当前位置:文档之家› 湿帘参数

湿帘参数

湿帘参数
湿帘参数

湿帘纸垫标准规格及尺寸说明:

W::湿帘宽度

D::湿帘厚度

h::湿帘波纹高度

α:波纹角度(1)

β:波纹角度

790型590型760型

H (mm) 1500,1800,2000 1500,1800,2000 根据客户要求定做

W (mm) 600,300 600,300 根据客户要求定做

D (mm) 100,150,200,300 100,150,200 根据客户要求定做

h (mm) 7 5 根据客户要求定做

α (°)45 45 根据客户要求定做

β (°)45 45 根据客户要求定做

风机安装设计说明:

1、外框采用先进的数控折弯机、数控

减板机以及数控冲床加工工业,特厚镀锌

板,抗腐蚀性极强。

2、独有的高强度合金轮毂,比工业尼

龙轮毂具有强度高、韧性好、寿命长等特点。

3、新型扭曲冲压型扇叶,经过动平衡

以及静平衡的测试,在合理的叶型角度上确

保了大量气流的产生,而噪音也得到了良好

的控制。

4、百叶窗采用镀锌板材,具有独特的

气功式开闭机构,保证百叶窗完全打开和关

闭,百叶窗达到防风、防雨、防尘。采用支

撑皮带转动,已获国家专利。

5、后部安全网拆卸方便。

6、八道严格的质量检测程序:噪音检

测、振动检测、动平衡、静平衡、转动同心

性能检测、风叶转速检测、整机效率检测。

主要结构

风机主要由风机、电机、扇框、护网、支撑架、百叶窗等部件组成,电机驱动产生气流,活动百

叶窗可按用户需要配备,开机后百叶窗可自动开启,停机时百叶窗自动闭合,以防室外灰尘、异物等进入,亦可避免雨雪及倒风的影响。

型号规格风叶直径

mm 风叶转速

转/分

电机转速

转/分

风量

m3/h

Pa

输入

功率

W

V

mm

mm

mm

ZD-750型750 960 960 14800 60 ≤70550 380 820 820 400 ZD-1000型1000 600 1400 35000 70 ≤70750 380 1100 1100 400 ZD-1250型1250 439 1400 44000 56 ≤701100 380 1380 1380 400 ZD-1400型1400 439 1400 55800 60 ≤701500 380 1535 1535 400 湿帘降温设计说明说:

温室的热源主要来自太阳辐射,可以根据以下经验值来选择一般温室的太阳辐射值所需的通风量。遮阴率% 太阳辐射W/M2 通风量M2/M3 H

50 450 225

60 385 210

70 225 180

外界太阳辐射强度:900W/M2 计算出需要的通风量后,在确定湿帘面积时要考虑在湿帘的效率、阻力和经济性之间取得适当的平衡。湿帘安装的越多,降温效果固然越好,通风的阻力也越小,但投资越高;反之亦然因此根据经验我们建议选取如下的过帘风速:

100毫米厚湿帘:1.2-1.5米/秒

降温设计参数说明

1、温室参数温室尺寸:90╳45米;75%内遮阴;温室地址:上海地区(外界太阳辐射按照900瓦/米2)。

2、确定降温通风量通风量= 温室面积╳额定风量= 90╳45╳180=729,000米3/小时=202.50米3/秒

3、计算温帘面积选用正达公司100毫米厚“正达”标准湿帘取过帘风速1.2米/秒理论湿帘面积= 通风量/过帘风速= 202.50/1.2=168.75米

4、湿帘安装选取1.

5、1.8、2米高规格湿帘在温室的长方向上通长安装90米,则实际的湿帘面积较理论计算值稍小为162米2,过帘风速为1.25米/秒。此时,湿帘降温的效率为76%;阻力16Opa.

烟气流量计算公式

锅炉烟尘测试方法 1991—09—14发布1992—08—01实施 国家技术监督局 国家环境保护局发布 1、主题内容与适用范围 本标准规定了锅炉出口原始烟尘浓度、锅炉烟尘排放浓度、烟气黑度及有关参数的测试方法。 本标准适用于GBl3271有关参数的测试。 2、引用标准 GB l0180 工业锅炉热工测试规范 GB l327l 工业锅炉排放标准 3、测定的基本要求 3.1 新设计、研制的锅炉在按GBl0180标准进行热工试验的同时,测定锅炉出口原始烟尘浓度和锅炉烟尘排放浓度。 3.2 新锅炉安装后,锅炉出口原始烟尘浓度和烟尘排放浓度的验收测试,应在设计出力下进行。 3.3 在用锅炉烟尘排放浓度的测试,必须在锅炉设计出力70%以上的情况下进行,并按锅炉运行三年内和锅炉运行三年以上两种情况,将不同出力下实测的烟尘排放浓度乘以表l中所列出力影响系数K,作为该锅炉额定出力情况下的烟尘排放浓度,对于手烧炉应在不低于两个加煤周期的时间内测定。 表1 锅炉实测出力占锅炉设计出力的百分数,% 70-《75 75-《80 80-《85 85-《90 9 0-《95 》=95 运行三年内的出力影响系数K 1.6 1.4 1.2 1.1 1.05 1 运行三年以上的出力影响系数K 1.3 1.2 1.1 1 1 1 3.4 测定位置: 测定位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测定位置应距弯头、接头、阀门和其他变径管的下游方向大于6倍直径处,和距上述部位的上游方向大于3倍直径处。 3.5 测孔规格: 在选定的测定位置上开测孔,在孔口接上直径dn为75mm,长度为30mm左右的短管,并装上丝堵。 3.6 测点位置、数目: 3.6.1 圆形断面:将管道断面划分为适当数量的等面积同心圆环,各测点均在环的等面积中心线上,所分的等面积圆环数由管道直径大小而定,并按表2确定环数和测点数。 表2 圆形管道分环及测点数的确定 管道直径D,mm 环数测点数 《200 1 2 200-400 1-2 2-4 400-600 2-3 4-6 600-800 3-4 6-8 800以上4-5 8-10

