当前位置:文档之家› 比较简单的贝叶斯网络总结

比较简单的贝叶斯网络总结

比较简单的贝叶斯网络总结
比较简单的贝叶斯网络总结

贝叶斯网络

贝叶斯网络是一系列变量的联合概率分布的图形表示。

一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。

3.5.1 贝叶斯网络基础

首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。

假设:

命题S(moker):该患者是一个吸烟者

命题C(oal Miner):该患者是一个煤矿矿井工人

命题L(ung Cancer):他患了肺癌

命题E(mphysema):他患了肺气肿

命题S对命题L和命题E有因果影响,而C对E也有因果影响。

命题之间的关系可以描绘成如右图所示的因果关系网。

因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。

图3-5 贝叶斯网络的实例

图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。

贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。

贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。

假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算:

双亲结点。该结点得上一代结点。

该等式暗示了早先给定的图结构有条件独立语义。它说明贝叶斯网络所表示的联合分布作为一些单独的局部交互作用模型的结果具有因式分解的表示形式。

从贝叶斯网的实例图中,我们不仅看到一个表示因果关系的结点图,还看到了贝叶斯网中的每个变量的条件概率表(CPT)。因此一个完整的随机变量集合的概率的完整说明不仅包含这些变量的贝叶斯网,还包含网中变量的条件概率表。

图例中的联合概率密度:

P(S,C,L,E)=P(E|S,C)*P(L|S)*P(C)*P(S)

推导过程:P(S,C,L,E)=P(E|S,C,L)*P(L|S,C)*P(C|S)*P(S)(贝叶斯定理)

=P(E|S,C)*P(L|S)*P(C)*P(S)

即:P(E|S,C,L) =P(E|S,C), E与L无关

P(L|S,C)= P(L|S)L与C无关

P(C|S)=P(C) C与S无关

以上三条等式的正确性,可以从贝叶斯网的条件独立属性推出:每个变量与它在图中的非继承节点在概率上是独立的。

相比原始的数学公式:

P(S,C,L,E)=P(E|S,C,L)*P(L|S,C)*P(C|S)*P(S)

推导过程:

由贝叶斯定理,P(S,C,L,E)=P(E|S,C,L)*P(S,C,L)

再由贝叶斯定理P(S,C,L)= P(L|S,C)* P(S,C)

同样,P(S,C)=P(C|S)*P(S)

以上几个等式相乘即得原式。

显然,简化后的公式更加简单明了,计算复杂度低很多。如果原贝叶斯网中的条件独立语义数量较多,这种减少更加明显。

贝叶斯网络是一系列变量的联合概率分布的图形表示。这种表示法最早被用来对专家的不确定知识编码,今天它们在现代专家系统、诊断引擎和决策支持系统中发挥了关键作用。贝叶斯网络的一个被经常提起的优点是它们具有形式的概率语义并且能作为存在于人类头脑中的知识结构的自然映像。这有助于知识在概率分布方面的编码和解释,使基于概率的推理和最佳决策成为可能。

3.5.2 贝叶斯网的推理模式

在贝叶斯网中有三种重要的推理模式,因果推理(由上向下推理),诊断推理(自底向上推理)和辩解。3.5.2.1 因果推理

让我们通过概述的实例来说明因果推理得过程。给定患者是一个吸烟者(S),计算他患肺气肿(E)的概率P(E|S)。S称作推理的证据,E叫询问结点。

首先,我们寻找E的另一个父结点(C),并进行概率扩展

P(E|S)=P(E,C|S)+P(E,~C|S);

即,吸烟的人得肺气肿的概率为吸烟得肺气肿又是矿工的人的概率与吸烟得肺气肿不是矿工的人的概率之和,也就是全概率公式。

然后利用Bayes定理:

P(E|S)=P(E|C,S)*P(C|S)+P(E|~C,S)*P(~C|S);

公式解释:P(E,C|S)=P(E,C,S)/P(S)

=P(E|C,S)*P(C,S)/P(S)(贝叶斯定理)

=P(E|C,S)*P(C|S)(反向利用贝叶斯定理)

同理可以得出P(E,~C|S)的推导过程。

需要寻找该表达式的双亲结点的条件概率,重新表达联合概率(指P(E,C|S),P(E,~C|S))。

在图中,C和S并没有双亲关系,符合条件独立条件:

P(C|S)=P(C),

P(~C|S) = P(~C),

由此可得:

P(E|S) = P(E|S,C)*P(C)+P(E|~C,S)*P(~C)

如果采用概述中的例题数据,则有P(E|S)=0.9*0.3+0.3*(1-0.3)=0.48

从这个例子中,不难得出这种推理的主要操作:

1)按照给定证据的V和它的所有双亲的联合概率,重新表达给定证据的询问结点的所求条件概率。

2)回到以所有双亲为条件的概率,重新表达这个联合概率。

3)直到所有的概率值可从CPT表中得到,推理完成。

3.5.2.2 诊断推理

同样以概述中的例题为例,我们计算"不得肺气肿的不是矿工"的概率P(~C|~E),即在贝叶斯网中,从一个子结点计算父结点的条件概率。也即从结果推测一个起因,这类推理叫做诊断推理。使用Bayes公式就可以把这种推理转换成因果推理。

