶的合成受高葡萄糖和铵离子的阻遏。因此当以葡萄糖为碳源时,在柠檬酸生长期,菌体内不存在α-酮戊二酸脱氢酶或活力很低。α-酮戊二酸脱氢酶催化的反应是了TCA循环中唯一不可逆反应,一旦α-酮戊二酸脱氢酶丧失,就会引起:⑦TCA循环中的苹果酸、富马酸、琥珀酸是由草酰乙酸逆TCA循环生成,使TCA循环成“马蹄形”。②α-酮戊二酸又抑制NM—异柠檬酸脱氢酶的活性。(二)Mn2+调节

比较Mn2+丰富和Mn2+缺乏的分批培养时发现,当黑曲霉在缺Mn2+的产柠橡酸培养基中,菌体的组成代谢(戊糖磷酸途径,生糖途径)的酶和三羧酸循环的脱氢酶活力显著降低。不论锰丰富或缺乏,都未检出α-酮戊二酸脱氢酶。乙醛酸循环的脱氢酶也几乎无活力。

当缺锰时,HMP和TCA循环水平低,生长期菌丝的蛋白质、核酸和脂肪含量明显减少,而氨基酸和铵离子水平升高,丙酮酸和草酰乙酸水平升高,柠檬酸大量积累。

当黑曲霉生长在缺锰的高浓度糖培养基中,细胞内铵离子异常高,达25mmol/L,随之出现谷氨酸、谷氨酰胺、鸟氨酸、精氨政和γ—氨基丁酸的积累和分泌,使铵离子对细胞毒性被解除。这些氨基酸的积累是由于测报蛋白质合成受到干扰,导致蛋白质分解增加,细胞内蛋白质和核酸的减少所致。当锰离子充足时,添加环己酰亚胺,可促进铵离子和氨基酸积累,由此可知,铵离子积累是由于蛋白质和RNA转换过程中细胞蛋白质的再合成受损伤引起的。锰离子是催化核糖核酸形成聚合阶段第一步反应酶所需的,若猛离于缺乏,核酸、蛋白质合成受阻,而使细胞内的铵离子水平升高。铵离子水平升高解除了柠檬酸和A TP对PFK酶的抑制.从而增加EMP代谢流量,丙酮酸和草酰乙酸水平升高,而使柠檬酸大量积累,这就是锰离子的调节效应。

(三)氧对柠檬酸积累的调节

乙酰CoA和草酰乙酸结合生成柠檬酸过程中要引进一个氧原子,因此氧也可以看作为柠檬酸生物合成底物。它对柠檬酸发酵的作用为:

(1)从图2—3—7可知氧是发酵过程(EMP途径和丙酮酸脱氢)生成的NADH2重新氧化的氢受体。

〔2〕近来的研究发现,黑曲霉中除了具有一条标准呼吸链以外,还有一条侧系呼吸

链,如图2—3—7所示。

此侧系呼吸链对水杨酸酰异肟酸(SHAM)敏感,在黑曲霉生长期,此侧链不受水杨酸酰异肟酸的抑制。在柠檬酸发酵产酸期受SHAM的强烈抑制。通过标准呼吸链氧化时产生ATP,会反馈抑制PFK酶,而通过侧系呼吸链不产生ATP,而当缺氧时.只要很短时间中断供氧,就会导致此侧系呼吸链的不可逆失活,从而导致柠檬酸产酸急

剧下降。一旦恢复供氧,标准呼吸链复活,而不影响菌的生长;但侧系呼吸链却不能恢复,故对产酸速率有很大影响。所以柠檬酸发酵过程中,特别是产酸期,一定要充足氧的供给,以保证更多的NHDH2通过侧系呼吸链将H2交给O2生成CO2和H20,使呼吸产生的ATP减少,解除ATP对PFK酶的反馈抑制。使EMP代谢流增大,丙酮酸和草配乙酸生成水平提高,柠檬酸产率提高。

三、黑曲霉柠檬酸发酵机制

(1)由于严格限制供给话离子等金属离子,或筛选耐高浓度锰离于、锌离子、铁离子等金属离子的菌株,降低菌体中糖代谢转向合成蛋白质、脂肪酸、核酸的能力,使细胞中形成高水平的铵离子,从而解除柠檬酸和A TP对PFK酶的反馈抑制,使EMP 途径的代谢流增大;

(2)存在一条呼吸活动性强的侧系呼吸链,对氧敏感,但不产生ATP,这样使细胞内的ATP浓度下降。因而减轻了A TP对PFK酶、CS酶的反馈抑制,促进了EMP 途径的畅通,增加柠檬酸的生物合成;

(3)丙酮酸羧化酶是组成性酶,不受代谢调节控制,可源源不断地提供草酰乙酸,丙酮酸氧化脱羧生成乙酰CoA和CO2固定反应取平衡,保证前体物乙酰CoA和草酰乙酸的提供,柠檬酸合成酶又基本上不受调节或极微弱,增强了柠檬酸的合成能力;

(4)α-酮戊二酸脱氢酶是受葡萄糖和铵离子的阻遏.使黑曲霉中的TcA循环变成“马蹄形”的代谢方式,减弱TcA循环,降低细跑内ATP浓度,另外使,α-酮戊二酸浓度升高。反过来.又反馈抑制异柠檬政脱氢酶,降低柠檬酸的自身分解;

(5)顺乌头酸水合酶催化时建立柠檬酸:顺乌头酸:异柠檬酸=90:3:7的平衡,顺乌头酸水合酶的作用总是趋向于合成柠檬酸,即柠檬政分解活力低。一旦柠檬酸浓度升高到某一水平,就抑制异柠檬酸脱氢酶活力,从而进一步促进柠檬酸自身积累,pH降至2.o以下。顺乌头酸水合酶和异柠檬酸脱氢酶失活,更有利于柠檬酸积累并排出体外。

第三节柠檬酸发酵生产菌种

黑曲霉(Asp.niger)

一、黑曲霉柠檬酸的形态特征

(1)在米曲汁或麦芽汁培养基上菌丝白色,不是绒球状,凸起.边缘整齐,菌

落较小,带皱折。在麦芽汁培养基上生长4d成熟的孢子呈黑褐色。

(2)在察氏培养基上生长较慢,菌落边缘整齐,分生孢子梗短,分生孢子着生

较密。

(3)菌丝顶端着生稀疏的大型的黑褐色孢子德,成熟后呈开花状而崩裂。

(4)孢子柄(14—15)μ(1.5—2)μ。

(5)顶囊球形d直径为50一72μm。

(6)小梗分二层,初生小梗和次生小梗区别明显,初生小梗(30~31 )×7μm,

次生小便大多是3根,也有2根的,大小为(9~13)μm ×3.8μm。

(7)分生孢子串珠状着生,黑褐色,表面组糙且有明显的刺状突起,4.7—

5.2μm,成熟后遇振动易散落。

二、生活周期

黑曲霉属半知菌纲,一般只进行无性繁殖,由孢子发芽开始到新孢子形成、成熟,为一个生活周期。图2—3-1所示是黑曲霉发芽和抱子形成过程。

孢子在液体培养基中培养6—8h开始萌发出芽,长出多根芽,逐渐形成菌丝,

菌丝不久即出现分枝。黑曲霉菌丝是多细胞结构,有横隔,其中可育细胞称为足细胞。由足细胞长出分生孢子梗,分生孢子梗顶端泡囊的聚集并与原生质膜的融合,使顶端膨大形成顶囊,上面退生二层小梗,小梗上长出成链的孢子。这样一个生活周期约50h,但黑曲霉菌丝是不断地生长延长的,孢子也逐渐不断地产生,直至营养枯竭为止。

三、培养基

四、黑曲霉柠檬酸高产菌的生理特征

(1)能耐高浓度的柠檬酸(15%以上),而不利用和分解柠檬酸。

(2)耐高浓度葡萄糖,能产生和分泌大量的酸性α-淀粉酶和酸性糖化酶。其α淀粉酶在pH2.0仍能保持原活力的80%以上。在PH2.5,40℃下作用30min尚不失活。其糖化酶最适作用PH在4.O一4.6,最适温度为60一65℃。在柠檬酸发酵条件下,当培养pH下降至2.o以下时,仍能保持大部分活力。

(3)能抗微量金属离子,尤其能抗较高浓度的Mn2+、Zn2+、Cu2+。

(4)在深层液体发酵培养时,能形成大量的细小菌球体,菌球体直径为o.1mm,菌球量达104个/mL以上。

(5)在以葡萄糖为唯一碳源的合成培养基上,生长不好,生成小菌落,孢子形成能力弱。

(6)在生长、繁殖期,细胞内具有较高水平的氨基酸、NH4+,即NH4+库水平高。

(7)菌丝体中含有低水平的甘油三酯和磷酸酯。

(8)细胞壁几丁质含量高,但β葡聚糖和聚半乳糖含量低。

(9)在生长和产酸期,细胞内蛋白质、核酸水平低。

(10)具有很强的侧系呼吸链活性,此侧系呼吸链不产生A TP。

五、黑曲霉柠檬酸生产菌的分离选育

柠檬酸生产菌的分离筛选与其他微生物相同,一是收集相当数量的现有菌种,经分离纯化,从中挑选出合适的菌株;二是采集大量的含菌样品,分离筛选出优良菌种。若收集现有菌种则可直接活化、分离、纯化,并测定每个菌株的性能,从中选出最优良的菌株;若是通过采集含菌样品来分离选育,可根据糖质发酵柠檬酸高产菌主要是黑曲霉,它们具有强大的分解淀粉、蛋白质、果胶、脂肪等物质的酶系特征,可从腐烂植物、水果表皮,也可从含有腐烂未热水果的酸性土壤中分离。一般将采集的含菌样品经适当的增殖培养,或将样品浸出稀释液100mL和10%薯干粉、10%柠檬酸混合.在振荡摇床上于33—35℃下“富集”培养3—5d,然后进行分离筛选。

1、分离筛选培养基

2、分离筛选方法

3、摇瓶筛选与性能测定

采用上述的分离培养基和分离筛选方法.参考高产菌的形态特征,从分离筛选平板上,挑出单一菌落,移接于麦芽汁琼脂斜面上,于33℃培养6—7d。孢子长好后,分别接入三角瓶,摇瓶发酵试验(初筛、复筛),从中筛选出产柠檬酸高、糖转化率高、且产酸稳定性强的菌种,作为生产用菌株。