工业炉窑烟气湿度计算方法

工业炉窑烟气湿度计算方法 〔摘要〕本文指出国标《工业炉窑烟尘测试方法》(cb以y79一88)烟气湿度及流理计算方法的局限性,认为该方法仅适用于饱和或非饱和烟气,对于烟气中的水是汽液两相共存的情况,利用该方法计算得的烟气湿度大于实际值,并提出了解决方法。 1前言 为得到管道中流动烟气的湿度和流量,国标《工业炉窑烟尘测试方法))(gd9(为7一88) 规定了测试和计算方法,提出了相应的计算方法。通过分析,本文认为该方法在解决实际问题时存在局限性。 2国标中相应的计算公式 在国标《工业炉窑烟尘测试方法》中给出了烟气湿度、体积百分数、流量等计算公式,即 烟气湿度计算公式 式中际一为烟气的含湿量,岁纯干空气;m一为单位时间冷凝水量,岁而n;卿一为测量状态下流量计读数,时/而n;tc一为流量计前烟气的绝对温度,k;尸r为流量计前压力计的读数,姗任19;b。一为大气压力,n切任19;肠一为冷凝器后烟气的含湿量,岁kg干空气。 g柑按式(2)计算: 式中p,一为冷凝器出口烟气温度t(℃)相应的饱和水蒸气分压为,潮妇g。 烟气中水蒸气含量的体积百分数瑞计算公式 在标准状态下,干烟气密度端计算公式

式中味的单位为甲n时干烟气;c仇,仇,姚,co分别为各种烟气成分的体积百分数,%。 在标准状态下,湿烟气密度认计算公式 式中而的单位为甲n时的湿烟气。 烟气流速计算公式 式中v。为测定断面上的平均流速,m/s; icp一为皮托管修正系统;卜为管道内湿烟气的密度,kg/m3湿烟气;h一j为测定断面的烟气平均动压,}20i g为重力加速度9.81 m/护。 在测定工况下的烟气流量计算公式 式中q一为测定工况下的烟气流量,衬湿烟气/h;f为测定断面面积。 3公式中存在的问题 3.1烟气含湿量计算公式 为说明存在的问题,下面简要推导一下公式(1)、(2)。 公式(l)左这第一项为冷凝下来的水经过转化后,烟气所具有的含湿量,左边第二项为在冷凝状态下,饱和状态烟气的含湿量。管道中烟气的总含湿量为两项之和。对于左边第一项,其推导过程为 在非标定工况下,当通过流量计的流量为缪时,通过的实际流量为 根据气体状态方程

烟气露点计算及烟囱冷凝水量计算方法及结果

7 烟气露点计算及烟囱冷凝水量计算方法及结果 7.1 烟气中水蒸汽露点温度的计算 当已知烟气中的含湿量dg(g/kg 干烟气)时,可按下式计算烟气中的水蒸汽露点温度(水露点)t DP : 1) 当dg=3.8g/kg ~160g/kg 时: t DP.O = ]} )/804(lg[ 21433.0{491.7]} )/804(lg[ 21433.0{908.236dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-1) 2) 当dg=61g/kg ~825g/kg 时 t ’DP ·O =]} )/804(lg[20974.0{4962.7]} )/804(lg[ 20974.0{1.238dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-2) 式中: Pg ——烟气的绝对压力, kPa ; dg ——烟气含湿量 g/kg 干烟气; ρg ——干烟气密度 kg/Nm 3。 7.2 烟气酸露点温度的计算 a. 按燃煤成分为基准的计算方法 燃煤锅炉的烟气酸露点按下述公式计算: t Dp =t Dp.o +n sp S 05 .1.) (3 1β℃ (7.2-1) 式中: t Dp.o ——烟气中纯水露点温度,按7.1确定。 S SP 。——燃料折算硫分,%·g/kcal ,按可燃硫S c.ar 计算: S sP =S c.ar × ar net Q .4182 (7.2-1a) n ——指数,表征飞灰含量对酸露点影响的程度; n=αfly ·A sP 。 α fly ——飞灰份额,对煤粉炉αfly =0.8~0.9;

