当前位置:文档之家› 直线与圆的方程典型例题

直线与圆的方程典型例题

直线与圆的方程典型例题
直线与圆的方程典型例题

高中数学圆的方程典型例题

类型一:圆的方程

例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.

分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.

解法一:(待定系数法)

设圆的标准方程为2

22)()(r b y a x =-+-.

∵圆心在0=y 上,故0=b .

∴圆的方程为222)(r y a x =+-.

又∵该圆过)4,1(A 、)2,3(B 两点.

∴?????=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r .

所以所求圆的方程为20)1(22=++y x .

解法二:(直接求出圆心坐标和半径)

因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13

124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .

又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=

++==AC r . 故所求圆的方程为20)1(22=++y x .

又点)4,2(P 到圆心)0,1(-C 的距离为

r PC d >=++==254)12(22.

∴点P 在圆外.

例2 求半径为4,与圆04242

2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

分析:根据问题的特征,宜用圆的标准方程求解.

解:则题意,设所求圆的方程为圆2

22)()(r b y a x C =-+-:

. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C .

又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .

(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2

221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .

说明:对本题,易发生以下误解:

由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为

)1,2(A ,

半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.

例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.

解:∵圆和直线02=-y x 与02=+y x 相切,

∴圆心C 在这两条直线的交角平分线上,

又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252y

x y

x +=-.

∴两直线交角的平分线方程是03=+y x 或03=-y x .

又∵圆过点)5,0(A ,

∴圆心C 只能在直线03=-y x 上.

设圆心)3,(t t C

∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t t

t .

化简整理得0562=+-t t .

解得:1=t 或5=t

∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.

∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(2

2=-+-y x .

说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.

例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件

(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.

分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.

解法一:设圆心为),(b a P ,半径为r .

则P 到x 轴、y 轴的距离分别为b 和a .

由题设知:圆截x 轴所得劣弧所对的圆心角为?90,故圆截x 轴所得弦长为r 2.

∴222b r =

又圆截y 轴所得弦长为2.

∴122+=a r .

又∵),(b a P 到直线02=-y x 的距离为 5

2b

a d -= ∴2225

b a d -=

ab b a 4422-+=

)(242222b a b a +-+≥

1222=-=a b

当且仅当b a =时取“=”号,此时5

5min =d . 这时有???=-=1222a b b

a

∴???==11b a 或?

??-=-=11b a 又2222==b r

故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(2

2=+++y x 解法二:同解法一,得 52b

a d -=. ∴d

b a 52±=-. ∴2

225544d bd b a +±=.

将1222-=b a 代入上式得: 01554222=++±d bd b .

上述方程有实根,故

0)15(82≥-=?d , ∴5

5≥d . 将5

5=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.

故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

直线与圆的方程单元测试卷含答案

直线与圆的方程单元测试卷 一。选择题 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

一选择题(共 55 分,每题 5 分) 1. 已知直线经过点 A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点 ( 1,3) 且平行于直线 x 2 y 3 0 的直线方程为( ) A . x 2y 7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线 y ax 与 y x a 正确的是( ) y y y y O x O x O x O x A B C D 4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则 a=( ) A . 2 B . 2 C . 3 3 3 3 2 D . ( 2 5.过 (x , y )和 (x , y )两点的直线的方程是 ) 1 1 2 2 A. y y 1 x x 1 y 2 y 1 x 2 x 1 B. y y 1 x x 1 y 2 y 1 x 1 x 2 C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0 D.( x 2 x 1)( x x 1) ( y 2 y 1 )( y y 1 ) 0 6、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则( ) A 、 K ﹤ K ﹤ K L 3 1 2 3 L B 、 K ﹤ K ﹤ K 2 1 3 C 、 K 3﹤ K 2﹤ K 1 o x D 、 K 1﹤K 3﹤ K 2 L 1 7、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( ) A 、 3x+2y-5=0 B 、 2x-3y-5=0 C 、 3x+2y+5=0 D 、 3x-2y-5=0 8、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

直线和圆的方程测试题

西中高一(14)(15)班《直线与圆的方程》单元测试 韩世强 时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分. 1.在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( ) 3.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .2 3 - D .2- 4. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( ) A .3- B .6- C .2 3 - D .3 2 5. 圆x 2+y 2 -4x =0在点P (1,3)处的切线方程为( ) +3y -2=0 +3y -4=0 -3y +4=0 -3y +2=0 6 若圆C 与圆1)1()2(2 2=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 7.已知两圆的方程是x 2 +y 2 =1和x 2 +y 2 -6x -8y +9=0,那么这两个圆的位置关系是( ) A .相离 B .相交 C .外切 D .内切 8.过点(2,1)的直线中,被圆x 2 +y 2 -2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0 D .x -3y +1=0 9.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )

直线和圆的方程知识与典型例题

直线和圆的方程知识关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2) 是直线上两个已知 点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐 标轴平行的直线不能 用此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

直线和圆的方程

简单的线性规划例13. 若点(3,1)和(4 -,6)在直线0 2 3= + -a y x的两侧,则实数a的取值范围是 ()724 A a a <-> 或()724 B a -<<()724 C a a =-= 或(D)以上都不对例14. ABC ?的三个顶点的坐标为(2,4) A,(1,2) B-,(1,0) C,点(,) P x y在ABC ?内部及边界上运动,则2 y x -的最大值为,最小值为。 例15. 不等式组: 10 x y x y y -+ + ? ? ? ? ? ≥ ≤ ≥ 表示的平面区域的面积是; 例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高? 例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下: 根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.