六、高产柠檬酸菌种选育实例

HQL-60l菌种是无锡轻工业大学以黑曲霉H—142为出发茁株,通过γ—射线、硫酸二乙酯、高温、单独或复合诱变处理,通过高温、高酸及高渗培养条件的加压定向筛选,从600多株突变株中筛选出来的。它的发酵温度为40~41℃,周期60—64h,20%薯干粉摇瓶产酸13%,其产酸纯度明显优于现有生产菌。诱变过程如下:

七、黑曲霉柠檬酸生产菌的保藏

(一)斜面低温保藏法

此法是生产中普遍采用的一种保藏法。菌种孢子移接于麦芽汁琼脂斜面后,于35℃下培养7—8d,待长满黑褐色孢子后,放在2—4℃冰箱中保藏,此法可保藏1—2个月。

(二载体吸附保藏法

载体吸附保藏的原理是将菌种吸附固定在适当的载体上,进行干燥保藏,通常使用的载体有砂土、夫皮、谷粒或麦粒、硅胶、粒状活性炭、滤纸等。这些载体对菌种起着一定的保护作用。

(三)真空冷冻干燥保藏法

此法的优点是利用有利于菌种保藏的一切因素,使黑曲霉柠檬破产生菌的孢子始终处于低温、干燥、缺氧的条件下。保存期可达I年至10年之久,因而它是目前广泛采用的有效菌种保藏法之一。其缺点是手续麻烦,需要一定的设备。

在冷冻过程中,为避免孢子在冻结和干燥过程中死亡,常添加保护剂。黑曲霉孢子的保护剂一般采用牛、马、羊血清或者用脱脂牛奶加1%谷氨酸钠。据报道黑曲霉用此

法可保藏10—15年。

[四]液氮超低温(—196℃)保藏法

此法适用于菌种的长期保藏,1965年以来在ATcc作为常规保存方法而普遍应用这是因为液氮的温度可达—196℃,远远低于微生物新陈代谢作用停止温度(—130℃)所以此时菌种的代谢活动已停止,化学作用也随之消失。

八、黑曲霉柠檬酸生产菌的扩大培养

一、菌种的扩大培养

(一)斜面培养

菌种的斜面培养必须有利菌种的生长和孢子的着生,而且不产酸,并要求斜面菌种要纯,不得混有任何杂菌和耐酸的其他霉菌和酵母菌。培养条件应有利于菌种的繁殖和孢子生长,培养基以多含碳源、少含氮源为原则。

1.斜面培养基

(1)察氏—多氏琼脂培养基

(2)察氏琼脂培养基

为防止因培养基营养过于丰富,而影响孢子的着生和质量,目前有的工厂采用2/3大麦芽加1/3大米,按1:4比例加水,置60℃下糖化4h至碘液显示无色,然后离心15min获得麦芽汁。调整浓度至5Be,添加25g/L琼脂。空白斜面需放置3—4d,待斜面培养基表面干固后(水分全消失)才能使用,否则接种后菌苔长的薄,菌丝细长,而孢子着生稀少。

(二)麸曲三角瓶培养

1,麸曲培养

取新鲜麸皮,用60目筛子筛去细粉,以减少淀粉含量。按麸皮:水=1:1.0~1.3比例加入水,拌匀至无干粉又无结团现象。拌匀后,分装入1000mL或2000mL 三角瓶中,每只l000mL三角瓶装湿麸皮约40g,2000mL三角瓶装湿麸皮约100g

或用水洗麸皮表面,挤去水分,至手抓有水而不下滴为宜,按适当量装瓶。用8层纱布封扎瓶口,在o.1MPa表压下灭菌40~60min,趁热摇散,冷却至35℃,培养1d。末发现气味异常或染菌,即可使用。

在无菌室中,于无菌操作条件下,每一个三角瓶中接入1—2环已活化好的斜面菌种孢子,或2mL斜面菌种的孢子悬浮液,于30—32℃下培养16—20h后,白色小菌落已盖满曲层表面,这时应摇瓶一次,使培养基疏松、铺平、继续培养。

再经4—6h,即约培养24h后,可看到培养基结成块状,白色菌丝生长旺盛,但未产生孢子。培养基品温控制在(35±1)℃.每隔12—24h摇瓶一次,孢子长出后停止。摇瓶时必须充分摇匀,使结块的培养基疏散,铺平后,继续培养。待长出的黑色孢子布满丰盛后,即可使用。

此麸曲可直接作为种子罐种子,也可以作为二级种子,再扩大培养,扩大量为200倍,即一瓶歌曲可接种200只相同的三角瓶。

〔三〕孢子悬浮液的制备

将上述符合质量要求的三角瓶麸曲,在无菌操作下,每瓶加入500~600ml无无菌水,摇匀,切勿将棉塞打湿,在火焰下并瓶或并入接种瓶中。

(四)种子罐扩大培养

(1)种子培养基

(2)接种量

根据发酵罐容积不同所用麸曲孢子量不同。一般5000L种子罐接入20瓶麸曲种子(70g 麸皮/1000mL三角瓶)。

(3)培养温度(35±1)℃。

(4)供氧对C0827菌种来说,搅拌转速150r/min通风量为0.3—0.4m3/(m3.min)。

(5)种龄以薯干粉为原料,控制在18~20h,此时糖化活力相当高,一般取20h。(6)种子质量要求

①镜检菌丝粗壮,结成像菊花状的小菌球体。菌球直径不超过100μm,

1mL种子液达1—2万个,无异味,元杂菌.无异常菌丝o

②pH 2.0~2.50

③酸度0.5%~2.0%。

④柠檬酸含量0.58g/dL左右。

第四节发酵原料的预处理

参考通论部分。

柠檬酸工业用的喷射液化工艺

用玉米粉发酵柠檬酸,采用HYW喷射液化器,二次加酶液化工艺,取得了较好效果,其工艺流程如图2—4—6所示。

此法的具体操作是:用温水将玉米粉调成17°Be的浆乳,加稀石灰水调整pH至6.4~7.0,加需要酶量的2/3,备用。通蒸汽进喷射器、保温系统,待出口温度达90℃以上时.打开浆料回流阀,开始将浆料泵入喷射器进行液化,出口料温达到95—97℃时,关小回流阀,料液进入层流罐,在90~95℃条件下,维持30—60min,然后进行二次喷射,料温达到140—145℃,进入维持罐维持3—5min后,经闪冷器迅速降温后落入二次液化罐中,加余下之1/3,α-淀粉酶,在90℃左右维持30min,碘检查无蓝色反应,然后用稀HCI或稀H2SO4调pH至4.8—5.2,趁热过滤去渣。调整好氮源之后,经连消或实消后发酵。二次高温喷射有利于蛋白质类杂质进一步凝固,并可使玉米皮松软,附着其中的淀粉大部分可在二次液化时被利用。

第五节柠檬酸发酵培养基灭菌

参考通论部分。

培养基灭菌基本上可分为“实消”和“连消”两种。柠檬酸工业因用薯干原料,纤维较多,习惯用罐液化和罐内实消相结合的工艺,这种工艺虽简便,但大容量发酵罐升温和降温时间较长,高峰蒸汽负荷太大,发酵罐利用率偏低,耗热量大。

“连消”即连续灭菌工艺,它采用高温瞬间灭菌方法.能使培养基中的营养成分的破坏减少到最低限度,蒸汽高蜂负荷低且均衡,热耗相对较少,灭菌质量好,总灭菌时间短,发酵罐利用率高,适用于大容量发酵罐和连续自控操作,连续灭菌系统是由调浆罐、连消泵、连消器(或用喷射器)、维持罐(或管道)和冷却器所组成(见图2—4—10)。其具体操作可参考喷射液化工艺。连消之前要进行空罐灭菌。冷却器有板式、螺旋板式和喷淋式。

第六节无菌空气的制备

参考通论部分。

目前在我国发酵工业中具有代表性的无菌空气制备系统的设备流程如图2—4—15所示。

当然这并不是标准流程。现在空气干燥的新型设备不断出现体积小、效率高的除菌装置更加完善,因此无菌空气制备系统流程也在发展,工艺更加简化。

由于棉花活性炭总过滤器有较多的缺陷,特别一旦空气系统染菌.将被迫全面停产,损失较大,故新的设计流程改为每台发酵罐设置预过滤器、蒸汽过滤器和精过滤器方式的单向流程,更加合理和方便而且除菌效率高。有的厂家在保留棉花总过滤器的基础上设两级过滤器,用意是让棉花过滤器作为粗过滤器使用,也不需灭菌。但棉花受潮后易繁殖霉菌,因此这种使用方法有害无益,而且加大了压力降。

概括地说,空气净化系统的设备功能,在过滤器之前是脱油、除湿,保证洁净干燥的空气进入过滤器油层之后除去了空气中的杂菌。只有保持滤层的干燥和完好,才能达到除菌的目的,因此除湿、脱油设备是不可缺少的。尽管拧檬酸发酵产酸快,抗杆菌污染能力强,但酵母、霉菌等耐酸杂菌,仍能给柠檬酸发酵造成极大的威胁甚至导致发酵失败。

第七节柠檬酸深层发酵工艺

一、黑曲霉柠檬酸发酵条件控制

(一)营养要求

黑曲霉柠檬酸产生菌是化能异养微生物,只能利用有机碳源。为了满足黑曲霉菌的生长、繁殖,必须提供足量的碳源、氮源和无机盐.使培养基中的化学物质元素组成和菌体物质元素组成相当。但要使黑曲霉柠檬酸产生菌大量生成和积累柠檬酸,必须控制营养物质的供给,使菌体生长受限制,处于半“饥饿”和代谢失调状态。