P(~C|~E)=P(~E|~C)*P(~C)/P(~E),

从因果推理可知

P(~E|~C) = P(~E,S|~C)+P(~E,~S|~C)

= P(~E|S,~C)*P(S)+P(~E|~S,~C)*P(~S)

= (1-0.3)*0.4+(1-0.10)*(1-0.4)=0.82;

由此得:

P(~C|~E)=P(~E|~C)*P(~C)/ P(~E)(贝叶斯公式)

=0.82*(1-0.3)/ P(~E)

=0.574/ P(~E)

同样的,

P(C|~E) =P(~E|C)* P(C)/ P(~E)

=0.34*0.3/ P(~E)

=0.102 /P(~E)

由于全概率公式:

P(~C|~E)+P(C|~E)=1

代入可得

P(~E)=0.676

所以,P(~C|~E)=0.849

这种推理方式主要利用Bayes规则转换成因果推理。

3.5.2.3 辩解

如果我们的证据仅仅是~E(不是肺气肿),象上述那样,我们可以计算~C患者不是煤矿工人的概率。但是如果也给定~S(患者不是吸烟者),那么~C也应该变得不确定。这种情况下,我们说~S解释~E,使~C变得不确定。这类推理使用嵌入在一个诊断推理中的因果推理。

作为思考题,读者可以沿着这个思路计算上式。在这个过程中,贝叶斯规则的使用,是辩解过程中一个重要的步骤。

3.5.3 D分离

在本节最开始的贝叶斯网图中,有三个这样的结点:S,L,E。从直观来说,L的知识(结果)会影响S的知识(起因),S会影响E的知识(另一个结果)。因此,在计算推理时必须考虑的相关因素非常多,大大影响了算法的计算复杂度,甚至可能影响算法的可实现性。但是如果给定原因S,L并不能告诉我们有关E的更多事情。即对于S,L和E是相对独立的,那么在计算S和L的关系时就不用过多地考虑E,将会大大减少计算复杂度。这种情况下,我们称S能D分离L和E。D分离是一种寻找条件独立的有效方法。

如下图,对于给定的结点集ε,如果对贝叶斯网中的结点Vi和Vj之间的每个无向路径,在路径上有某个结点Vb,如果有属性:

1)Vb在ε中,且路径上的两条弧都以Vb为尾(即弧在Vb处开始(出发))

2)Vb在ε中,路径上的一条弧以Vb为头,一条以Vb为尾

3)Vb和它的任何后继都不在ε中,路径上的两条弧都以Vb为头(即弧在Vb处结束)

则称Vi和Vj 被Vb结点阻塞。

结论:如果Vi和Vj被证据集合ε中的任意结点阻塞,则称Vi和Vj是被ε集合D分离,结点Vi和Vj条件独立于给定的证据集合ε,即

P(Vi|Vj,ε) =P(Vi|ε)

P(Vj|Vi,ε) =P(Vj|ε)

表示为:I(Vi,Vj|ε) 或I(Vj,Vi|ε)

无向路径:DAG图是有向图,所以其中的路径也应该是有向路径,这里所指的无向路径是不考虑DAG图中的方向性时的路径。

条件独立:如具有以上三个属性之一,就说结点Vi和Vj条件独立于给定的结点集ε。

阻塞:给定证据集合ε,当上述条件中的任何一个满足时,就说Vb阻塞相应的那条路径。

D分离:如果Vi和Vj之间所有的路径被阻塞,就叫证据集合ε可以D分离Vi和Vj

注意:在论及路径时,是不考虑方向的;在论及"头"和"尾"时,则必须考虑弧的方向。"头"的含义是箭头方向(有向弧)的终止点,"尾"的含义是箭头方向(有向弧)的起始点。

回到最开始的医疗诊断实例:为简单起见,选择证据集合ε为单个结点集合。

对于给定的结点S,结点E阻塞了结点C和结点L之间的路径,因此C和L是条件独立的,有I(C,L|S)成立。

而对于给定结点E,S和L之间找不到阻塞结点。因此,S和L不是条件独立的。

即使使用了D分离,一般地讲,在贝叶斯网中,概率推理仍是NP难题。然而,有些简化能在一个叫Polytree 的重要网络分类中使用。一个Polytree网是一个DAG,在该DAG的任意两个结点间,顺着弧的每一个方向只有一条路径。如图就是一个典型的Polytree。

图3-7 Polytree

D分离的实质就是寻找贝叶斯网中的条件独立语义,以简化推理计算。

总结

本节就Bayes网络的基本问题进行了阐述,着重点在推理计算上。其本质就是通过各种方法寻找网络中的条件独立性,达到减少计算量和复杂性的目的。这些都只是粗浅的描述,进一步的学习,请参考相应的参考书的" olytree的概率推理"和"Bayes网的学习和动作"等章节,其中有很详细的阐述。