第二章 烟气参数的测定

2.仪器 ①标准型皮托管。标准型皮托管的构造如图5-2-7所示。它是一个弯成90°的双层同心圆管,前端呈半圆形,正前方有一开孔,与内管相通,用来测定全压。在距前端6倍直径出外管壁上开有一圈孔径为1mm 的小孔,通至后端的侧出口,用于测定排气静压。 按照上述尺寸制作的皮托管其修正系数为1.99 ±0.01,如果未经标定,使用时可取修正系数K p 为0.99。 标准型皮托管的侧孔很小当烟道内颗粒物浓度大时,易被堵塞。它是用于测量较清洁的排气。 ②S 型皮托管。S 型皮托管的结构见图5-2-8.它是由两根相同的金属管并联组成。测量端有方向相反的两个开口,测定时,面向气流的开口测得的压力为全压,背向气流的开口测得的压力小于静压。按照图5-2-8设计要求制作的S 型皮托管,其修正系数K p 为0.84 ±0.01。制作尺寸与上述要求有差别S 型皮托管的修正系数需进行校正。其正,反方向的修正系数相差应不大于0.01。S 型皮托管的测压孔开口较大,不易被颗粒物堵塞额,且便于在厚壁烟道中使用。 S 型皮托管在使用前用标准皮托管在风洞中进行校正。S 型皮托管的速度校正系数按下式计算: PS K K = 式中:P S K 、P N K ——分别为标准皮托管和S 型皮托管的速度校正系数; d N P 、d S P ——分别为标准皮托管和S 型皮托管测得的动压值,Pa 。 ③U 形压力计。U 形压力计用于测定排气的全压和静压,其最小分度值应不大于10Pa 。压力计由U 形玻璃管制成,内装测压也挺i ,常用测压液体有水,乙醇和汞,视被测压力范围选用。压力P 按下式计算: P g h ρ=?? 式中:P ——压力,Pa ; h ——液柱差,mm ; ρ——液体密度,g/cm 3 ; 在实际工作中,常用mmH 2O 表示压力,这样压力P=ρ*h U 形压力计的误差较大,不适宜测量微小压力。 ④斜管微压计,斜管微压计用于测定排气的动压,测量范围0~2000Pa ,其精确度应不低于2%,最小分度值应不大于2Pa 。 斜管微压计,构造见示意图5-2-9.一端为截面积较大的容器,另一端为可调角度的玻璃管,管上刻度表示压力的读数。测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力P 按下式计算: P=12sin S L g S αρ? ? ?+ ? ??? 令K=12sin S g S αρ? ? + ? ?? ?

烟气流量及含尘浓度的测定

实验一烟气流量及含尘浓度的测定 一、实验意义和目的 大气污染的主要来源是工业污染源排出的废气,其中烟道气造成的危害极为严重。因此,烟道气(简称烟气)的测试是大气污染源监测的主要内容之一。测定烟气的流量和含尘浓度对于评价烟气排放的环境影响、检验除尘装置的功效有重要意义。通过本实验应达到以下目的: (1)掌握烟气测试的原则和各种测量仪器的使用方法; (2)了解烟气状态(温度、压力、含湿量等参数)的测量方法和烟气流速、流量等参数的计算方法; (3)掌根烟气含尘浓度的测定方法。 二、实验原理 (一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段.原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s化以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。下面说明不同形状烟道采样点的布置。 1.圆形烟道 采样点分布见图1-1(a)。将烟道的断面划分为适当数目的等面积同心圆环,各采样点均在等面积的中心线上,所分的等面积圆环数由烟道的直径大小而定。 2.矩形烟道 将烟道断面分为等面积的矩形小块.各块中心即采样点,见图1-1(b)。不同面积矩形烟道等面积分块数见表1-1。 烟道断面面积/m2等面积分块数测点数 <1 2×2 4 1~4 3×3 9 4~9 4×3 12 3.拱形烟道 分别按圆形烟道和矩形烟道采样点布置原则,见图1-1(c)。 图1-1 烟道采样点分布图 (a)圆形烟道;(b)矩形烟道;(c)拱形烟道 (二)烟气状态参数的测定

04- 湿空气热力学

冷冻水系统培训—— 湿空气热力学-焓湿图 Johnson Controls 学习和发展部 2007年11月26-30日,Shanghai

湿空气热力学 湿空气热力学是一门研究湿空气热力学参数以及如何利用这些参数分析湿空气状态及相关空气处理过程的学科。 湿空气热力学是热力学中的一门专业学科。在HVAC 行业中,湿空气热力学主要关注空气热力学参数及在焓湿图上的应用。

理解各种湿空气热力学参数的物理意义。 能够在焓湿图上确定各项空气参数。 能够在焓湿图上表达常用的空气处理过程。 能够结合焓湿图,理解HVAC系统的设计步骤。 掌握空气处理过程计算常用公式,根据在焓湿图上确定的空气参数,对空气处理过程进行定量计算。

湿空气的组成及空气的状态参数。 焓湿图及空气热力学参数在焓湿图上的表示方法。 HVAC 空气处理过程在焓湿图上的表示方法。 焓湿图的应用举例——舒适性全空气HVAC系统设计参数及空调箱盘管设计冷量的确定方法。