依据柠檬酸发酵机制,黑曲霉大量生成和积累柠檬酸的基本条件,是提供高浓度的葡萄糖和充足的氧,而对磷、锰、铁、锌等无机盐物质的要求则处于低水平。

1、碳源

目前都认为高糖浓度是柠檬酸发酵的一大特征。我国采用薯干粉的深层发酵,粉浆浓度为16%~20%,若采用淀粉质的深层发酵粉浆浓度可达25%。

2、氮源

氮源的作用是合成细胞物质(蛋白质、氨基酸、核酸、维生素等)和调节代谢,这是因为细胞中铵离子浓度的升高,能解除ATP和柠檬酸对关键酶磷酸果糖激酶的反馈抑制.使EMP代谢流增强.有利于柠檬酸生成与积累。

生理酸性氮:(NH4)2SO4,(NH4)3PO4,(NH4)2HPO4

生理碱性氮:NaNO3.KN03

两性氮:NH4NO3

有机氮:麸皮、米糠、蛋白陈、氨基酸、尿素等。

经试验证明,黑曲霉偏好于无机氮,当有机氮和无机氮同时存在时,它首先利用无机氮。在无机氮中,生理酸性氮比碱性氮好,这是因为生理酸性氮中的铵离子被利用后,使培养基变酸,可以使发酵中的黑曲霉生长阶段结束,转入产酸阶段,PH下降到较低水平有利于柠檬酸的积累。所以铵盐既可以调节代谢,也可以控制PH。简单的有机氮比复杂的好,例如,尿素比氨基酸好,氨基酸比蛋白胨好。在蔗糖合成培养基上,NH4NO3是最好的氮源。黑曲霉以同样的速度消耗两种氮,所以培养基酸度不变。若原料中有机氮含量过分丰富,菌生长代谢加快,对缩短发酵周期有利。但是不利于柠檬酸积累,产酸率不高。这就是我们不能利用含蛋白质丰富的粗玉米粉直接发酵的原因。

另据报道,在拧核酸发酵中途添加铵盐,尤其是当发酵中柠檬酸生成速率开始下降时,添加铵离子最为有利,它对菌体无影响。这种效应可能与铵离子对柠檬酸积累调节作用有关。近年来,我国采用高浓度薯干粉发酵,为缩短发酵周期,提高柠檬酸产酸速率,有时也添加0.01%~0.05%的(NH4)2SO4。

3、无机盐

无机盐是构成微生物生命活动不可缺少的物质.在柠檬酸发酵中,有的构成菌体有的促进代谢,有的促进产酸等,因此对黑曲霉的生长和柠檬酸发酵具有重要的作用。我国采用诱变方法改良的菌种能耐很高的金属离子,因此原料和水不经任何处理就可用于发酵。采用薯于粉、马铃薯、木薯和糖蜜等原料发酵,原料中所含的P、K、Mg、S量已足够黑曲霉生长,不需专门添加。

(二)温度控制

黑曲霉属嗜热微生物,最适生长温度33—37℃,一般认为深层液体发酵中,温度低于28℃,导致长菌和产酸缓慢。而高于37℃,导致菌体和杂酸形成过量.呼吸作用加强,影响糖酸转化率。我国采用淀粉质原料的浓醪发酵,由于培养基中固形物较多,对菌起保护作用,一般温度控制为(35±1)℃。若采用孢子接种的发酵过程中,在孢子发芽和菌球体形成阶段,可采用40℃高温培养,促进其发育,进入产酸期时再降到35℃左右。

(三)pH控制

黑曲霉柠檬酸生产菌生长发育适宜PH3~7。在含糖合成培养基中,分生孢子在PH 6.8—7.2发芽良好.若起始pH较低(例如4.5以下),会强烈抑制它的发育。在PH 2.5以下,分生孢子不膨胀.当pH大于7.5时分生孢子会剧烈膨胀,甚至破裂。一

般认为柠檬酸发酵在菌种生长期,pH维持在4.5,而柠檬酸积累时即产酸期的最适PH 2.0~3.0,pH 3.0以上容易产生草酸,在pH 5.0容易生成葡萄糖酸(葡萄糖氧化

酶最适PH 5.6),在PH 3.0以下是柠檬酸积累的条件。

采用淀粉或薯干粉等原料的柠檬酸发酵过程中,淀粉的糖化和柠檬酸的生成和积累,是处在同一个环境中,都是由黑曲霉柠檬酸产生菌完成的。发酵的技术关键是兼顾糖化和产酸,要保证糖化速度和产酸速度之间的衔接与平衡。黑曲霉柠檬酸生产菌的酸性糖化酶的最适PH为4.0~4.6.随着pH的下降,尤其当PH降至2.2时,液化

酶和糖化酶会大量破坏,而柠檬酸发酵的最佳PH是2 .0以下。要解决两者矛盾,可采用下列方法:

(1)采用酸性平扳驯化,分离在高柠檬酸浓度下糖化酶活力高酌菌株;

(2)通过调节风量来控制,通常在16—18h前控制低风量,使PH维持在有利于菌种生长和糖化作用的范围。

[四]接种量和接种方式

1、接种量

柠檬酸发酵接种量多少,直接决定于进入培养系统(包括一级种子和二级种子)的孢子数量,从理论上讲,菌球体的极限数量与接种孢子数量相等。大量文献报道,经试验证明,由于孢子相互吸附.以及孢子在发酵液中萌发时,菌丝互相缠绕等物理作用,大多数菌丝球是由几个孢子、乃至一团孢子形成的。因此接入孢子数与形成菌丝球仅为正比关系,而与孢子数量相差很远。在一定范围内孢子接入量与产酸速率成正比,随着孢子接种量的增加,柠檬酸产率也提高。

2、接种方式

孢子接种虽然初期产酸缓慢,但发酵24h之后,生酸速率明显提高,而且有后劲,最终产酸率高于菌丝种子。菌丝种子接种时.在同样接种量的条件下,产酸水平随着成分加高而提高。另外,菌丝接种时,如果接入发酵罐的种子内存在杂菌,这些杂菌从受到低pH抑制的种子培养基环境,恢复到自然pH环境的发酵液中,正好适宜多数杂菌繁殖。若生产菌株不能迅速产酸以降低PH,染菌机率则增大。事实证明,采用孢子接种能收到良好的效果。

(五)溶解氧的控制

黑曲霉柠檬酸产生菌是严格的好氧微生物,不管生长、繁殖、还是产酸均需要氧。黑曲霉生长、繁殖所需的能量是通过呼吸作用获得的,即葡萄糖彻底氧化为CO2 和H20,产生大量ATP(约38个ATP),此过程需要大量氧。

从图2—4—19可知,由于菌体生长过程中呼吸作用,消耗大量的氧气,特别当菌体生长接近最大值时(20~24h)即旺盛的对数生长期时,其需氧达到最高蜂,其后(一般24—30h)菌体生长缓慢,进入产酸期,氧的消耗率立即降低到一个较低的水平,并一直持续到发酵终了。

二、柠檬酸深层发酵工艺流程

三、生产实例

1.菌种

Co 827、3008。

2.麸曲菌种

制法同前(表2—4—25)‘

第八节柠檬酸深层发酵染菌的处理措施

抢救染菌的措施

1.细菌污染醪的处理

发酵前期污染细菌,可加大通风量.使发酵迅速转入产酸阶段,当PH下降至3.0以下时,细菌可被抑止或自溶死亡(含米曲霉菌)。

发现较迟,染菌较重,要立即加柠檬酸母液或浓盐酸、硫酸等将发酵液pH调节到<3.0再加大风量。

如细菌占绝对优势,本菌较少(某些细菌所产生的毒素能抑制或溶解黑曲霉菌体),

则须将发酵液pH调节到4.o~4.5后,重新按常规消毒。再一级接种,或与正常发酵罐(产酸>6%)相互混合继续发酵,但必须谨慎使用,防止“两败俱伤”。

2.酵母污染醪的处理

这是柠檬酸发酵最难处理的染菌事故,野生酵母即使在pH<2.0时,照样生长。早期发现,培养基稍有异味而总糖消耗不多,最好把PH下调至4.o~4.5后,间接加热至90℃重新灭菌,一级接种继续发酵。如已产酸但不高,则加CaCO3上调pH至4.o~4.5,间接灭菌,重新一级接种发酵。

后期污染酵母,如产酸已达到可提取程度,可提前加热灭菌后放罐提取。如产酸不高但还原糖尚有可继续发酵的量时,可采取提高培养温度至39—40℃,加大风量并添加0.0025~0.0035g/dL CuSO4·5H20,即50m3发酵罐加l~1.4Kg的硫酸铜抑止酵母生长,加快产酸速度,减少损失。

3.污染曲霉及青霉醪的处理

如污染米曲霉,当pH<3.o时米曲霉会自溶对发酵危害不大。如污染黑曲霉或青霉则危害极大,这些杂菌能在低pH醪液中生长,结果使醪变稠、变黄、粘度增大,严重影响氧的传递,导致发酵失败,甚至“倒罐”。对付这种污染的措施:早期发现,可另补充一些新培养基,加CaCO3调节pH至4.o~4.5,重新灭菌,一级接种发酵。

所有染菌罐除早期发现细菌污染外,其他都会对发酵造成一定的危害,发现越晚,损失越大,甚至“倒罐”,尤以酵母、青霉等为甚。

所有染菌醪对提取收率都有一定影响。

必须指出,等到镜检时发现染茵,一般发酵液杂菌个数已达到104个/mL,是较严重的程度。所以,从事发酵工作者一定要严格执行无菌操作.熟悉业务.以防为主,勤查勤检把染菌事故消灭在萌芽之中。

第九节柠檬酸生产下游工程

一、概述

成熟的柠檬酸发酵醪中,除含有主产物柠檬酸之外,还含有纤维、菌体、有机杂酸、糖、蛋白类胶体物质、色素、矿物质及其他代谢产物等杂质,它们或来自于发酵原料、或在发酵过程中产生,它们或溶存或悬浮于发酵醪中。通过各种理化方法,清除这些杂质,得到符合各级质量标准的柠檬酸产品的全过程,即为柠檬酸生产的下游工程。它是一个确保产物“丰收”,提高企业效益的生产系统工程。

上世纪60年代,科学家们把离子交换树脂脱盐工艺引入了钙盐法提取柠檬酸工艺,解决了考钙盐法的一些弊端,此后,在工艺和提取设备方面又不断地改进和完善,使总收率可达到80%~90%,因而,钙盐离于交换提取工艺至今不衰。