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。 因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5 贝叶斯网络的实例 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.doczj.com/doc/0f13388824.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

贝叶斯网络研究现状与发展趋势的文献计量分析

Computer Science and Application 计算机科学与应用, 2020, 10(3), 493-504 Published Online March 2020 in Hans. https://www.doczj.com/doc/0f13388824.html,/journal/csa https://https://www.doczj.com/doc/0f13388824.html,/10.12677/csa.2020.103052 The Bibliometric Analysis of Current Studies and Developing Trends on Bayesian Network Research Zhongzheng Xiao1, Nurbol2, Hongyang Liu3 1College of Information Science and Engineering, Xinjiang University, Urumqi Xinjiang 2Network Center, Xinjiang University, Urumqi Xinjiang 3Xichang Satellite Launch Center, Xichang Sichuan Received: Feb. 26th, 2020; accepted: Mar. 12th, 2020; published: Mar. 19th, 2020 Abstract In this paper, 2,930 literatures related to Bayesian network in the recent 10 years in the web of science were taken as the research object. Based on the literature metrological content analysis method, the focus, development rules of research context, existing commonalities and differences, and research status at home and abroad were systematically reviewed. The study found that, as of now, especially in the prevalence of neural networks, Bayesian networks can be deepened and have great potential because of their strong mathematical interpretability. The analysis results are helpful to provide reference for the research status and progress of scholars in the field of Bayesian network research in China. Keywords Bayesian Network, Map Analysis, Citespace, Research Context 贝叶斯网络研究现状与发展趋势的文献计量 分析 肖中正1,努尔布力2,刘宏阳3 1新疆大学信息科学与工程学院,新疆乌鲁木齐 2新疆大学网络中心,新疆乌鲁木齐 3西昌卫星发射中心,四川西昌 收稿日期:2020年2月26日;录用日期:2020年3月12日;发布日期:2020年3月19日

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

贝叶斯网络结构学习及其应用研究_黄解军

收稿日期:2004-01-23。 项目来源:国家自然科学基金资助项目(60175022)。 第29卷第4期2004年4月武汉大学学报#信息科学版 Geomatics and Information Science of Wuhan U niversity V ol.29No.4Apr.2004 文章编号:1671-8860(2004)04-0315-04文献标识码:A 贝叶斯网络结构学习及其应用研究 黄解军1 万幼川1 潘和平 1 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 摘 要:阐述了贝叶斯网络结构学习的内容与方法,提出一种基于条件独立性(CI)测试的启发式算法。从完全潜在图出发,融入专家知识和先验常识,有效地减少网络结构的搜索空间,通过变量之间的CI 测试,将全连接无向图修剪成最优的潜在图,近似于有向无环图的无向版。通过汽车故障诊断实例,验证了该算法的可行性与有效性。 关键词:贝叶斯网络;结构学习;条件独立性;概率推理;图论中图法分类号:T P18;T P311 贝叶斯网络学习是贝叶斯网络的重要研究内容,也是贝叶斯网络构建中的关键环节,大体分为结构学习和参数学习两个部分。由于网络结构的空间分布随着变量的数目和每个变量的状态数量呈指数级增长,因此,结构学习是一个NP 难题。为了克服在构建网络结构中计算和搜索的复杂性,许多学者进行了大量的探索性工作[1~5]。至今虽然出现了许多成熟的学习算法,但由于网络结构空间的不连续性、结构搜索和参数学习的复杂性、数据的不完备性等特点,每种算法都存在一定的局限性。本文提出了一种新算法,不仅可以有效地减少网络结构的搜索空间,提高结构学习的效率,而且可避免收敛到次优网络模型的问题。 1 贝叶斯网络结构学习的基本理论 1.1 贝叶斯网络结构学习的内容 贝叶斯网络又称为信念网络、概率网络或因果网络[6] 。它主要由两部分构成:1有向无环图(directed acyclic graph,DAG),即网络结构,包括节点集和节点之间的有向边,每个节点代表一个变量,有向边代表变量之间的依赖关系;o反映变量之间关联性的局部概率分布集,即概率参数,通常称为条件概率表(conditional probability table,CPT),概率值表示变量之间的关联强度或置信度。贝叶斯网络结构是对变量之间的关系描 述,在具体问题领域,内部的变量关系形成相对稳定的结构和状态。这种结构的固有属性确保了结构学习的可行性,也为结构学习提供了基本思路。贝叶斯网络结构学习是一个网络优化的过程,其目标是寻找一种最简约的网络结构来表达数据集中变量之间的关系。对于一个给定问题,学习贝叶斯网络结构首先要定义变量及其构成,确定变量所有可能存在的状态或权植。同时,要考虑先验知识的融合、评估函数的选择和不完备数据的影响等因素。 1.2 贝叶斯网络结构学习的方法 近10年来,贝叶斯网络的学习理论和应用取得了较大的进展。目前,贝叶斯网络结构学习的方法通常分为两大类:1基于搜索与评分的方法,运用评分函数对网络模型进行评价。通常是给定一个初始结构(或空结构),逐步增加或删减连接边,改进网络模型,从而搜索和选择出一个与样本数据拟合得最好的结构。根据不同的评分准则,学习算法可分为基于贝叶斯方法的算法[3,7]、基于最大熵的算法[8]和基于最小描述长度的算法[1,2]。o基于依赖关系分析的方法,节点之间依赖关系的判断通过条件独立性(CI )测试来实现,文献[9,10]描述的算法属于该类算法。前者在DAG 复杂的情况下,学习效率更高,但不能得到一个最优的模型;后者在数据集的概率分布与DAG 同构的条件下,通常获得近似最优的模型[11],