湿空气的组成及空气的状态参数。 焓湿图及空气热力学参数在焓湿图上的表示方法。 HVAC 空气处理过程在焓湿图上的表示方法。 焓湿图的应用举例——舒适性全空气HVAC系统设计参数及空调箱盘管冷量的确定方法。

空气的物理组成: 大气环境中,空气的成分主要是氮气(78%)、氧气(21%)及其它微量气体如:水蒸气、二氧化碳、氩气等。 HVAC 空气热湿处理过程中,空气的组成: 干空气—氮气、氧气、二氧化碳等(在HVAC温度范围内始终维持气态)。 水蒸气-在HVAC 温度范围内,可能发生蒸发或者冷凝过程,从而“进入”或“离开”空气。

烟气折算公式

烟气折算公式 流速 Vs = Kv * Vp 其中 Vs 为折算流速 Kv为速度场系数 Vp 为测量流速 粉尘 1 粉尘干基值 DustG = Dust / ( 1 – Xsw / 100 ) 其中 DustG 为粉尘干基值 Dust 为实测的粉尘浓度值 Xsw 为湿度 2 粉尘折算 DustZ = DustG * Coef 其中 DustZ 为折算的粉尘浓度值 DustG 为粉尘干基值 Coef 为折算系数,它的计算方式如下: Coef = 21 / ( 21 - O2 ) / Alphas 其中 O2 为实测的氧气体积百分比。 Alphas 为过量空气系数(燃煤锅炉小于等于45.5MW折算系数为1.8; 燃煤锅炉大于45.5MW折算系数为1.4; 燃气、燃油锅炉折算系数为1.2) 3粉尘排放率 DustP = DustG * Qs / 1000000 其中 DustP 为粉尘排放率 Dust 为粉尘干基值 Qs 为湿烟气流量,它的计算方式如下: Qs = 3600 * F * Vs 其中 Qs 为湿烟气流量 F 为测量断面面积 Vs 为折算流速 SO2 1 SO2干基值 SO2G = SO2 / ( 1 – Xsw / 100 ) 其中 SO2G 为SO2干基值 SO2 为实测SO2浓度值 Xsw 为湿度 2 SO2折算

SO2Z = SO2G * Coef 其中 SO2Z 为SO2折算率 SO2G 为SO2干基值 Coef 为折算系数,具体见粉尘折算 3 SO2排放率 SO2P = SO2G * Qsn / 1000000 其中 SO2P 为SO2排放率 SO2G 为SO2干基值 Qsn 为干烟气流量,它的计算方式如下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 100 ) 其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟气压力 Xsw 为湿度 NO 1 NO干基值 NOG = NO / ( 1 – Xsw / 100 ) 其中 NOG 为NO干基值 NO 为实测NO浓度值 Xsw 为湿度 2 NO折算 NOZ = NOG * Coef 其中 NOZ 为NO折算率 NOG 为NO干基值 Coef 为折算系数,具体见粉尘折算 3 NO排放率 NOP = NOG * Qsn / 1000000 其中 NOP 为NO排放率 NOG 为NO干基值 Qsn 为干烟气流量,它的计算方式如下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 100 ) 其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟气压力 Xsw 为湿度

烟气流量计算公式

锅炉烟尘测试方法 1991-09-14发布1992—08—01实施 国家技术监督局?国家环境保护局发布?1、主题内容与适用范围?本标准规定了锅炉出口原始烟尘浓度、锅炉烟尘排放浓度、烟气黑度及有关参数得测试方法。 本标准适用于GBl3271有关参数得测试。?2、引用标准?GB l0180工业锅炉热工测试规范?GB l327l 工业锅炉排放标准 3、测定得基本要求 3、1新设计、研制得锅炉在按GBl0180标准进行热工试验得同时,测定锅炉出口原始烟尘浓度与锅炉烟尘排放浓度。?3。2 新锅炉安装后,锅炉出口原始烟尘浓度与烟尘排放浓度得验收测试,应在设计出力下进行。 3。3在用锅炉烟尘排放浓度得测试,必须在锅炉设计出力70%以上得情况下进行,并按锅炉运行三年内与锅炉运行三年以上两种情况,将不同出力下实测得烟尘排放浓度乘以表l中所列出力影响系数K,作为该锅炉额定出力情况下得烟尘排放浓度,对于手烧炉应在不低于两个加煤周期得时间内测定。?表1 锅炉实测出力占锅炉设计出力得百分数,% 70-《75 75—《80 80—《85 85—《9090-《95 》=95 运行三年内得出力影响系数K 1.6 1。41、2 1.1 1.051 运行三年以上得出力影响系数K 1.3 1。2 1.111 1 3、4测定位置: 测定位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化得部位。测定位置应距弯头、接头、阀门与其她变径管得下游方向大于6倍直径处,与距上述部位得上游方向大于3倍直径处。 3、5 测孔规格: ?在选定得测定位置上开测孔,在孔口接上直径dn为75mm,长度为30mm左右得短管,并装上丝堵、 3、6 测点位置、数目: 3.6.1圆形断面:将管道断面划分为适当数量得等面积同心圆环,各测点均在环得等面积中心线上,所分得等面积圆环数由管道直径大小而定,并按表2确定环数与测点数。?表2圆形管道分环及测点数得确定 200-400 1-22-4?40?管道直径D,mm 环数测点数?《200 1 2? 8003-4 6-8 - 600 0-600 2-3 4-6 ? 800以上4-58—10 ?当测定现场不能满足3、4条所述要求时,对圆形管道应增加与第一测量直径成90°夹角得第二测量直径,总测点数增加一倍、 测点距管道内壁距离如图1所示,按表3确定。 图1 测点距圆形管道内壁得距离表示法(以3环为例) 表3 测点距管道内壁距离(以管道直径D计) ? 测点数环数 1 2 34 5 10、1460。067 0.044 0、033 0.022 0。750 0.2940。195 0、1 2 0、8540、250 0、1460、1050.082 ?3 46 ?4 0。9330。7060。321 0、227 5 0.8540。679 0。344