柠檬酸及生产工艺

柠檬酸及生产工艺 一.柠檬酸的简介 1. 柠檬酸的理化性质 柠檬酸(Citric acid),又称枸椽酸,是一种三元羧酸,其学名为3-羟基-3-羧基戊二酸,分子式C6H8O7(无水物),在自然界中存在于柠檬、柑桔、梅、子、梨、桃、无花果等水果中。柠檬酸具有无毒,无色,无臭特性,一般为半透明结晶或白色粉末,易溶于水、乙醇、乙腈、乙醚等[1],不溶于苯,微溶于氯仿。相对密度1.542g/cm3,熔点153℃(失水)。柠檬酸结晶形态因结晶条件不同而不同,有无水柠檬酸,也有含结晶水的柠檬酸。在干燥空气中微有风化性,在潮湿空气中有潮解性,175℃以上分解放出水及二氧化碳。柠檬酸是一种较强的有机酸,有3个H+可以电离;水溶液呈酸性,加热可以分解成多种产物,与酸、碱、甘油等发生反应。 2. 柠檬酸的用途 柠檬酸具有令人愉悦的酸味,入口爽快,无后酸味,安全无毒,被广泛用作食品和饮料的酸味剂;能与二价或三价的阳离子形成络合物,被用作金属加工的鳌合剂和洗净剂(起软化水作用的洗净力补充剂);还能衍生形成许多衍生物,可用作有机化学工业的原料。因此被广泛用于食品饮料、医药化工、清洗与化装品、有机材料等领域,是目前世界需求量最大的一种有机酸[2],到目前还没有一种可以取代柠檬酸的酸味剂。 二.生产技术 柠檬酸的生产方法共可分为 3 种: 水果提取法,化学合成法, 生物发酵法三种[17],目前以发酵法生产柠檬酸为主[18]。发酵法又分为固体发酵法和液体深

层发酵法。固态发酵能耗小但劳动力大,占地面积大,不适合大规模的生产应用。深层通风发酵法采用不锈钢罐体,机械搅拌通风,微生物在液体相中分布均匀,发酵时不生成孢子,全部菌体细胞用于代柠檬酸,发酵速度高,实现了机械化或自动化操作,利于大规模生产。 三.生物发酵法制取柠檬酸 1.本工艺选择的原料及生产方法 本次生产工艺设计以薯干为原料,采用直接粉碎、调浆、液化,进行好气液体深层发酵,钙盐法提取,最后结晶、干燥得到柠檬酸 2.工艺流程 接收糖浆后,根据糖浆组成作适当的处理或配制,配成发酵原料,进行连续杀菌并冷却后,进入发酵罐,加入菌种和净化压缩空气后进行发酵;发酵液经升温、过滤处理后,进入中和罐,用中和处理;再经过过滤洗涤,得到柠檬酸钙固体,送入酸解罐,再添加酸解,并加入活性炭进行脱色;然后,通过带式过滤机过滤、酸解过滤,除去及废炭;酸解过滤液经离子交换处理后,进行蒸发、浓缩,再进行结晶;结晶后,用离心机进行固液分离,对得到的湿柠檬酸晶体进行干燥与筛选,最后得到成品柠檬酸。

组件生产工艺流程简介)

组件生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 1、分选

此为组件的第一道工序,在本道工序中,首先将电池片进行初步筛选,将不符合标准的电池片,如色差片,崩边片,缺胶片,断栅片等等分类放置在一起,将合格的电池片按照机器焊接每打100片的数量清点好。 2、焊接

焊接工序采用最先进的德国进口TT1200焊片机。1200指的时每小时一台机器可以焊接1200片电池片,也就是说老式焊片机3秒焊接一片,新式焊片机2.8秒左右焊接一片。焊接机采用不接触涂布装置、影响定位系统、红外焊接装置、自动抓取机器人等部分组成。影响定位系统有效挑选出破片、裂片等装置,有效的保证了焊接品质。 在此工序中由“自动焊片机”将单片电池片和涂锡铜带焊接成一串,再由提取ABB机器人将每串电池串提取到铺设好EVA的玻璃板上。ABB机器人能够准确按照设置的间距,将电池串排列到好,精确误差在0.5mm以内。 TT焊片机彻底替代了原始的手工焊接,不仅在产量上有了很大的提高,更在质量上有明显的改善。焊接处理的组件没有杂物、锡渣等。3,叠层(也称排片)

叠层为组件生产过程中的一道关键岗位,这道工序主要将焊接好的电池串连接成电路。每相邻的电池上都要粘贴2到3条高温胶带,目的是防止电池串发生移位等情况。之后用烙铁将汇流条焊接在每串的两端,按照正负极的正常方式将组件做成一个完整的导通发电体。4、隐裂测试

柠檬酸生产工艺简介

柠檬酸生产工艺简介第一节概述 一、柠檬酸的用途 (一)在食品工业的应用 1、饮料 据统计75%~80%的柠檬酸用于饮料工业。 2、果酱与果冻 3、糖果 4、冷冻食品 5、酿造酒 6、冰淇淋和酸奶 7、脂肪与油 8、腌制品 9、罐头食品和水果加工 10、豆制品和调味品 (二)柠檬酸在药物、美容品、化妆品上应用 1、药物 “999胃泰” 2、发蜡与化妆品 (三)柠檬酸在工业上应用 1、金属净化

2、去垢剂 3、无土栽培农艺 4、矿物 5、…… 二、乳酸的用途 L-乳酸聚合成聚乳酸(PLA) 三、L-苹果酸的用途 三、葡萄糖酸的用途 四、琥珀酸的用途 我国柠檬酸发展简史 1968年我国第一家以淀粉为原料深层发酵柠檬酸成功投产的厂是上海酵母厂。同期,天津工微所开展了以适合我国国情的薯干原料深层发酵柠檬酸的研究工作。之后,上海工微所用该所的“东酒2号”黑曲霉为出发菌株,用薯干粉做培养基,很快选出了我国第一代深层发酵柠檬酸生产菌种AL558,由原轻工业部立项,组织上海、天津两个工微所、上海复旦大学生物系、上海新型发酵厂(筹)、上海酵母厂、天津柠檬酸厂(筹)、南通油洒厂(南通发酵厂前身)等单位,在南通油酒厂展开了善于深层发酵、全离交提取工艺的中、大型试验工作,并取得了成功,因而推动了我国柠檬酸工业于20世纪70年代初形成了工业体系。70年代中期到80年代是我国柠檬酸菌种选育的高峰期,先后选育出5代薯干原料高产菌株和适应淀粉、木薯、葡萄糖母液、糖蜜等原料的优良菌株。上海、天津两工微所和上海复旦大学生物系为此做出了很大贡献。各生产厂的广大科技人员和生产工人通过不懈地努力,提高了柠檬酸行业的整体水平,特别在缩短发酵周期、提高单产方面成绩突出,使我国柠檬酸发酵技术处于世界领先地位。无锡轻工业学院和天津轻工业学院为柠檬酸行业培养了一大批科技力量,已成为行业发展的骨干。1995年金其荣与蚌埠柠檬酸厂共同开发了玉米去渣发酵新工艺。同年黑龙江甘南柠檬酸厂于脱胚玉米去渣发酵工艺也成功投产。玉米新工艺的成功,使我国的柠檬酸工业进入一个

精制无水柠檬酸生产工艺规程

无水柠檬酸生产工艺规程 1 产品概述 1.1 产品名称、化学结构、理化性质 1.1.1 产品名称 1.1.1.1 法定名称:无水柠檬酸(英文名Citric Acid Anhydrous)1.1.1.2 学名:3-羟基-3-羧基戊二酸 1.1.1.3 其它名称:枸橼酸 1.1.2 分子式、结构式: C6H8O7 CH2─COOH HO—C— COOH CH2─COOH 1.1.3 理化性质 1.1.3.1 物理性质 柠檬酸为无色半透明晶体或白色颗粒或白色结晶性粉末,无臭、味极酸,易溶于水和乙醇,水溶液显酸性。 柠檬酸结晶形态因结晶条件不同而不同,有无水柠檬酸C6H8O7也有含结晶水的柠檬酸2C6H8O7.H2O、C6H8O7.H2O或C6H8O7.2H2O。本公司产品无水柠檬酸是由36.6℃以上水溶液中结晶析出,经分离干燥后的产品,分子量192.13,熔点153℃,密度d420=1.6650。在干燥空气中易风化。无水柠檬酸晶体形态为单斜晶系的棱柱形-双棱锥体。 1.1.3.2 化学性质:

柠檬酸是一种较强的有机酸,有3个H+可以电离;加热可以分解成多种产物,与酸、碱、甘油等发生反应。 1.2 用途: 柠檬酸在食品工业上广泛用作酸味剂、增溶剂、缓冲剂、抗氧化剂、除腥臭剂、螯合剂等。 医药工业上广泛用柠檬酸及其盐类,柠檬酸盐用于补充相应的元素时,具有溶解度高、生理宽容性大,酸根直接被吸收而无积留等优点。 柠檬酸及其盐类和衍生物在化学工业中广泛用作缓冲剂、催化剂、激活剂、增塑剂、螯合剂、清洗剂、吸附剂、稳定剂、消泡剂。 柠檬酸及其盐类在印染、原子能工业、石油开采、建筑工业、铸造工业、皮革工业等行业中也有广泛的用途。 1.3 质量标准: 1.3.1 产品质量标准 本产品质量执行GB、BP93、BP98、USP23、USP24、E330等标准或根据客户需要生产。 1.3.2 包装规格: 出口柠檬酸系定量包装商品,一般25kgs或1000kgs为一包装袋。特别情况根据用户要求包装。每件实衡净重与规定净重的差重幅度定在4‰以下,鉴重时按规定比例抽查,抽查部分总净重与规定总净重差重幅度在2‰以内。 1.3.3 包装贮存要求:

橡胶生产工艺简介分析

橡胶生产工艺简介 1 综述 橡胶制品的主要原料是生胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化6个基本工序。 橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 2 橡胶加工工艺 2.1塑炼工艺 生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。 生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。 掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。 在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。 开炼机塑炼时温度一般在80℃以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120℃以上,甚至高达160-180℃,属于高温机械混炼。 生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能塑炼。 几种胶的塑炼特性: 天然橡胶用开炼机塑炼时,辊筒温度为30-40℃,时间约为15-20min;采用密炼机塑炼当