1选题:本课题国内外研究现状述评,提出选题的背景及意义.doc

1.选题:本课题国内外研究现状述评,提出选题的背景及意义。 2.目标与内容: 本课题研究拟完成的研究目标和主要研究内容,研究内容要对?拟解决的问题进行具体化。3、研究思路与方法:本课题研究的技术路线、方法和计划。4.预期价值:本课题理论创新程度和实践应用价值。(课题设计论证限3000字以内) 一直以来如何有效的提高学生的学习效率和教师的教学效率不断的得到大量的研究,近二十年以来,随着计算机信息技术和互联网应用的飞速发展,在教育心理学中正在发生着一场革命,应用建构主义的学习理论(Slavin, 1994)来指导改革教学成为一大趋势。建构主义学习理论从“学习的含义”(即关于“什么是学习”)与“学习的方法”(即关于“如何进行学习”)这两个角度说明学习的影响因素及提高学习效率的方法,建构主义学习理论认为学习是在一定的基础知识之上,在一定的情境即社会文化背景下,借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程。“情境”、“协作”、“会话”和“意义建构”是学习环境中的四大要素或四大属性。所谓“情境”即是学习的综合环境;“协作”: 指学习中与他人的沟通与合作;“会话”:学习小组成员之间通过会话商讨如何完成规定的学习任务的计划;“意义建构”:建构事物的性质、规律以及事物之间的内在联系,是整个学习过程的最终目标。建构主义的学生观、教师观和知识观和以往的学习理论有了很大的变化,应用建构主义学习理论来提高教学效率正成为当前的研究热点,但目前的研究多从学习的方法论和学习技术本身入手,考虑学生的具体群体的学习特点较少,不能很好的有的放矢,在分析学生的学习影响因素时多直接用常规的数理统计理论进行分析与讨论,而实际上影响学生的学习因素是相当复杂与繁多的,而且学习因素之间W能存在相互的因果关系,而这种因果关系有时往往不知道,因素之间的影响到底多大,定量的关系不明确,甚至可能有很多隐藏的因素在起作用,发现学习的各种影响因素及其因果关系与比重,以及它们的变化分布规律对我们找出主要因素从而正确指导教学以及设计调查问卷摸查学生的学习基础与学习特点对教师的教学设计和提高教学效率具有重要意义,目前对此的研究还比较少。 贝叶斯网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。自1988年由Pearl提出后,己知成为近几年来研究的热点一般的贝叶斯网络结构是一个有向无环图(Directed Acyclic Graph,DAG),如图1所示,由代表变量节点及连接这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其后代节点),用条件概率进行表达关系强度,没有父节点的用先验概率进行信息表达, 节点变量可以是任何问题的抽象(如知识表达),适用于表达和分析不确定性和概率性的事件,可以从不完全、不精确或不确定的知识或信息中做出推理。贝叶斯网络本身是一种不确定性因果关联模型,贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化为一种概率知识表近与推理模型,更为贴切地蕴含了网络节点,变量之间的因果关系及条件相关关系,如果节点表达为学习因素,

