当前位置:文档之家› 4第四讲 热传导方程的解法(2)

4第四讲 热传导方程的解法(2)

热传导方程的初值问题

§2热传导方程的初值问题 一维热传导方程的初值问题(或Cauchy 问题) ?? ???+∞<<∞-=>+∞<<∞-=??-??x x x u t x t x f x u a t u ),()0,(0 ,),,(2 2 2? () 偏导数的多种记号xx x t u x u u x u u t u =??=??=??22,,. 问题也可记为 ?? ?+∞ <<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0 ,,),(2?. Fourier 变换 我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上 可积,若积分 ? +∞ ∞ -dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。 将),(+∞-∞上绝对可积函数形成的集合记为),(1 +∞-∞L 或),(+∞-∞L , 即{ } ∞<=+∞-∞=+∞-∞? +∞ ∞ -dx x f f L L )(| ),(),(1 ,称为可积函数空间. 连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C , {}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。 定义 若),(+∞-∞∈L f ,那么积分 ),(?)(21 λπ λf dx e x f x i =? +∞ ∞ -- 有意义,称为Fourier 变换, )(? λf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ? +∞ ∞ --= =dx e x f f Ff x i λπ λλ)(21)(?)( 定理 (Fourier 积分定理)若),(),(1 +∞-∞?+∞-∞∈C L f ,那么我们有

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

导热方程求解matlab

使用差分方法求解下面的热传导方程 2 (,)4(,) 0100.2t xx T x t T x t x t =<<<< 初值条件:2(,0)44T x x x =- 边值条件:(0,)0(1,)0 T t T t == 使用差分公式 1,,1,2 2 2 (,)2(,)(,) 2(,)()i j i j i j i j i j i j xx i j T x h t T x t T x h t T T T T x t O h h h -+--++-+= +≈ ,1,(,)(,) (,)()i j i j i j i j t i j T x t k T x t T T T x t O k k k ++--= +≈ 上面两式带入原热传导方程 ,1,1,,1,2 2i j i j i j i j i j T T T T T k h +-+--+= 令2 24k r h =,化简上式的 ,1,1,1,(12)()i j i j i j i j T r T r T T +-+=-++ i x j t j

编程MA TLAB 程序,运行结果如下 1 x t T function mypdesolution c=1; xspan=[0 1]; tspan=[0 0.2]; ngrid=[100 10]; f=@(x)4*x-4*x.^2; g1=@(t)0; g2=@(t)0; [T,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid); [x,t]=meshgrid(x,t); mesh(x,t,T); xlabel('x') ylabel('t') zlabel('T') function [U,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid) % 热传导方程:

热传导方程的求解

应用物理软件训练 前言 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其

他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。 本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。

题目:热传导方程的求解 目录 一、参数说明 (1) 二、基本原理 (1) 三、MATLAB程序流程图 (3) 四、源程序 (3) 五、程序调试情况 (6) 六、仿真中遇到的问题 (9) 七、结束语 (9) 八、参考文献 (10)

一、参数说明 U=zeros(21,101) 返回一个21*101的零矩阵 x=linspace(0,1,100);将变量设成列向量 meshz(u)绘制矩阵打的三维图 axis([0 21 0 1]);横坐标从0到21,纵坐标从0到1 eps是MATLAB默认的最小浮点数精度 [X,Y]=pol2cart(R,TH);效果和上一句相同 waterfall(RR,TT,wn)瀑布图 二、基本原理 1、一维热传导问题 (1)无限长细杆的热传导定解问题 利用傅里叶变换求得问题的解是: 取得初始温度分布如下 这是在区间0到1之间的高度为1的一个矩形脉冲,于是得 (2)有限长细杆的热传导定解问题

数理方法第二章热传导方程习题答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。由假设,在任意时刻t 到t t ?+内流入 截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??--=??--=111124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由 Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2