温度达到120℃以上时,时间约为3-5min。 丁苯橡胶的门尼粘度多在35-60之间,因此,丁苯橡胶也可不用塑炼,但是经过塑炼后可以提高配合机的分散性 顺丁橡胶具有冷流性,缺乏塑炼效果。顺丁胶的门尼粘度较低,可不用塑炼。 氯丁橡胶得塑性大,塑炼前可薄通3-5次,薄通温度在30-40℃。 乙丙橡胶的分子主链是饱和结构,塑炼难以引起分子的裂解,因此要选择门尼粘度低的品种而不用塑炼。 丁腈橡胶可塑度小,韧性大,塑炼时生热大。开炼时要采用低温40℃以下、小辊距、低容量以及分段塑炼,这样可以收到较好的效果。 2.2混炼工艺 混炼是指在炼胶机上将各种配合剂均匀的混到生胶种的过程。混炼的质量是对胶料的进一步加工和成品的质量有着决定性的影响,即使配方很好的胶料,如果混炼不好,也就会出现配合剂分散不均,胶料可塑度过高或过低,易焦烧、喷霜等,使压延、压出、涂胶和硫化等工艺不能正常进行,而且还会导致制品性能下降。 混炼方法通常分为开炼机混炼和密炼机混炼两种。这两种方法都是间歇式混炼,这是目前最广泛的方法。 开炼机的混合过程分为三个阶段,即包辊(加入生胶的软化阶段)、吃粉(加入粉剂的混合阶段)和翻炼(吃粉后使生胶和配合剂均达到均匀分散的阶段)。 开炼机混胶依胶料种类、用途、性能要求不同,工艺条件也不同。混炼中要注意加胶量、加料顺序、辊距、辊温、混炼时间、辊筒的转速和速比等各种因素。既不能混炼不足,又不能过炼。 密炼机混炼分为三个阶段,即湿润、分散和涅炼、密炼机混炼石在高温加压下进行的。操作方法一般分为一段混炼法和两段混炼法。 一段混炼法是指经密炼机一次完成混炼,然后压片得混炼胶的方法。他适用于全天然橡胶或掺有合成橡胶不超过50%的胶料,在一段混炼操作中,常采用分批逐步加料法,为使胶料不至于剧烈升高,一般采用慢速密炼机,也可以采用双速密炼机,加入硫磺时的温度必须低

纯碱生产工艺简介

纯碱生产工艺简介 纯碱生产工艺主要分天然碱法和合成碱法,而合成碱法又分氨碱法和联碱法。 1.天然碱目前全世界发现天然碱矿的仅有美国、中国、土耳其、肯尼亚等少数国家,其中以美国的绿河天然碱矿最有名。绿河地区的天然碱矿床,有42个含倍半碳酸钠的矿层。已知矿层厚度在1.2m以上(最厚达11m),含矿面积在670帛(最大达2007诟)的有25层,位于地表以下198?914m,,计算倍半碳酸钠(Na2CONaHCC2HO)储量为613亿t, 即使全世界所有碱厂全部停产, 美国天然碱也可供世界1300 年纯碱用量。绿河地区各公司主要采用机械化开采。地面加工装置, 主要采用一水碱流程生产重质纯碱。美国各天然碱厂目前的市场运作方法是国内, 各厂进行有序竞争;国外出口, 各厂联合, 成立一个专营出口的组织“ ANSAC (美国天然碱公司),美国天然碱不但质量好,而且生产成本仅为60美元/吨左右, 远低于我国合成纯碱成本90美元/吨-100 美元/吨左右,因此它具有很强的竞争力。 而位于河南省桐柏县的天然碱矿,总储量达1.5亿吨,远景储量3亿?5亿吨,占全国天然碱储量的8 0%,位居亚洲第一、世界第二位。内蒙古伊化集团在桐柏建立了以天然碱为主的化工园区, 其优质的低盐重质纯碱设计年产量达1 00万吨。 天然碱生产工艺主要有三种:

a. 倍半碱流程 矿石开采-溶解-澄清除去杂质-循环母液-三效真空结晶- 240度煅烧 b. 卤水碳化流程 天然卤水-碳化塔碳化为重碱-干燥-煅烧为粗碱-用硝酸钠 在155度漂白—煅烧,煅烧用二氧化碳由自备电厂提供 c. 一水碱流程 矿石开采—破碎到7厘米以下—200度停留30分钟—粗碱—溶 解、澄清—三效真空结晶—240度煅烧 天然碱法的主要优点是: a.成本低,每吨约60美兀左右,而合成碱为90-100美兀,完全可以 抵消运输成本。 b.质量方面盐分非常低,往往小于0.10 %,产品粒度也非常好。缺点 是因为倍半碱矿容易和芒硝矿共生,产品中硫酸根含量比氨碱法要高,但现在用户对硫酸根的要求基本不高,所以这个缺点影响不大。 2.氨碱法(索尔维法) 我公司使用的就是氨碱法,中国的大碱厂中,潍坊、唐山、连云港,大化和天碱的一部分,青海,吉兰泰都是采用氨碱法。 a.氨碱法主要优点是产品质量好,可以生产低盐碱,硫酸盐的含量也 非常低。缺点是:a.有石灰和蒸馏工序,原材料消耗高,原盐的利 用率低,而氨碱法只能达到73-76 % (就是转化

我国氧化铁红生产工艺简介

精心整理 我国氧化铁红生产工艺简介 氧化铁颜料是一种非常重要的无机彩色颜料,具有良好的颜料品质,应用领域十分广阔。生产氧化铁红的方法分为干法和湿法两种,其中干法主要包括绿矾(即七水硫酸亚铁)煅烧法、铁黄煅烧法、铁黑煅烧法,此外还有以赤铁矿为原料的天然氧化铁矿物超细粉碎法等。湿法工艺主要包括硫酸盐(即硫酸亚铁或含有硫酸亚铁的溶液)法、硝酸盐(即硝酸铁、硝酸亚铁或含有硝酸铁盐的溶液)法、混酸法;湿法工艺按照二步氧化过程所使用的中和剂不同,又可分为铁皮法和氨法。 1、关于干法工艺: 干法工艺是我国传统、原始的氧化铁红生产工艺,其优点是生产工艺简单、流程短,设备投资相对较少。缺点是产品质量稍差,而且煅烧过程有有害气体产生,对环境有明显影响。如铁矾煅烧法,煅烧过程有大量的含硫气体产生。 近年来,基于对含铁废弃物的综合利用,我国又出现了硫酸烧渣法、铁矿粉酸化焙烧法等干法工艺,其优点是工艺简单、投资少,缺点是所产产品质量层次较低,只能应用于低端领域。 2、关于湿法工艺: 湿法工艺是以硫酸亚铁或硝酸亚铁、硫酸铁、硝酸铁为原料,采用先制备晶种,后氧化制备铁红的氧化铁红生产方法。所用原料既可以是硫酸亚铁、硝酸亚铁固体原料,也可以是含有硫酸亚铁、硝酸亚铁、硫酸铁、硝酸铁的水溶液。所使用的中和剂既可以是铁皮、铁屑,也可以是碱或氨。 近几年来,基于对工业废弃物的综合利用,又产生了以钛白副产硫酸亚铁或硫酸铁溶液、以钢厂酸洗废酸或废水为原料制备氧化铁红工业颜料的方法,但都归属于湿法工艺范畴。所使用的中和剂仍然为铁皮、铁屑、碱或氨。 湿法工艺的优点在于所得产品质量性能优异,可以制备出不同型号的系列化氧化铁红产品。缺点在于工艺流程较长,生产过程能耗高,有大量的酸性废水产生,目前缺少有效地酸性废水综合利用途径等。 (1)硫酸法工艺: 以七水硫酸亚铁或硫酸铁,或含有水硫酸亚铁、硫酸铁的废酸、水溶液为原料,首先对铁盐或铁盐溶液进行净化处理以去除其中的杂质,然后严格控制工艺条件以氢氧化钠或氨为中和剂制备晶种。再将所制得的晶种转入二步氧化合成反应器,在加温的条件下严格控制工艺条件,投入氢氧化钠或氨调整体系pH值,再通入空气进行氧化制得晶种。将所制得的合格晶种转入氧化合成反应器,调整pH值和温度条件,投入铁皮或铁屑以中和氧化过程所产生的酸,通入空气进行氧化反应,氧化过程连续不断的加入铁盐溶液,当反应体系的色光达到目标色光标准时,停止反应经过滤分离出氧

柠檬酸生产工艺

柠檬酸及生产工艺 摘要:柠檬酸广泛应用于食品工业、医药工业和化学工业等方面。它可利用糖质原料如土豆、地瓜中的淀粉等,在多种霉菌及黑曲菌的作用下,控制较低的温度和pH值、较高的通气量和糖浓度,用发酵法制得。 关键词:柠檬酸化工产品发酵法 1 产品说明 柠檬酸又名枸橼酸,学名3-羟基-3-羧基戊二酸,分子式C6H8O7为无色、无臭、半透明结晶或白色粉未,易溶于水及酒精。加热可以分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸主要应用于食品工业,因为柠檬酸有温和爽快的酸味,普遍用于各种饮料、汽水、葡萄酒、糖果、点心、饼干、罐头果汁、乳制品等食品的制造。柠檬酸在化学工业上可作化学分析用试剂,用作实验试剂、色谱分析试剂及生化试剂,用作络合剂,掩蔽剂,配制缓冲溶液。采用柠檬酸或柠檬酸盐类作助洗剂,可改善洗涤产品的性能,可以迅速和沉淀金属离子,防止污染物重新附着在织物上,保持洗涤必要的碱性,使污垢和灰分散和悬浮,提高表面活性剂的性能,是一种优良的鳌合剂。 2 生产原理 2.1 生产方法简介 中国现有柠檬酸生产厂近百家,总年产能力约80万吨,是全球最大的柠檬酸生产国和出口国。目前,柠檬酸生产方法有水果提取法,