贝叶斯网络预测信用卡欺诈行为

贝叶斯网络预测信用卡欺诈行为 ——贝叶斯网络应用(1) 一、理论说明 1.贝叶斯网络的应用 使用贝叶斯网络,可以通过将观察到并记录下的数据与实际常识结合起来构建概率模型,以通过使用表面看上去不相关的属性确定发生的可能性,找出一个结果到底与哪些影响变量相关,或者说,究竟是什么因素影响了结果。 贝叶斯分类模型继承了贝叶斯网络的优点并具有良好的分类精度,正受到越来越多的关注,并广泛的应用在欺诈识别、客户管理、医学诊断上、互联网搜索上,比如,利用贝叶斯分类模型建立客户的等级分类,如信用等级、忠诚等级,当新客户出现时,即可以按该分类模型对其等级情况做出分类预测。又比如本文所例举的,根据信用卡用户的信用记录及相关信息建立用户的信用模型,并监测哪些用户会做出贷款拖欠的行为。 2.贝叶斯网络模型 (1)贝叶斯原理 统计学分成两派,一派是传统的频率学派,一派是贝叶斯派,能够在统计学界自成一派,可见其影响。贝叶斯的核心思想在于一个公式 P(A|X)=P(X|A)·P(A)/P(X) 其中A是随机变量,X是数据,P(X|A)是似然,P(A)是先验分布,P(A|X)是后验分布,P(X)是一个数。 这个公式的意义在于,我们可以通过一个经验的概率,加上数据的实践,来得出一个后验的概率,也就是说“经验+数据=结果”。那么将这个原理用在贝叶斯网络上,即将先验贝叶斯网络和数据相结合而得到一个后验贝叶斯网络。那么什么是贝叶斯网络? (2)贝叶斯网络模型概述 贝叶斯网络(Bayesian network),又叫概率因果网络、信任网络、知识图等,是一种有向无环图。一个贝叶斯网络由两个部分构成,一个是具有K个节点的有向无环图,图中有节点和连接节点的有向边,节点代表随机变量,有向边代表了节点间的相互关联关系。 另一个是与每个节点相关的条件概率表(Conditional Probabilities Table,CPT)P,它表示了节点和父节点之前的相关关系,这个关系就是条件概率。那么由这个图G和概率表P构成的网络就是贝叶斯网络,贝叶斯网络有如下假设(或者规定): 给定一个父节点,那么它的子节点独立于任何非这个子节点的后代节点和其构成的任何节点子集。即如果用A(V i)表示非V i后代节点构成的任何节点子集,用∏(V i)表示V i的直接双亲节点,则 p(Vi|A(Vi),∏(V i))=p(Vi|∏(Vi)) 在这个假定下,变量Vi的联合概率就是:给定每个节点的父节点情况下,每个节点条件概率只积,如图中的联合概率为 p(V1,V2,...,V6)=p(V6|V5)·p(V5|V2,V3)·p(V4|V2)·p(V3|V1)·p(V2|V1)·p(V1) 这就是贝叶斯网络和其网络的概率。我们可以让贝叶斯网络通过数据不断的学习修正,上次修正的贝叶斯网络又是下次学习的先验贝叶斯网络,持续的学习使得网络更能体现数据的意义,即,让数据来说话! (2)树增强朴素贝叶斯网络模型概述 尽管贝叶斯网络有良好的逻辑性、预测性、并在处理复杂问题上有很大的优势,但它的假

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks) 2010-09-18 22:50 by EricZhang(T2噬菌体), 2561 visits, 网摘, 收藏, 编辑 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。