湿空气参数状态参数

干球温度(℃)↓湿球温度(℃)――→ 表2湿空气相对湿度表 -9.0 -8.0 -7.0-6.0-5.0-4.0-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.07.08.09.010.011.012.013.014.015.016.0 17.0 18.019.020.021.022.023.024.025.026.027.028.029.030.031.032.033.034.035.0 -9.0 1.00 -9.0 -8.0 0.70 1.00 -8.0 -7.0 0.44 0.72 1.00-7.0 -6.0 0.22 0.47 0.73 1.00-6.0 -5.0 0.03 0.26 0.500.75 1.00-5.0 -4.0 0.09 0.310.530.76 1.00 -4.0 -3.0 0.140.350.560.78 1.00 -3.0 -2.0 0.190.380.58 0.79 1.00 -2.0 -1.0 0.050.230.41 0.60 0.80 1.00 -1.0 0.81 1.00 0.0 0.62 0.44 0.0 0.100.27 1.00 1.0 0.64 0.82 0.47 0.31 1.0 0.15 0.67 0.84 1.00 2.0 0.50 0.34 0.19 2.0 0.04 0.53 0.690.84 1.00 3.0 0.38 0.23 3.0 0.09 0.41 0.560.700.85 1.00 4.0 0.27 4.0 0.13 0.31 0.440.580.710.86 1.00 5.0 0.17 5.0 0.05 0.340.470.590.730.86 1.00 6.0 6.0 0.09 0.21 0.250.370.490.610.740.87 1.007.0 0.13 7.0 0.02 0.170.280.390.510.620.750.87 1.008.0 8.0 0.06 9.0 0.100.200.310.410.520.640.760.88 1.009.0 10.0 0.040.140.230.330.440.540.650.760.88 1.0010.0 11.0 0.080.170.260.360.460.560.660.770.88 1.0011.0 12.0 0.020.110.200.290.380.470.570.670.780.89 1.0012.0 13.0 0.060.140.220.310.400.490.590.680.790.89 1.0013.0 14.0 0.010.090.170.250.330.420.510.600.690.790.89 1.0014.0 15.0 0.040.120.190.270.350.440.520.610.700.800.90 1.0015.0 16.0 0.000.070.140.220.290.370.450.540.620.710.800.90 1.00 16.0 1.00 17.0 17.0 0.030.100.170.240.310.390.470.550.630.720.810.90 1.0018.0 0.91 18.0 0.060.130.190.260.330.410.480.560.640.730.82 0.91 1.0019.0 0.82 19.0 0.030.090.150.220.280.350.420.500.570.650.74 0.74 0.820.91 1.0020.0 20.0 0.050.110.170.240.300.370.440.510.580.66 0.750.830.91 1.0021.0 0.67 21.0 0.020.080.140.200.260.320.390.450.520.60 0.61 0.680.750.830.92 1.0022.0 22.0 0.050.100.160.220.280.340.400.470.53 0.610.690.760.840.92 1.0023.0 0.55 23.0 0.020.070.130.180.240.290.350.410.48 0.560.620.690.770.840.92 1.0024.0 0.49 24.0 0.050.100.150.200.250.310.370.43 0.500.570.630.700.770.840.92 1.0025.0 0.44 25.0 0.020.070.120.170.220.270.330.38 0.450.510.580.640.710.780.850.92 1.0026.0 26.0 0.000.040.090.140.180.230.290.34 0.40 0.35 0.410.460.520.580.650.710.780.850.92 1.0027.0 27.0 0.020.070.110.160.200.250.30 0.370.420.480.530.590.650.720.780.850.93 1.0028.0 0.32 28.0 0.000.040.090.130.170.220.27 0.330.380.430.490.540.600.660.720.790.860.93 1.0029.0 0.28 29.0 0.020.060.100.150.190.23 0.25 0.300.340.390.440.500.550.610.670.730.790.860.93 1.0030.0 30.0 0.010.040.080.120.160.21 0.260.310.360.400.450.510.560.610.670.730.800.860.93 1.0031.0 0.22 31.0 0.030.060.100.140.18 0.19 0.240.280.320.370.410.460.510.570.620.680.740.800.860.93 1.0032.0 32.0 0.010.050.080.120.16 0.17 0.210.250.290.330.380.420.470.520.570.630.680.740.800.870.93 1.0033.0 33.0 0.030.060.100.13 0.190.220.260.300.340.390.430.480.530.580.630.690.750.810.870.93 1.0034.0 0.15 34.0 0.020.050.080.11 35.0 0.160.200.240.270.310.360.400.440.490.540.590.640.690.750.810.870.93 1.00 35.0 0.000.030.060.10 0.13 0.140.180.210.250.290.330.370.410.450.500.550.590.650.700.750.810.870.94 36.0 0.11 36.0 0.020.050.08 0.120.160.190.220.260.300.340.380.420.460.510.550.600.650.700.760.820.87 37.0 0.09 37.0 0.010.040.06 0.110.140.170.200.240.270.310.350.390.430.470.510.560.610.660.710.760.82 38.0 0.08 38.0 0.020.05 0.090.120.150.180.210.250.280.320.360.390.430.480.520.570.610.660.710.77 39.0 0.06 39.0 0.010.04 0.080.110.130.160.190.230.260.290.330.360.400.440.480.530.570.620.670.72 40.0 0.05 40.0 0.000.03 41.0 0.070.090.120.150.180.210.240.270.300.340.370.410.450.490.530.580.620.67 41.0 0.02 0.04 0.050.080.100.130.160.190.220.250.280.310.350.380.420.460.500.540.580.63 42.0 0.03 42.0 0.01 43.0 43.0 0.02 0.040.070.090.120.140.170.200.230.260.290.320.350.390.430.460.500.550.59 44.0 44.0 0.01 0.030.060.080.100.130.150.180.210.240.270.300.330.360.400.430.470.510.55 0.030.050.070.090.110.140.160.190.220.250.270.310.340.370.400.440.480.52 45.0 45.0 0.01 46.0 46.0 0.020.040.060.080.100.120.150.170.200.230.250.280.310.340.380.410.450.48 47.0 47.0 0.010.030.050.070.090.110.130.160.180.210.240.260.290.320.350.380.420.45 48.0 48.0 0.000.020.040.060.080.100.120.140.170.190.220.240.270.300.330.360.390.43 49.0 49.0 0.010.030.050.070.090.110.130.150.180.200.230.250.280.310.340.370.40 50.0 50.0 0.010.030.040.060.080.100.120.140.160.190.210.230.260.290.310.340.37 51.0 51.0 0.000.020.040.050.070.090.110.130.150.170.190.220.240.270.290.320.35 52.0 0.010.030.050.060.080.100.120.140.160.180.200.230.250.280.300.33 52.0 -9.0 -8.0 -7.0-6.0-5.0-4.0-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.07.08.09.010.011.012.013.014.015.016.0 17.0 18.019.020.021.022.023.024.025.026.027.028.029.030.031.032.033.034.035.0 本表是在1个标准大气压下的计算值