化学合成法和生物发酵法三种。水果提取法是指柠檬酸从柠檬、橘子、苹果等柠檬酸含量较高的水果中提取,此法提取的成本较高,不利于工业化生产。化学合成法的原料是丙酮,二氯丙酮或乙烯酮,此法工艺复杂,成本高,安全性低。而发酵法发酵周期短,产率高,节省劳动力,占地面积小,便于实现仪表控制和连续化,现已成为柠檬酸生产的主要方法。 2.2 反应方程式 C12H22011 +H20+302→2C6H8O7+4H2O (蔗糖) (柠檬酸) 3 工艺过程及流程图 3.1工艺过程 3.1.1菌种培养 在4~6波美度的麦芽汁内加入25%至30%的琼脂,然后接入黑曲霉菌种(无茵操作),在30~32℃条件下培养4天左右。这种培养方法称为“斜面培养”。将麸皮和水以1:1的比例掺拌,再加入10%的碳酸钙、0.5%的硫酸铵,拌匀后装入容量为250毫升的三角瓶中,用1.5公斤压力灭菌60分钟。接人斜面培养法培养出的菌种,培养96~120小时后即可使用。 3.1.2原料处理 湿粉渣必须经过压榨脱水,使含水量在60%左右;干粉渣含水量低,应按60%的比例补足水分;结块的粉渣需粉碎成二至四毫米颗粒。然后加入2%碳酸钙、10%至11%的米糠,掺匀后,堆放2小时,

柠檬酸液态发酵及提取工艺

柠檬酸液态发酵及提取工艺 0802班生物科学饶慧 (指导教师:胡远亮) 0前言 柠檬酸(citric acid)又名枸橼酸,学名2-羟基丙烷三羧酸(2-hydroxytricarboxylic acid)或2-羟基丙烷-l,2,3-三羧酸(2-hydroxy propane-1,2,3-triearboxylic acid)是生物体主要代谢产物之一,在自然界中分布很广,主要存在于柠檬、柑橘、菠萝、梅、李、梨、桃、无花果等果实中,尤以未成熟者含量居多。分子式:C6H8O7(相对分子质量:192.13),无色透明或半透明晶体,或粒状、微粒状粉末,虽有强烈酸味,但令人愉快,稍有涩味。极易溶于水,溶解度随温度的升高而增大;从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质,加热至175°C时它会分解产生二氧化碳和水,剩余一些白色晶体。柠檬酸是一种较强的有机酸,有3个H+可以电离;加热可以分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸被称为第一食用酸味剂,极广泛地用作酸味剂、增溶剂、缓冲剂、抗氧化剂等,用于饮料、糖果、酿造酒、冰淇淋、酸奶、罐头食品、豆制品与调味品等的生产中。另外,在药物、美容品、化妆品工业上也有着重要的应用。它是香料和饮料的酸化剂,在食品和医学上用作多价螯合剂,同时是化学中间体,用于制造药物,也可用于金属清洁剂、媒染剂等。柠檬酸的盐类、酯类和衍生物也各具特点,用途极为广泛而有良好的发展前景。 柠檬酸循环(citric acid cycle)又称三羧酸循环(tricarboxylic acid cycle),克雷布斯循环(Krebs cycle)。体内物质糖、脂肪或氨基酸有氧氧化的主要过程。通过生成的乙酰辅酶A与草酰乙酸缩合生成三羧酸(柠檬酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。 实验发酵机理: 1)以薯干粉、玉米粉或淀粉等糖类为原料经黑曲霉柠檬酸产生菌(我们采用黑曲霉M288)糖化后产生高浓度的葡萄糖。 2)黑曲霉利用糖类发酵产生柠檬酸:葡萄糖以EMP(糖酵解途径或者)、HMP

氯酸钠的生产工艺简介

氯酸钠的生产工艺简介 氯酸钠的生产方法主要有化学法和电解法: 化学法:化学法是以石灰为原料,将石灰制成石灰乳,然后氯化。在析出了氯化钙结晶后的氯酸钙溶液中,加入硫酸钠或碳酸钠进行复分解反应,生成氯酸钠溶液和硫酸钠产品。由于化学法生产氯酸钠有工艺流程长、设备多、占地面积大、操作环境差、生产成本高等原因,目前国内外氯酸钠生产均不采用这一方法。 电解法:电解法是以原盐或精制盐为原料,先制成饱和的粗卤水,然后加入纯碱、烧碱和氯化钡(可结合采用膜除硝技术),除去粗盐水中的钙、镁及硫酸根离子,并过滤得一级精制盐水。一级精制盐水再经离子交换处理或膜处理得到二级精制盐水,然后在二次精制盐水中加入重铬酸钠、盐酸,调节PH值后送入无隔膜的电解槽中进行电解。电解得到的氯酸钠溶液,经过脱次氯酸钠、结晶、分离、干燥得到结晶氯酸钠成品,现在所有厂家都采用的是电解法工艺生产氯酸钠,其工艺过程大体包括盐水工序、电解工序、结晶干燥工序等,现分述如下:(一)盐水工序 北美、欧洲国家氯酸钠生产所用氯化钠均为精制氯化钠,其钙镁含量极低,盐水精制工序常采用二级净化处理(采用膜过滤、离子交换处理等技术,进一步除去卤水中的杂质离子)。因精盐中杂质含量少,故而盐水精制工序生产线短,排渣量少,减少了对环境的污染。国外氯酸钠生产厂家都非常注重盐水的净化处理,因为盐水的质量好坏直接影响电耗和洗槽周期(国外基本采用精制盐)。 国内氯酸钠原料采用矿盐、卤水、海水,原料杂质较多,精制生产线长。由于原料精制设备简陋,精盐水钙、镁含量高,故而造成槽电压升得快,洗槽周期短,一般在三个月洗一次,进行盐水的二次精制可使卤水含钙镁量降低,还可降低电耗、延长洗槽周期,提高生产效率。 (二)电解工序 电解工序是生产氯酸钠的最主要工序。电解槽是氯酸钠生产的关键设备。二十世纪六、七十年代钛基涂钌金属阳极开始应用于氯碱电解槽。经过近几十年来的发展该项技术已成为相对完善的技术。值得一提的是某一公司开发了一个反应器带成百个电解槽的装置(温州泰佛龙实业有限公司开发TY型)。该技术巧妙地解决了电化学腐蚀问题,使装置结构和操作简化,电流效率又高。国外主要

铝酸钙生产工艺简介

铝酸钙生产工艺简介 1铝酸钙其本质就是水泥行业的高铝水泥熟料,之所以称做铝酸钙应该和近些年被广泛用于净水剂生产有关。 2其产品GB201-2000划分如下: 当不是用于生产高铝水泥时,后三项指标可不必考虑。 3生产工艺 铝酸钙的生产工艺类似于硅酸盐水泥熟料的生产工艺,因其生产规模通常较小,一般年产量在3~5万吨,因此多数生产工艺采用了中空窑进行煅烧生产,热耗在320~350kg/t。近年来随着市场需求量的不断增加,其生产规模有逐步扩大趋势。特别是水泥行业部分小熟料生产线淘汰后转产进入该行业。目前国内年产量10万吨、20万吨、30万吨铝酸钙熟料生产线均有建成投产,并且生产稳定,产品质量良好。 原燃材料 其对原材料的要求主要是石灰石品位要高,一般CaO应在52%以上,铝矾土要满足产品等级要求;采用煤粉作为燃料时,煤应用基低位发热量应在6500kcal/kg。采用天然气更能满足使用要求。 煅烧系统 煅烧系统在低生产规模下考虑到投资的经济性,一般采用中空窑+单冷机系统,吨熟料热耗通常在320~350kg/t以上,主要原因是窑尾排放烟气温度太高,一般在600~800℃以上。 在较大规模的生产量时,有两种技术方案可以考虑,一是采用中空窑+中温中压余热发电系统+单冷机(或篦式冷却机)系统;一是采用一是采用预热预分解煅烧系统+单冷机(或篦式冷却机)系统。采用前一方案,其余热发电量可以很好满足整个生产线包括熟料粉磨用电需要,在国内目前电价情况下是非常合适的方案,其综合能量利用效率最高。采用后一种技术方案也是很好很先进的一种技术方案,其热利用率较高,吨熟料煤耗可控制在110~120kg/t,废气温度在320℃上下,如果资金条件允许,可以考虑建设低温余热发电,效益会更好。在暂不考虑余热发电的情况下也可以比较经济的稳定生产运行。 生料粉磨 建议采用立磨系统,该系统可以利用废气余热作为烘干热源。更主要的是立磨粉磨系统对原料的水分有较好的适应性,其原料水分可以高达15~20%。一般可以不必考虑原料的烘干问题。 煤粉制备 考虑到生产规模较小,煤粉制备一般采用风扫烘干管磨机系统,主要是考虑到投资的经济性。 熟料粉磨 熟料粉磨采用通常的水泥粉磨系统即可。考虑到铝酸钙熟料粉化特性,建议采用开路超细磨机系统。

电缆生产工艺简介

电缆生产工艺简介 一、铜、铝单丝拉制 电线电缆常用8mm的铜、铝杆材,在常温下,利用拉丝机通过一道或数道拉伸模具的模孔,使其截面减小、长度增加、强度提高。拉丝是各电线电缆公司的首道工序,拉丝的主要工艺参数是配模技术。 二、单丝退火 铜、铝单丝在加热到一定的温度下,以再结晶的方式来提高单丝的韧性、降低单丝的强度,以符合电线电缆对导电线芯的要求。退货工序关键是杜绝铜丝的氧化。 三、导体的绞制 为了提高电线电缆的柔软度,以便于敷设安装,导电线芯采取多根单丝绞合而成。从导电线芯的绞合形式上,可分为规则绞合和非规则绞合。非规则绞合又分为束绞、同心复绞、特殊绞合等。 为了减少导线的占用面积、缩小电缆的几何尺寸,在绞合导体的同时采用紧压形式,使普通圆形变异为半圆、扇形、瓦形和紧压的圆形。此种导体主要应用在电力电缆上。 ) 四、绝缘挤出 塑料电线电缆主要采用挤包实心型绝缘层,塑料绝缘挤出的主要技术要求: 1.偏心度:挤出的绝缘厚度的偏差值是体现挤出工艺水平的重要标志,大多数的产品结构尺寸及其偏差值在标准中均有明确的规定。 2.光滑度:挤出的绝缘层表面要求光滑,不得出现表面粗糙、烧焦、杂质的不良质量问题。 3.致密度:挤出绝缘层的横断面要致密结实、不准有肉眼可见的针孔,杜绝有气泡的存在。 五、成缆 对于多芯的电缆为了保证成型度、减小电缆的外形,一般都需要将其绞合为圆形。绞合的机理与导体绞制相仿,由于绞制节径较大,大多采用无退扭方式。成缆的技术要求:一是杜绝异型绝缘线芯翻身而导致电缆的扭弯;二是防止绝缘