基于贝叶斯网络技术的软件缺陷预测与故障诊断

Microcomputer Applications Vol. 25, No.11, 2009 技术交流 微型电脑应用 2009年第25卷第11期 ·31· 文章编号:1007-757X(2009)11-0031-03 基于贝叶斯网络技术的软件缺陷预测与故障诊断 王科欣,王胜利 摘 要:如何进一步地提高软件的可靠性和质量是我们十分关注的问题,而前期软件缺陷和后期软件故障的诊断都是控制质量的关键手段,由此我们提出了基于贝叶斯的神经网络。基于对贝叶斯网络和神经网络理论的分析,发现贝叶斯网络和神经网络各自的优点与不足,利用贝叶斯具有前向推理的优势进行故障诊断,利用神经网络学习算法能够处理更复杂网络结构的优势来积累专家知识,最后提出了贝叶斯网络与概率神经网络相结合的模型,该模型可以更好地兼顾软件缺陷与故障诊断两个方面。 关键词:贝叶斯;神经网络;测试;缺陷预测;故障诊断 中图分类号:TP311.5 文献标志码:A 0 引言 如何进一步提高软件的可靠性和质量是我们十分关注的问题,软件可能存在缺陷,我们在软件的整个生命周期中始终期望能及早发现重要错误,并及时诊断。这就告诉我们,在进行软件前期预测时,就应该重视和记录重要缺陷,以便在故障发生时能通过早期预测的记录表找到故障原因。这就说明软件缺陷预测和故障诊断不应该是两个独立的过程,而应该有所联系。本文就通过贝叶斯网络和模糊神经网络对两项工作进行了整合。通过贝叶斯的在推理规则上的优势,尤其是前向推理的特点进行故障诊断,利用神经网络学习和训练函数的复杂多样性,可以更好地拟合复杂情况。 1 软件缺陷预测与故障诊断 1.1 软件缺陷预测的两个方面 1.1.1 对于软件可靠性早期预测 对于开发者而言,在开发软件之前或者设计软件中,主要作用是进行风险控制,验证其设计可行性。由于贝叶斯网络可以在信息不完全的情形下进行不确定性和概率性事件的推理,所以对于复杂软件的早期预测具有先天的优势。软件缺陷数量属于动态度量元素,需要通过对软件产品进行完整的测试后才能获得。针对特定模块进行完整测试成本比较高,并且必须在软件开发完成之后才能进行集成测试,这样在前期很难控制软件产品缺陷数量。为了更好地提高软件质量,对软件模块中包含的缺陷进行预测是一个可行的方法。软件缺陷预测方法的前提假设是软件的复杂度和软件的缺陷数量有密切关联。复杂度高的软件模块产生的缺陷比复杂度低的模块产生的缺陷多。软件缺陷预测的思路是使用静态度量元素表征软件的复杂度,然后预测软件模块可能的缺陷数量或者发生缺陷的可能性。通过进行软件缺陷预测,能够以较低的成本在项目开发的早期预测产品的缺陷分布状况,可以更好的调整有限的资源,集中处理可能出现较多缺陷的高风险模块,从而从整体上提高软件产品的质量。 1.1.2 对于软件残留缺陷的预测 对于测试者而言,通过质量预测,可将软件的各个组成部分按预测的质量水平进行分类,明确测试的重点,避免在进行测试时同等对待,而是有所侧重,这对节约有限资源和缩短开发周期都有着十分重要的意义。软件的测试和修改是一个螺旋式上升的过程。由于资源和时间的有限投入,什么时候软件达到了要求的质量水平从而能够投入实际使用是一个十分关键的问题。对残留缺陷进行预测,目的就是为了确保代码中的缺陷数量维持在一个安全水平。对测试经理来说,估计目前软件的测试到了哪个阶段、还应该继续做到什么样水平,这都是尤其重要的。从软件经济学的观点上来看,它关系到产业界的投入产出比、测试过度,不能再检查出太 多错误,或者说检查耗费很长的时间和很多的人力,但最终是一个细微的错误,这是不经济的;但是如果残留缺陷还比较多,就停止测试工作,那么会使得这些缺陷在未排除的情 况下交付给用户,等到用户发现错误时,维护的成本就会更 高。因此,正确预测软件残留缺陷对于交付使用后的软件维护也具有重要意义。 1.2 软件故障诊断技术 软件故障诊断是根据软件的静态表现形式和动态信息查找故障源,并进行分析,给出相应的决策。其中静态形式包括程序、数据和文档,动态信息包括程序运行过程中的一系列状态,人在参与软件生存周期的各个阶段工作时,都有可能由于各种疏忽和不可预料的因素,出现各种各样的错误。因而,从广义上说,软件故障诊断的工作涉及到软件的整个生命周期——需求分析、设计、编码、测试、使用、维护等各阶段所造成的缺陷。 软件故障诊断,“诊”的主要工作是对状态检测,包括使用各种度量和分析方法;“断”的工作则更为具体,它需要确定:(1)软件故障特性;(2)软件故障模式;(3)软件故障发生的模块和部位;(4)说明软件故障产生的原因,并且提出相应的纠正措施和避免下一次再发生该类错误的措——————————— 作者简介:王科欣(1982-) ,男,湖南长沙人,暨南大学计算机科学系,硕士研究生,软件设计师,广东体育职业技术学院助教,主要研究方向为软件工程、数据库与知识工程,广东 广州,510632;王胜利(1984-),男,湖南衡阳人,暨南大学计算机科学系,硕士 研究生,研究方向为软件工程、数据挖掘,广东 广州,510632

Promedas—贝叶斯网络在医学诊断中的应用

Promedas—贝叶斯网络在医学诊断中的应用1. 综述 现代的医学诊断是一个非常复杂的过程,要求具备患者准确的资料,以及对医学著作深刻的理解,还有多年的临床经验。这样的情况尤其适用在内科诊断中,因为它涵盖了一个巨大范围的诊断门类。而且也因此使得内科诊断成为了一个需要专攻的学科。 诊断是一个过程。通过这个过程,医生为病人的症状寻找拥有最佳解释的病因。这个研究的过程是一个连续的过程,即病人的症状会指示医生对其进行一些初步的检查。基于这些初步检查的结果,一个关于可能的病因的试探性的假设形成了。这个过程可能会在若干个循环中推进,直到病人被以充分的确定性来做了诊断,而且其症状的病因也被建立起来。 诊断过程的一个很重要的部分是标准化诊断的形式。这里有若干的规则来限制:依据病人的症状以及检验的结果,什么样的检查应该被执行,它们的顺序应该是什么样的。这些规则形成了一个决策树,其节点是诊断的中间过程;依据当前诊断的结果,其枝干指向额外的检查。这些规则是由每个国家的一个医学专家委员会制定的。 在平时遇到的大部分诊断里,上面提到的指南已经足以准确的指导我们做出正确的诊断。对于这种“一般”的情形,一个“决策支持系统”是没有必要的。在10%~20%的案例中,进行诊断的过程是很困难的。因为对于正确的诊断结果的不确定性,以及对下一步进行什么检查的不确定性,不同的医生在不同的诊断过程中做出的决策是不一样的,而且缺乏“推理”。在这些案例中,通常一个专攻此类疾病的专家或者详细描述此类疾病的著作将会被咨询。对于这种困难的情形,基于计算机的决策支持系统可以作为一个可供选择的信息来源。而且,这样一个由计算机提供帮助的决策支持系统在指出其他一些原来可能被忽略的疾病方面是有帮助的。它可能就此导致一个被提高的,更加理性的诊断过程,并且更见高效和廉价。