65吨转炉一次烟气净化除尘设备参数计算(精)

65吨转炉一次烟气净化除尘设备参数计算 一:转炉工艺参数: 转炉公称容量:65t; 铁水装入量:按照75t/炉计算; 平均冶炼周期:30min,其中吹氧时间 14min 炉气量 QL=75000*(0.04-0.001)*22.4*60*1.8/(12*14)=42120 m3/h 烟气量 QN=(1+1.88*0.1*0.86)*42120=47568 Nm3/h * 工作烟气量 Qz=88000 m3/h 除尘风机选型:风机风量 Q=96000 m3/h P=27000Pa 二:ф850溢流文氏管 最大处理量: 100000 m3/h; 烟气进口温度:900~1050℃; 烟气出口温度:72℃; 喉口浊环水供水流量: 190 m3/h; 喉口供水温度: 35 ℃; 浊环水悬浮物:≤80 mg/L; 喉口喷头处水压:0.35~0.4 Mpa; 进出口压力差: 2000--4000Pa 水冷夹套净环水供水温度: 35℃; 水冷夹套供水流量:30m3/h; 水冷夹套进水压力:0.3Mpa; 溢流水箱浊环水供水流量:35m3/h; 溢流水箱供水温度:35℃; 溢流水箱供水压力:0.3Mpa; 入口直径:Φ2150 mm 出口直径:Φ1280 mm 收缩段角度:26度 扩散段角度:8.5度 喉口烟气流速: 50 m/s 出口烟气流速: 18 m/s

三: R-D可调文氏管喉口 喉口尺寸:1150*610*800 mm; 阀芯尺寸:650*300 mm 喉口处烟气流量:30000-120000 m3/h; 60度烟气流量 80000 m3/h;按照100m/s计算; 进口温度:~720C; 出口温度: ~630C; 喉口的烟气流速: 90~110m/s; 水气比:1.3; 浊环水供水温度400C ; 供水压力0.35–0.4Mpa; 悬浮物≤80mg/l; 二文浊环水总耗水量: 130 t/h; 进口压力差:11000-13500 Pa; 二文入口烟气含尘浓度:16000mg/m3(标况) 二文出口含尘量:≤100mg/ m3; 氮气条件:供气压力0.5~0.6Mpa; 耗气量氮气捅针28.8Nm3/h; 电源条件: 380VAC(±10%)三相四线制,负载电流不大于10A,频率:50Hz 供水压力:0.3Mpa;