层被划伤。 大部分电缆在成缆的同时伴随另外两个工序的完成:一个是填充,保证成缆后电缆的圆整和稳定;一个是绑扎,保证缆芯不松散。 [ 六、挤出内护层 为了保护绝缘线芯不被铠装所伤,需要对绝缘层进行适当的保护。 内护层分:挤包内护层(隔离套)和绕包内护套(垫层)。绕包垫层代替绑扎带与成缆工序同步进行。 七、铠装 敷设在地下电缆,工作中可能承受一定的正压力作用,可选择内钢带铠装结构。电缆敷设在既有正压力作用又有拉力作用的场合(如水中、垂直竖井或落差较大的土壤中),应选用具有内钢丝铠装的结构型。 八、挤出外护套 外护套是保护电线电缆的绝缘层防止环境因素侵蚀的结构部分。外护套的主要作用是提高电线电缆的机械强度、防化学腐蚀、防潮、防水浸人、阻止电缆燃烧等能力。根据对电缆的不同要求利用挤塑机直接挤包塑料护套。 九、三层共挤 三层包括:1.内半导电层;2.绝缘层;3.外半导电层。

柠檬酸生产工艺

柠檬酸生产工艺介绍 摘要:柠檬酸应用广泛,在食品、医药等方面都占有重要位置。制取所用材料价格低廉,条件要求适中,且采用的深层发酵法具有普遍、经济的特点。 关键词:柠檬酸发酵 1.柠檬酸简介 柠檬酸又名枸橼酸,学名2-羟基丙烷-1,2,3-三羧酸。柠檬酸是无色透明或半透明晶体,或粒状、微粒状粉末,无臭,虽有强烈酸味,但令人愉快,稍有后涩味。柠檬酸是生物体主要代谢产物之一,它在植物体内常与酒石酸、苹果酸、草酸等有机酸共存,在动物组织中柠檬酸以游离状态或以金属盐的形式存在。商品柠檬酸主要有一水化合物和无水物。 柠檬酸用途极其广泛,在食品工业广泛用于酸味剂、增溶剂、抗氧化剂、缓冲剂、除腥脱臭剂等。在其他工业中,可作金属净化剂、去垢剂、分散剂、电镀缓冲剂和配位剂、胶粘剂,并可用于治理工业废气、废水、回收金属等。在药物中可产生泡腾,使药物中活性配料迅速溶解并提高味觉能力。 制取柠檬酸可以从水果中提取、化学合成法和生物发酵。其中发酵是最常用和最有经济价值的方法。 2.柠檬酸发酵菌种及原材料。 2.1菌种及原材料 柠檬酸发酵工艺中,具有工业生产价值的微生物有黑曲霉、棒曲霉、文氏曲霉、芬曲霉、丁烯二酸曲霉、橘青霉、解脂假丝酵母等,其中黑曲霉和文氏曲霉在深层液态发酵生产柠檬酸最具有商品竞争优势。 凡能通过微生物代谢而产生柠檬酸的物质,都可以作为柠檬酸的发酵原料。如乙醇、木质素、纤维素、淀粉、蔗糖、乳糖、正烷烃和脂肪等。黑曲霉生产菌可以在薯干粉、玉米粉、可溶性淀粉、乳糖、葡萄糖、麦芽糖、糖蜜等多种培养基中生长、产酸,而且产量在微生物中最高。 2.2黑曲霉 在米曲汁或麦芽汁培养基上菌丝白色,不是绒球状,凸起。边缘整齐,菌落较小,带皱折。在麦芽汁培养基上生长4d成熟的孢子呈黑褐色。在察氏培养基上生长较慢,菌落边缘整齐,分生孢子梗短,分生孢子着生较密。菌丝顶端着生稀疏的大型的黑褐色孢子德,成熟后呈开花状而崩裂。分生孢子是串珠状着生,黑褐色,表面粗糙且有明显的刺状突起,4.7-5.2μm,成熟后遇振动易散落。黑曲霉具有多种活力较强的酶系,能利用淀粉质物质,并且对蛋白质、单宁、纤维素、果胶等具有一定的分解能力。所以黑曲霉可以边生长、边糖化、边发酵产酸的方式生产柠檬酸。 3.设备 发酵生产过程中主要的设备有发酵罐、种母罐、抽滤桶、脱色柱、结晶锅、浓缩锅等。 其中发酵罐是用来对微生物进行发酵之用,罐中有搅拌浆,罐身有传感器,用来控制发酵中各条件的变化。种母罐用来串培养种母醪。抽虑桶采用真空和加压过滤,用于固液分离。 4.柠檬酸深层液态发酵工艺 4.1工艺流程:培菌--发酵--中和--酸解--浓缩结晶 原料粉碎培养基制备实罐液化原始菌种环境空气 实罐灭菌试管斜面过滤 麸取菌种空气机

生产工艺简介

混凝土产品生产工艺:混凝土搅拌站的混合搅拌过程,为物理反应,无化学反应,一般采用配料机对骨料-砂石进行配比,运送到搅拌机,同时添加计量好的水泥及外加剂等粉料及水料,输送到搅拌机,由搅拌机对这些物料进行均匀搅拌,达到搅拌匀度生产出成品混凝土。现在,大型混凝土搅拌站的整个操作过程现在都是在电脑控制下进行,采用自动化配比,自动化输送和自动化搅拌工艺,能便捷的生产出建筑专用混凝土,具体混凝土生产过程如下: 一、骨料称量:所需骨料包括砂石料,由汽车运至厂区(要求混凝土所需骨料需符合使用标准,或经过洗石机洗石达标的骨料),再分别用装载机装入密闭骨料仓,在骨料仓下方均接一个计量称,分别对各种骨料按质量配比称量,称好的骨料由皮带输送机(半封闭)输送到骨料过渡仓,由过渡仓开门落至混凝土搅拌机内搅拌。 二、粉料称量(水泥、粉煤灰等):所需的粉料由密封罐车运至厂区,再由罐车或其它输送装置通过压缩空气泵打入立式粉料仓,开启蝶阀,粉料落入螺旋输送机,再由螺旋输送机输送到称量斗称量,称量按骨料的配比误差进行扣称,称好的水泥由水泥称量斗下的气缸开启蝶阀滑入混凝土搅拌机搅拌。 三、水称量:所需的水由水泵把水池的水抽入称量箱称量,称好的水由增压泵抽出经喷水器喷入搅拌机。 四、外加剂称量:所需的添加剂由自吸泵从添加剂箱内抽至称量箱称量,称好的添加剂投入水箱经喷水器喷入混凝土搅拌机。

五、混凝土搅拌站的搅拌主机进行搅拌:骨料、粉料、水及外加剂等是按照设定的时间投入混凝土搅拌机的,进入混凝土搅拌机的物料在相互反转的两根搅拌轴上的双道螺旋叶片的搅拌下,使物料产生挤压,磨擦、剪切、对流,从而进行剧烈的强制掺合,搅拌时间到时,由搅拌机开门装置的气缸将门打开,由叶片将已搅拌好的混凝土推到等待在混凝土搅拌机下的运输车(在进入运输车之前先取一部分搅拌好的混凝土进行抽测试验,检验是否满足要求),合格后全部推出后关门进入下一个搅拌循环,成品料由混凝土罐车运往施工现场。

柠檬酸生产工艺设计

柠檬酸生产工艺设 计 1

柠檬酸及生产工艺 摘要:柠檬酸广泛应用于食品工业、医药工业和化学工业等方面。它可利用糖质原料如土豆、地瓜中的淀粉等,在多种霉菌及黑曲菌的作用下,控制较低的温度和pH值、较高的通气量和糖浓度,用发酵法制得。 柠檬酸又名枸橼酸,学名3-羟基-3-羧基戊二酸,分子式C6H8O7为无色、无臭、半透明结晶或白色粉未,易溶于水及酒精。加热能够分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸主要应用于食品工业,因为柠檬酸有温和爽快的酸味,普遍用于各种饮料、汽水、葡萄酒、糖果、点心、饼干、罐头果汁、乳制品等食品的制造。柠檬酸在化学工业上可作化学分析用试剂,用作实验试剂、色谱分析试剂及生化试剂,用作络合剂,掩蔽剂,配制缓冲溶液。采用柠檬酸或柠檬酸盐类作助洗剂,可改进洗涤产品的性能,能够迅速和沉淀金属离子,防止污染物重新附着在织物上,保持洗涤必要的碱性,使污垢和灰分散和悬浮,提高表面活性剂的性能,是一种优良的鳌合剂。 承办单位:南充市柠檬酸生产厂 可行性研究: 中国现有柠檬酸生产厂近百家,总年产能力约80万吨,是全球最大的柠檬酸生产国和出口国。当前,柠檬酸生产方法有水果提取法,化学合成法和生物发酵法三种。水果提取法是指柠檬酸从柠檬、橘子、苹果等柠檬酸含量较高的水果中提取,此法提取 2

的成本较高,不利于工业化生产。化学合成法的原料是丙酮,二氯丙酮或乙烯酮,此法工艺复杂,成本高,安全性低。而发酵法发酵周期短,产率高,节省劳动力,占地面积小,便于实现仪表控制和连续化,现已成为柠檬酸生产的主要方法。南充的农副产品大多为红 薯、地瓜。原料来源充分,交通便利,人口聚集,给柠檬酸的销售带来了莫大的好处。 反应方程式 C12H2 +H20+302→ 2C6H8O7+4H2O (蔗糖) (柠檬酸) 项目设计方案: 一.工艺过程 1菌种培养 在4~6波美度的麦芽汁内加入25%至30%的琼脂,然后接入黑曲霉菌种(无茵操作),在30~32℃条件下培养4天左右。这种培养方法称为”斜面培养”。将麸皮和水以1:1的比例掺拌,再加入10%的碳酸钙、0.5%的硫酸铵,拌匀后装入容量为250毫升的三角瓶中,用1.5公斤压力灭菌60分钟。接人斜面培养法培养出的菌种,培养96~120小时后即可使用。 2原料处理 湿粉渣必须经过压榨脱水,使含水量在60%左右;干粉渣含水量低,应按60%的比例补足水分;结块的粉渣需粉碎成二至四毫米颗 3