一维非稳态导热问题的数值解

计算传热学程序报告 题目:一维非稳态导热问题的数值解 : 学号: 学院:能源与动力工程学院 专业:工程热物理 日期:2014年5月25日

一维非稳态导热问题数值解 求解下列热传导问题: ? ?? ????=====≤≤=??- ??1,10),(,1),0(0)0,()0(01T 22ααL t L T t T x T L x t T x 1.方程离散化 对方程进行控制体积分得到: dxdt t T dxdt x T t t t e w t t t e w ? ?? ??+?+??=??α 1 2 2 ? ? -=??-???+?+e w t t t w e t t t dx T T dt x T x T )(1])()( [α 非稳态项:选取T 随x 阶梯式变化,有 x T T dx T T t p t t p e w t t t ?-=-?+?+? )()( 扩散项:选取一阶导数随时间做显示变化,有 t x T x T dt x T x T t w t e w e t t t ???-??=??-??? ?+])()[(])()[( 进一步取T 随x 呈分段线性变化,有 e P E e x T T x T )()( δ-=?? , w W P w x T T x T )()(δ-=?? 整理可以得到总的离散方程为: 2 21x T T T t T T t W t P t E t P t t E ?+-=?-?+α 2.计算空间和时间步长 取空间步长为: h=L/N 网格Fourier 数为: 2 2 0x t x t F ??= ??= α(小于0.5时稳定)

热传导方程傅里解

热传导方程傅里解

————————————————————————————————作者:————————————————————————————————日期:

热传导在三维的等方向均匀介质里的传播可用以下方程表达: 其中: ?u =u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x,y,z) 的函数。 ?/是空间中一点的温度对时间的变化率。 ?, 与温度对三个空间座标轴的二次导数。 ?k决定于材料的热传导率、密度与热容。 热方程是傅里叶冷却律的一个推论(详见条目热传导)。 如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。 热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。 热方程也是抛物线偏微分方程最简单的例子。 利用拉普拉斯算子,热方程可推广为下述形式

其中的是对空间变量的拉普拉斯算子。 热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornstein-Uhlenbeck 过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。 就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。 以傅里叶级数解热方程[编辑] 以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个空间变量的热方程,这可以当作棍子的热传导之模型。方程如下: 其中u = u(t, x) 是t和x的双变量函数。 ?x是空间变量,所以x∈[0,L],其中L表示棍子长度。

第四章导热题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

传热学第二章答案

第二章 思考题 1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。 答:傅立叶定律的一般形式为: n x t gradt q ??-=λλ=-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流 密度矢量。 2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量? 答:k q j q i q q z y x ?+?+?=,其中k j i ,,分别为三个方向的单位矢量量。 3 试说明得出导热微分方程所依据的基本定律。 答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。 4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。 答:① 第一类边界条件:)(01ττf t w =>时, ② 第二类边界条件: )()( 02τλτf x t w =??->时 ③ 第三类边界条件: )()( f w w t t h x t -=??-λ 5 试说明串联热阻叠加原则的内容及其使用条件。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。使用条件是对于各个传热环节的传热面积必须相等。 7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。 6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。 8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗? 答:只要满足等截面的直肋,就可按一维问题来处理。不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。 9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。试分析这一观点的正确性。 答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。 10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。 答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x 方向和y 方向的数值相等并为常数。 11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。矩形的一个边绝热,其余三个边均与温度为f t 的流体发生对流换热。你能预测他所得的温度场的解吗? 答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。 习题

传热学第四版课后题答案解析第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法试分析比较之. 6.什么是非稳态导热问题的显示格式什么是显示格式计算中的稳定性问题 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解不能得出收敛的解时是否因为初场的假设不合适而造成 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ ? 你能否判断这一表达式是否正确,为什么 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=,1,10 的三种情况计算下列特征方程的根 :)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 Bi n n =μμtan Fo=及时计算结果的对比列于下表: δ=x

0=x δ=x 4-2、试用数值计算证实,对方程组 ? ? ????????=++=++=-+5223122321321321x x x x x x x x x 用高斯-赛德尔迭代法求解,其结果是发散的,并分析其原因。 解:将上式写成下列迭代形式 ()()? ???? ?????--=-+=--=2131323213212/1252/1x x x x x x x x x : 假设3,2x x 初值为0,迭代结果如下: 迭代次数 0 1 2 3 4 1x 0 2x 0 - 1. 3x 0 -0. 显然,方程迭代过程发散 因为迭代公式的选择应使每一个迭代变量的系数总大于或等于式中其他变量的系数绝对值代数和。 4-3、试对附图所示的常物性,无内热源的二维稳态导热问题用高斯-赛德尔迭代法计算 4 321,,,t t t t 之值。 、