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

贝叶斯网络结构学习总结

贝叶斯网络结构学习总结 一、 贝叶斯网络结构学习的原理 从数据中学习贝叶斯网络结构就是对给定的数据集,找到一个与数据集拟合最好的网络。 首先定义一个随机变量h S ,表示网络结构的不确定性,并赋予先验概率分布()h p S 。然后计算后验概率分布(|)h p S D 。根据Bayesian 定理有 (|)(,)/()()(|)/()h h h h p S D p S D p D p S p D S p D == 其中()p D 是一个与结构无关的正规化常数,(|)h p D S 是边界似然。 于是确定网络结构的后验分布只需要为每一个可能的结构计算数据的边界似然。在无约束多项分布、参数独立、采用Dirichlet 先验和数据完整的前提下,数据的边界似然正好等于每一个(i ,j )对的边界似然的乘积,即 1 1 1 () ()(|)()() i i q r n ij ijk ijk h i j k ij ij ijk N p D S N ===Γ?Γ?+=Γ?+Γ?∏∏ ∏ 二、 贝叶斯网络完整数据集下结构学习方法 贝叶斯网络建模一般有三种方法:1)依靠专家建模;2)从数据中学习;3)从知识库中创建。在实际建模过程中常常综合运用这些方法,以专家知识为主导,以数据库和知识库为辅助手段,扬长避短,发挥各自优势,来保证建模的效率和准确性。但是,在不具备专家知识或知识库的前提下,从数据中学习贝叶斯网络模型结构的研究显得尤为重要。 常用的结构学习方法主要有两类,分别是基于依赖性测试的学习和基于搜索评分的学习。 第一类方法是基于依赖性测试的方法,它是在给定数据集D 中评估变量之间的条件独立性关系,构建网络结构。基于条件独立测试方法学习效率最好,典型的算法包括三阶段分析算法(TPDA )。基于依赖性测试的方法比较直观,贴近贝叶斯网络的语义,把条件独立性测试和网络结构的搜索分离开,不足之处是对条件独立性测试产生的误差非常敏感。且在某些情况下条件独立性测试的次数相对于变量的数目成指数级增长。 第二类方法是基于评分搜索的方法,其原理是在所有节点的结构空间内按照一定的搜索策略及评分准则构建贝叶斯网络结构,这种算法虽然能够搜索到精确的网络结构,但是由于结构空间很大,从所有可能的网络结构空间搜索最佳的贝叶斯网络结构被证明为NP-hard 问题,所以一般需要使用启发式算法,代表性算法有K2算法等。基于搜索评分的方法是一种统计驱动的方法,试图在准确性、稀疏性、鲁棒性等多个因素之间找个平衡点。但由于搜索方法的先天弱点,导致用搜索评分的方法不一定能找到最好的结构,但是应用范围很广。 当观察到的数据足够充分且计算次数足够多时,基于搜索评分的方法和基于依赖性测试的方法都可以学到“正确”的网络结构。 此外,有人结合上述两种方法,提出了一些混合算法,这类算法首先利用独立性测试降

分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训

https://www.doczj.com/doc/0f13388824.html, 分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下:

https://www.doczj.com/doc/0f13388824.html, 及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。 上述假设更接近实际情况,但问题随之也来了,由于特征属性间存在依赖关系,使得朴素贝叶斯分类不适用了。既然这样,我去寻找另外的解决方案。 下图表示特征属性之间的关联: 上图是一个有向无环图,其中每个节点代表一个随机变量,而弧则表示两个随机变量之间的联系,表示指向结点影响被指向结点。不过仅有这个图的话,只能定性给出随机变量间的关系,如果要定量,还需要一些数据,这些数据就是每个节点对其直接前驱节点的条件概率,而没有前驱节点的节点则使用先验概率表示。 例如,通过对训练数据集的统计,得到下表(R表示账号真实性,H表示头像真实性): 纵向表头表示条件变量,横向表头表示随机变量。上表为真实账号和非真实账号的概率,而下表为头像真实性对于账号真实性的概率。这两张表分别为“账号是否真实”和“头像是否真实”的条件概率表。有了这些数据,不但能顺向推断,还能通过贝叶斯定理进行逆向推断。例如,现随机抽取一个账户,已知其头像为假,求其账号也为假的概率:

贝叶斯网络Matlab

Matlab贝叶斯网络建模 1 FullBNT简介 基于Matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。 1.1贝叶斯网络表示 BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中 值为1,否则为0。 1.2结构学习算法函数 BNT中提供了较为丰富的结构学习函数,都有: 1. 学习树扩展贝叶斯网络结构的 算法 . 2. 数据完整条件下学习一般贝叶斯网络结构学习算法 表1-1 数据完整条件下贝叶斯结构算法 算法名称调用函数 K2算法learn_struct_k2() 贪婪搜索GS(greedy search)算法earn_struct_gs()