硝酸生产工艺技术简介

C硝酸生产工艺技术简介 1建设规模及产品方案 1.1产品方案 利用本公司生产的液氨生产硝酸,最终产品为98%浓硝酸。 1.2生产规模 1.2.1设计规模: 公称能力为日产浓硝酸350吨(以100%HNO 3计) (公称能力产浓硝酸10万吨/年,计算产能10.5万吨/年,配套建10.5 万吨/年稀硝酸装置)。 年运行时间:7200小时。 1.2.2确定本装置设计规模依据以下因素: 结合耀隆集团原材料供应、辅助工程条件以及市场需求,将本工程浓硝酸生产规模定为10万吨/年(以100%HNO 3计)。 2工艺技术方案及技术来源 2.1工艺技术方案选择 2.1.1稀硝酸 2.1.1.1国内外稀硝酸工艺技术概况 目前,国内外工业上生产稀硝酸的方法有常压法、综合法、全中压法、高压法、双加压法,现分述如下: (1)常压法: 氨氧化和吸收均在常压下进行的生产工艺。 早期硝酸生产多采用这种方法,该工艺流程的特点为系统压力低,设备结构简单,工艺操作稳定,氨氧化率高,铂耗较低。但吸收比容积大 (20~25m3)

, 酸吸收率较低(仅为92%左右)。为减少对大气的污染并提高氨利用率,需附有碱吸收N OX尾气装置并副产硝盐,即便如此尾气中N OX浓度仍很高,不符合目前日益严格的环境要求。加上设备相对台数较多,设备体积大,装置占地面积多,投资大,成品酸浓度低等因素,国家经贸委已明文规定禁止采用此种流程新建硝酸装置。 (2)综合法 常压氨氧化和中压(0.25~0.5MPa)酸吸收的稀硝酸生产工艺。 这种方法在一定程度上弥补了常压酸吸收的缺点,我国在本世纪50年代末 引进该流程进行稀硝酸的工业生产。该方法主要缺点是常压氨氧化、设备庞大、占地多,需要配备较昂贵的不锈钢材质的氧化氮压缩机,其投资高于下面介绍的中压法,且吸收压力低仅0.35MPa(A),因此酸浓度低及尾气排放不能达到环保要求,不适用于规模较大的硝酸装置,国家经贸委也明文规定了不能采用此种流程建设硝酸装置。 (3)全中压法 氨氧化和酸吸收均在中压下进行的稀硝酸生产工艺。 我国从60年代中期开始建设的硝酸装置,大多为中压法,该装置的特点是:采用蒸汽透平与尾气膨胀机直接驱动空气压缩机,系统压力为0.35MPa (g),双塔吸收,成品酸浓度在54~57%左右,出塔尾气中N OX含量为0.2%左右,仍需采取进一步的尾气处理措施才能满足环保要求。 国外也有各具特点的全中压流程,诸如:伍德流程、Bamag流程、Stamicarbon流程等。由于其酸浓度、尾气指标以及投资等仍不太令人满意,故而,新建装置已很少采用该种流程。 (4)全高压法 除系统压力较全中压法高外(约为0.6~1.1MPa俵)),其它均类似于全中压 流程。该工艺流程特点为:设备紧凑,相对其它流程投资省,酸浓度高(一般可

柠檬酸工艺

柠檬酸的提取、分离、鉴定 生物111 201100606027 何远升 一、钙盐法提取柠檬酸 钙盐法生产柠檬酸工艺流程为:发酵液→过滤(除去菌体和残渣)→中和过滤(中和剂石灰乳)→柠檬酸钙盐→硫酸酸解、过滤→粗酸液→净化→浓缩结晶→离心→干燥→柠檬酸晶体。 1. 发酵液热处理 将发酵液煮沸5min,然后搅拌降温至80℃。80℃下,发酵液用两层医用纱布过滤,除去其中的菌丝体、薯干粉渣等较大的固体杂质。然后用80℃热水洗涤滤饼,使菌体中的柠檬酸释放出来。离心取上清液。量筒计量出上清液的体积V0准确量取5mL上清液,量取5mL清液、5mL蒸馏水于锥形瓶中,再滴入2~3滴酚酞指示剂,用标准NaOH 溶液滴定,滴定终点为淡红色,30s内不褪色,记下消耗的NaOH 溶液体积V1; M柠檬酸(g)=V1(mL)×c(NaoH)×0.001×1/3×210×V0 /5 2. 碳酸钙中和沉淀 钙盐法主要的化学反应步骤有两步:中和与酸解。其中,中和又可以采用两种方法: 中和: 2C6H8O7·H2O+ 3CaCO3→Ca3(C6H5O7)2·4H2O↓+ 3CO2↑+H2O 酸解: Ca3(C6H5O7)2·4H2O↓+ 3H2SO4+H2O→2C6H8O7·H2O+ 3CaSO4·H2O 柠檬酸与碳酸钙发生中和反应,形成难溶的柠檬酸钙沉淀,碳酸钙的添加量根据滤液中柠檬酸的重量添加,比例约为柠檬酸:碳酸钙=2.1:1。边搅拌边缓慢加入碳酸钙,以防止产生大量气泡。碳酸钙加完后放置90℃恒温水浴中加热,保温搅拌30分钟,趁热过滤,并用沸水洗涤柠檬酸钙沉淀。 3. 酸解 将柠檬酸钙沉淀物取出,称量,加入2倍量的水,调匀,加入浓硫酸溶液,硫酸的添加量根据碳酸钙的量计算,碳酸钙与硫酸的摩尔比为1:1.5。加完硫酸后,搅拌30分钟,过滤,得清亮的棕黄色液体,取样测定柠檬酸的含量,并准确计量柠檬酸液体积。 4. 过滤、脱色 先吸附脱色再过滤:在一次滤液中加入3%(W/'V)的活性炭,80℃水浴中恒温搅拌30min,然后真空抽滤,除去活性炭与其它杂质。 5.离子交换 (1)树脂的预处理 用去离子水浸泡过夜,并洗至去离子水近无色,装入色谱柱,用5倍体积量2%的氢氧化钠冲洗树脂柱,使树脂转化为钠型,并用去离子水洗至流出液近中性;最后用5倍体积量2mol/L盐酸冲洗树脂柱,使树脂转化为氢型,并用去离子水洗至流出液近中性,备用。(2)上样 将滤液沿着柱壁缓慢加入到树脂柱中,使其按照一定的流速流经树脂柱。 (3)洗涤 用蒸馏水将留在交换柱中不发生交换作用的阳离子洗出。

硫酸生产工艺

硫酸生产工艺简介 硫酸生产工艺简介 摘要:硫酸是一种重要化工原料,在工业生产中有着举足轻重的作用,硫酸工业生产在我国也日臻完善,本文主要对工业中以硫铁矿、硫磺、冶炼烟气为原料生产硫酸的工艺流程简介。 硫酸是一种重要的基本化工原料,广泛使用于各工业部门,硫酸的产量常常被用作衡量一个国家工业发展水平的标志。硫酸主要用于生产磷肥。合成纤维、涂料、洗涤剂、制冷剂、饲料添加剂、石油精炼、有色金属冶炼,钢铁、医药和化学工业等,也都离不开硫酸。[1] 我国的硫酸工业起始于19世纪70年代,当时产量很少。新中国建立后,尤其是20世纪80年代以后,硫酸工业获得了快速地发展。根据1999年底的不完全统计,我国现有硫酸生产厂家632家,生产能力为32 500 kt/a。20世纪50年代以后逐步推广接触法,取代铅室法和塔式法,20世纪80年代后全部采用接触法。生产原料有硫铁矿、硫磺、冶炼烟气、磷石膏和硫化氢等。在接触法硫酸工艺生产过程中,有三个基本的化学反应和与之相联系的工序:SO2气体的制取;SO2的转化;SO3的吸收。[2] 1、硫铁矿制酸工艺流程(江西铜业集团公司硫铁矿制酸工艺为例)[3] 焙烧净化干吸转化

经过原料工段处理过的硫铁矿原料,送入焙烧工序进行硫铁矿的沸腾焙烧,气体经废热锅炉回收热量再经旋风除尘器和电除尘器送入气体净化工序,经净化工序的气体进入干燥塔对气体进行干燥后送入转化工段,进行SO2的催化氧化,反应生成的SO3气体送吸收塔吸收产出硫酸。[1] (a)焙烧工序 由原料工序送来的硫精矿在沸腾炉内与来自空气鼓风机的空气混合,在800℃下沸腾焙烧。焙烧产生的50:浓度13%,温度约800一950℃的高温炉气,经废热锅炉回收部分热能温度降至340℃后,依次通过旋风除尘器和电除尘器,使尘含量小于或等于0.20g/Nm3、温度降至320℃后进人净化工序。 (b)净化工序 净化工序采用了先进的动力波洗涤技术,烟气首先在动力波洗涤器中被绝热冷却和洗涤除杂质,通过动力波气液分离槽进行气液分离,分离后的气体进人气体冷却塔进一步冷却及除杂。从气体冷却塔出来的烟气绝大部分烟尘、砷及氟等杂质已被清除,同时烟气温度降至40℃左右,然后进人两级管式电除雾除酸雾,使烟气中的酸雾含量降至<5mg/Nm3.烟气中夹带的少量砷、氟、尘等杂质也进一步被清除,净化后的烟气送往干吸工段。 (c)干吸、转化工序 净化出来的烟气,在淋洒96%硫酸的干燥塔中脱除烟气中所含的水分,干燥后含水<0.1g/Nm3的烟气经S02鼓风机送往转化工段,转

相关主题
文本预览
相关文档 最新文档