脱硫烟气量计算

项目名称符号单位公式及计算设计煤种校对煤种一炉内石灰石脱硫 收到基硫份St,ar%已知 1.91 1.94燃煤中的含硫量燃烧后氧化成SO2的份 额 (3)P4Ks脱硫除尘表11 炉内脱硫效率η1%脱硫除尘表80.0080.00 Ca/S(钙硫比)β脱硫除尘表 1.3 1.3炉膛出口过剩空气系统αl烟风量表 1.18 1.18空气的绝对湿度(含湿量)(2)P327d g水/kg空气烟风量表 4.12 4.12反应方程式 S + O2= SO2 分子量 32 64 St,ar*Ks △m SO2 1除去的SO2量(质量流量)△m SO2kg/kg煤2*Ks*St,ar0.0380.039 除去的SO2量(体积流量)(1)P129△VSo2 Nm3/kg煤2*Ks*St,ar*22.4/64=0.7*Ks*St,ar =△m SO2*22.4/64 0.01340.0136 反应方程式CaCO3 + SO2 + 0.5*O2 = CaSO4 + CO2 摩尔量 1 0.5 1 △Vso2 △Vo2 △Vco2 2脱硫消耗的O2量(体积流量)(1)P129△Vo2Nm3/kg煤0.5*△VSo2=0.35*Ks*St,ar*0.00670.0068脱硫消耗的O2量(质量流量)△m O2kg/kg煤64/22.4*△Vo20.019100.01940 3脱硫消耗的理论干空气量(体积流量)(1)P128△V0CFB Nm3/kg煤△Vo2 /0.21=1.66*Ks*St,ar0.031830.03233脱硫消耗的实际湿空气量(体积流量)(1)P128△VCFB Nm3/kg煤α(1+0.0016d)*△V0CFB0.037810.03840 CaCO3煅烧增加的CO2排放(体积流量)(1)P128△V'Co2Nm3/kg煤β*△VSo2=β*Ks*St,ar*η10.01740.0177

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h 引风机量 1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。 氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4

Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

烟气行业颗粒物流量工况与标况换算计算公式

工况烟气与标况烟气换算公式: 101325 273273Xsw -1C'Cw s a s P B t +?+??=)(Cw —实际烟气状况下颗粒物断面浓度平均值,3 /mg m ; C ’—标准状态下颗粒物断面浓度平均值,3/mg m ; Ts —测定断面平均烟温,℃;a B —测定期间的大气压,Pa s P —测定断面烟气静压,Pa; Xsw —测定断面烟气平均含湿量,%。

标况到折算的换算公式: σ αα?=C'C C —折算成过量空气系数为α时的颗粒物或气态污染物排放浓度,3/mg m ;C’—标准状态下颗粒物或气态污染物实测平均浓度,3 /mg m ;α—在测点实测的过量空气系数; s α—有关排放标准中规定的过量空气系数。标准过量空气系数的换算公式: 2 s 2121Xo -=α2Xo —有关排放标准中规定的基准氧含量。

排放率换算公式: -6 10Qsn c'G ??=G —颗粒物或气态污染物排放率,kg/h; C’—标准状态下颗粒物或气态污染物实测平均浓度,3 /mg m ;Qsn —标准状态下干排烟气量,h m /3。标况烟气流量: ∑-=n 1 Qsn Q n Q —标准状态下干烟气排放总量;Qsn —标准状态下干排烟气量,h m /3。 工况流量与标况流量换算公式:

)1(101325273273Xsw Ps Ba t Qs Qsn s -?+?+?=Qsn —标准状态下干烟气流量,h m /3; Ba —大气压力,Pa; Ps —烟气静压,Pa; s t —烟温,℃; Xsw —烟气中含湿量,%。湿烟气流量: Vs F 3600Qs ? ?=Qs —工况下湿烟气流量,h m /3; F —测定断面的面积,2m 。烟气流速的计算: Vp Kv Vs ?=

空气状态参数计算关系式

1.1 计算机程序编制的常用公式 为了满足空调系统和设备进行数学模拟的需要,必须根据湿空气各状态之间的关系式编制计算程序。在实际工程中多利用测定空气干、湿球温度的方法,再计算其它参数,以下按这种做法,顺序给出编制计算机程序用的各种关系式。 1) 输入量:t 、t S 、B 、V 2) 输出量:P q,b 、P q 、?、d 、i 、ρ、 l υ、l t 3) 关系式: a) T=273.15+t ● 当t=-100℃~0℃时 234,1234576ln()/ln()q b p C T C C T C T C T C T C T =++++++ 式中: 5359.56741-=C 3925247.62=C 851020747825.0-?=C 23109677843.0-?-=C 126109484024.0-?-=C 641062215701.0-?=C 1635019.47=C ● 当t=0~200℃时 )ln(/)ln(133122111098,T C T C T C T C C T C p b q +++++= 式中: 2206.58008-=C 4111041764768.0-?=C 3914993.19=C 7121014452093.0-?-=C 04860239.010-=C 5459673.613=C 以上公式用)()ln(,T f p b q =表示。 b) B t t A p p s b q q )(',--= 式中:)()'ln(,s b q T f p = s s T T +=15.273 0.00001(65 6.75)A u =+ U 为通过湿球温度计的空气流速 式中B ,q p 及b q p ,的单位为Pa c) ,q q b p p φ= d) 干空气q q kg kg p B p d /622.0-=或干空气q q kg g p B p d /622-= e) 干空气kg kJ t d t i /)84.12501(001.001.1++= T p T B q 00132.000348.0-=ρ