3热传导方程的初边值问题(精选、)

例4 周期初始温度分布 求解热传导方程t xx u u =,(,0)x t -∞<<+∞>给定初始温度分布 (,0)1cos 2,()u x x x =+-∞<<+∞。 解 4(,)1cos2t u x t e x -=+. 初始高斯温度分布 例 5求解定解问题22 22 0,(,0) (,0),()kx u u a x t t x u x e x -???-=-∞<<+∞>?????=-∞<<+∞? , 其中常数0k >. 解 22()4(,)()x s a t u x t s e ds ?-- +∞ -∞ = ? 22 2()4x s ks a t e e ds -- +∞ --∞ = ? 222 2(41)24ka t s xs x a t e ds +-+- +∞ -∞ = ? 222 22224(41)()41414x ka t ka t s x ka t ka t a t e ds +- +++- +∞ -∞ = ? 22 2 222(41)()41 441 k ka t x x s ka t a t ka t e e ds +---+∞ ++-∞ = ? 2241 k x ka t e - += 2241 k x ka t - += . §3初边值问题 设长度为l ,侧表面绝热的均匀细杆,初始温度与细杆两端的温度已知,则杆上的温度分布 ),(t x u 满足以下初边值问题 ?? ? ??≤<==≤≤=<<<<=-T t t g t l u t g t u l x x x u T t l x t x f u a u xx t 0),(),(),(),0(,0), ()0,(0,0),,(212? 对于这样的问题,可以用分离变量法来求解. 将边值齐次化

第四章_导热问题的数值方法

5 热传导问题的数值方法 5.1一维稳态导热 一维稳态导热在直角坐标系下的控制方程可表示为: 0)(=+s dx dT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。 首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得: 0)()(=+-?dx s dx dT k dx dT k e w w e (5-2) 图5.1 控制体和网格 然后进行离散化。如果用分线段性分布来计算方程(5-2)中的微商dx dT ,那么最终的方程为: 0)() ()()(=?+---x s x T T k x T T k w W P w e P E e δδ (5-3) 假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为: b T a T a T a W W E E P P ++= (5-4) 式中 x s b x s a a a x k a x k a c P W E P w w W e e E ?=?-+=δ= δ= )()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。进行计算时,物理参数值存储在节点的位置上。为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。常用的方法由两种,即算术平均法与调和平均法。 1、算术平均法 假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:

4.2热传导第-导热基本方程 (1)

4.2 热传导(第一课时) 4.2.1 导热基本方程 年级:高一 科目:化工基础 课型:新课 主备人:佟长燕 时间: 教学目标 1.理解傅里叶定律、热导率的概念及影响因素;掌握热导率的影响因素。 2.通过自主学习,使学生理解傅立叶定律;通过引导和启发,使学生理解热导率的影响因素和分类。 3.练习过程中,培养学生实事求是的科学态度。 学习重、难点 重点:掌握传热的基本方式;理解工业生产上的换热方式。 难点:掌握传热的基本方式;理解工业生产上的换热方式。 学习方法:自主探究、合作交流、讲解等 教学过程: 一、温故互查 1.传热的基本方式有哪些? 2.热传到的概念,方式场合及特点? 二、设问导读 1.傅立叶定律的基本内容? 2.热导率的含义及影响因素? 3.单层平壁定常导热的公式? 三、自学检测(阅读课本87—89,完成下列问题) 1.导热基本方程 (1)傅立叶定律 实验证明,在定常导热时,导热速率与垂直于传热方向的导热面积和温度梯度成正比,其关系式为 (4—1), 式中Q — ;A — ; λ— ;dn dt — ,规定温度梯度的方向指向温度升高的方向为正,反之温度度降低的方向为负。 (2)热导率 ①热导率λ(或导热系数)在数值上等于单位温度梯度下通过 的传热热速率。热导率是表示物质 大小的一个参数,是物质的物理性质。物质的热导率越大,传道的热量 ,其导热能力也 。 ②不同物质的热导率差异很大,可以通过实验测定器热导率。各种物质的热导率的大小顺序为: > > > 。 ③物质的热导率与物质的 、 、 和温度有关。温度对热导率的影响较明显,金属的热导率随温度的升高而 ;除水、甘油外的多数液体,其热导率随温度的升

相关主题
文本预览
相关文档 最新文档