3. 缺失数据条件下学习一般贝叶斯网络结构学习算法 表1-2 缺失数据条件下贝叶斯结构算法 1.3参数学习算法函数 1. BNT中也提供了丰富的参数学习函数,都有: 2. 完整数据时,学习参数的方法主要有两种:最大似然估计learn_params()和贝叶斯方法bayes_update_params(); 3. 数据缺失时,如果已知网络拓扑结构,用EM算法来计算参数, learn_params_em ()。 1.4推理机制及推理引擎 为了提高运算速度,使各种推理算法能够有效应用,BNT工具箱采用了引擎 机制,不同的引擎根据不同的算法来完成模型转换、细化和求解。这个推理过程如下: BNT中提供了多种推理引擎,都有:

目前主要存在两类贝叶斯网络学习方法

1贝叶斯网络参数学习 (1)目标是:给定网络拓扑结构S和训练样本集D,利用先验知识,确定贝叶斯网络模型各结点处的条件概率密度,记为:p(?/D,s)。 (2)常见的数学习方法有最大似然估计算法、贝叶斯估计算法、不完备数据下参数学习等。即用MLE公式和BE公式、EM来求参数。 ?最大似然估计方法中,参数是通过计算给定父结点集的值时,结点不同取值的出现频率, 并以之作为该结点的条件概率参数;最大似然估计的基本原理就是试图寻找使得似然函数最大的参数。 ?贝叶斯估计方法假定一个固定的未知参数?,考虑给定拓扑结构S下,参数?的所有 可能取值,利用先验知识,寻求给定拓扑结构S和训练样本集D时具有最大后验概率的参数取值。由贝叶斯规则,可以得出: ?不完备数据下参数学习:数据不完备时参数学习的困难在于参数之间不是相互独立的, MLE方法的似然函数和贝叶斯估计方法的后验概率都无法分解成关于每个参数独立计算的因式。EM算法的实质是设法把不完备数据转化为完备数据。 在不完全数据集上学习贝叶斯网络,Fhedma 提出了structural EM算法,该算法结合了EM 算法和结构搜索的方法,EM算法用于优化网络参数,结构搜索用于模型选择。 2贝叶斯网络结构学习 目前主要存在两类贝叶斯网络学习方法:基于搜索和评分的方法(Search and Score based Method)和基于独立性测试的方法(Conditional Independence Testing based Method). 2.1基于搜索和评分的方法 主要由两部分组成(评分函数和搜索算法)。 2.1.1常用的评分函数 有贝叶斯评分函数和基于信息论的评分函数。 (1)贝叶斯评分函数(MAP测度)

基于动态贝叶斯网络预测

4. 1 影响威胁等级的因素分析 对空袭目标威胁程度的判断基本目的是区分目标对我方威胁程度的大小和次序,以便指挥员迅速、正确地做出相应决策。因此,对空袭目标威胁程度的判断及排序结果将直接影响着对空防御的整体作战效果。当采用贝叶斯网络进行威胁估计时,必须确定来袭威胁目标的各个组成要素的关系,按照要素间的关系建立对应的贝叶斯网络模型,然后确定网络模型中各节点的先验概率和条件概率,最后选择合适的推理算法进行推理。空中目标的威胁程度是由多种因素决定的,总的来说主要包括目标速度、距离、加速度、方位、高度、航向、航路捷径、目标类型、攻击企图、电子干扰、毁伤能力等。这些因素之间相互影响、相互关联,构成了对编队的攻击企图和威胁程度。文中选取了能够明显反映来袭目标攻击威胁的相关目标属性( 目标类型、距离、速度、高度以及航路捷径) 因素进行研究。根据以上特征因素,结合编队防空作战的指挥控制结构化事件循环周期,将作战过程中的威胁判断和拦截排序分为多个时间片。各个时间片的循环周期一般与传感器目标数据更新周期或防空武器射击周期一致。因此建立威胁评估的动态贝叶斯网络模型见图2。

图2 威胁估计的贝叶斯网络模型 模型中各个变量状态集合为: 目标类型: ID = {导弹,歼击机,电子战飞机}; 速度: V = { 高速; 中速; 低速};距离: R = { 远; 中; 近}; 高度: H = { 低空; 中; 高空}; 航路捷径: P = { 范围内; 边缘; 范围外} 。4. 2 模型参数确定上述的变量状态集合反映的是领域专家的经验知识。如高度,超低空飞行的一般是反舰导弹,低空飞行一般为直升机或巡航导弹,轰炸机要实施准确轰炸,需要俯冲降低到中等高度,而电子干扰机和预警机高度都比较高。依据领域专家知识得到的主要节点条件概率如表1、表2 所示。表1 动态贝叶斯网络状态转移概率表 表2 威胁评估模型条件概率表

相关主题
文本预览
相关文档 最新文档