湿空气的计算

第八章 湿空气 学习重点 掌握湿空气、饱和湿空气、未饱和湿空气、露点、绝对湿度、相对湿度、比湿度等概念; 掌握湿空气状态参数的意义及计算方法; 掌握用解析法和图解法计算湿空气的热力过程的方法。 8-1 湿空气的一般概念 湿空气—干空气和水蒸气的混合物。 常温常压下,湿空气中水蒸气的分压力很低,可看作理想气体,因而湿空气可看作理想气体混合物。即 未饱和湿空气—过热水蒸气+干空气,如点A 所示。 保持T=const ,↑m v →p v ↑ →(p v =p s ) →水蒸气达到饱和状态。即水蒸气的含量达到对应温度下的最大值。 饱和湿空气—饱和水蒸气+干空气,如点B 所示。 保持pv =const ,↓T,当温度降至pv 所对应的饱和温度时,水蒸气达到饱和状态,如C 所示。如继续冷却,有露滴出现。 露点温度(露点)—p v 对应的饱和温度。记作t s 或T s 。 8-2 绝对湿度、相对湿度和含湿量 绝对湿度、相对湿度和含湿量均为描述湿空气中水蒸气含量的参数。 绝对湿度—每立方米湿空气中含有的水蒸气的质量。按理想气体状态方程式,有 T s

相对湿度 说明了吸收水蒸气的能力。φ↓→吸收水蒸气的能力↑,当φ=100% (饱和湿空气)→吸收水蒸气的能力为零。 由理想气体状态方程,相对湿度可表示为 相对湿度的测量:毛发湿度计 干湿球温度计 含湿量d—单位质量干空气的湿空气所含有的水蒸气的质量。单位g/kg(干空气)。即 按理想气体状态方程,有 即 将R g,a=287.1J/(kg·K)及R g,v=461.5J/(kg K)代入上式,即有 因,

由 得 8-3 湿空气的焓—含湿量图 工程上还常用焓-含湿量图(h-d图)分析湿空气的状态变化及其水蒸气含量的变化。 湿空气过程分析是按单位质量干空气所对应的湿空气进行计算。因此,湿空气的焓值为1kg干空气的焓与dg水蒸气的焓之和,即 式中,h、ha、hv的单位为kJ/kg(干空气);d的单位为g/kg(干空气)。若规定0℃时干空气的焓及饱和水的焓为零,则有 将其代入焓的表达式可得 焓-含湿量图上有下述图线 ①定含湿量线。为一组垂直线。 ②定焓线。一组与垂直线成135°角的直线。 ③定温线。当温度为定值时,焓h和含湿量d之间保存线性关系,故定温线为一组直线,但不同温度的定温线其斜率不同。

CEMS参数计算公式

Cems 有关计算公式: 1、烟气流速 m/s Vp Kv Vs ?= P V =1.414×Kp ×)()(Ts Ps Ba Ms P d ++2738312 =1.414×Kp ×)()(Ts Ps Ba P d ++273831230 2、静压 P a Ba Kp Pd Pt Ps -?-=2 3、烟气流量 m 3/h 3600??=A Vs Q S 4、标准状态下干烟气流量 m 3/h )(SW s S SN X T Ps Ba Q Q -+?+=1273273 101325 5、排放率kg/h 610-??=SN Q C G 6、过量空气系数 2 2121 Xo -=α 7、折算浓度 mg/m 3 s C C αα ?=' 注: Vs ---m/s ,测定断面的湿排气平均流速; Kv --- , 速度场系数; Vp ---m/s ,测定断面某点的湿排气平均流速;

Kp---,皮托管系数; Pd---Pa,烟气动压; Ba---Pa,当地大气压; ρ---kg/m3,湿排气密度; Ps---Pa,烟气静压; Ts---℃,烟气温度; Pt---Pa,烟气全压; Qs---m3/h,工况下湿排气流量; A---m2,测量点烟道或烟囱的截面积; Qsn--- m3/h,标准状态下干排气流量; Xsw---%,排气中水分含量体积百分比; G---kg/h,排放率; C---m g/m3,折算成过量空气系数为α时的排放浓度;'C---m g/m3,标准状态下干烟气的排放浓度; α---在测点实测的过量空气系数; α---有关排放标准中规定的过量空气系数; s Xo--%,烟气中氧的体积百分比; 2

相关主题
文本预览
相关文档 最新文档