高中数学必修二《直线与方程及圆与方程》测试题_及答案

直线方程 一选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B.012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x y O A B C D 4.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =( ) A.32- B .32 C.2 3 -? D.23 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A. 23 B .32 C .32- ?D. 2 3 - 6、若图中的直线L 1、L 2、L 3的斜率分别为K ) A 、K1﹤K 2﹤K 3 B 、K2﹤K 1﹤K 3 C、K 3﹤K 2﹤K 1 D 、K 1﹤K 3﹤K 2 7、直线2x+3y-5=0关于直线y=x A、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y +5=0 D 、3x -2y -5=0 8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 9、直线5x -2y-10=0在x 轴上的截距为a,在y 轴上的截距为b ,则( ) A.a=2,b=5; B.a =2,b =5-; C.a=2-,b=5; D.a =2-,b=5-. 10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ?( ) A. 2 2 B.2?C .2 D.22 11、过点P(4,-1)且与直线3x-4y +6=0垂直的直线方程是( ) A 4x+3y -13=0 B 4x-3y-19=0 C 3x -4y-16=0 D 3x+4y -8=0 二填空题(共20分,每题5分) 12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __; x

高中数学直线与圆的方程知识点总结49648

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

圆的方程题型总结含答案

圆的方程题型总结 一、基础知识 1.圆的方程 圆的标准方程为___________________;圆心_________,半径________. 圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2 2 0Ax Cy Dx Ey F 表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系: 直线0Ax By C ++=,圆2 2 2 ()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________; (2)当______________时,直线与圆相离; 当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系 圆1C :2 2 21 1 1x a y b r ; 圆2C :2 2 22 2 2x a y b r 则有:两圆相离? _____________________; 两圆外切 ?______________________; 两圆相交?______________________; 两圆内切?_____________________; 两圆内含?_____________________.

二、题型总结: (一)圆的方程 1. ★2 2 310x y x y ++--=的圆心坐标 ,半径 . 2.★★点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1所表示的曲线关于直线y x =对称,必有( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 4.★★★圆03222 2 2 =++-++a a ay ax y x 的圆心在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5. ★若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( ) A. 2 2430x y x y B. 22430x y x y C. 2 2 434 0x y x y D. 2 2 438 0x y x y 6. ★★过圆2 2 4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆方程是( ) A. 42x y --2 2 ()+()=4 B. 2x y -2 2 +()=4 C. 42x y ++2 2 ()+()=5 D. 21x y -+2 2 ()+()=5 7. ★过点1,1A ,1,1B 且圆心在直线20x y 上的圆的方程( ) A. 2 2 3 14x y B.2 2 3 1 4x y C. 22 1 1 1x y D. 2 2 1 1 1x y 8.★★圆2 2 2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) A .2 2 (7)(1)1x y +++= B .2 2 (7)(2)1x y +++= C . 2 2 (6)(2)1x y +++= D .2 2 (6)(2)1x y ++-=

圆与方程单元测试题及答案

第四章单元测试题 (时间:120分钟总分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切 2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2 C.1 D.-1 4.经过圆x2+y2=10上一点M(2,6)的切线方程是( ) A.x+6y-10=0 x-2y+10=0 C.x-6y+10=0 D.2x+6y-10=0 5.点M(3,-3,1)关于xOz平面的对称点是( ) A.(-3,3,-1) B.(-3,-3,-1) C.(3,-3,-1) D.(3,3,1) 6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 C.10 7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( ) 或- 3 和-2 8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0

直线与圆的方程典型例题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 2224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或 2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2 2 2 7)14()2(=--+-a ,或2 2 2 1)14()2(=--+-a (无解),故 622±=a . ∴ 所 求 圆 的 方 程 为 2 224)4()622(=++--y x ,或 2224)4()622(=+++-y x . 说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如 2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其 圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2 2 2 7)14()2(=-+-a ,解

直线与圆的方程单元测试题含答案

《直线与圆的方程》练习题1 一、 选择题 1.方程x 2+y 2 +2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

8.一束光线从点(1,1)A -出发,经x 轴反射到圆22 :(2)(3)1C x y -+-=上的最短路径是 ( A ) A .4 B .5 C .321- D .26 9.直线0323=-+y x 截圆x 2 +y 2 =4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( ) A.AB B.BC C.CD D.DA [答案] D [解析] 首先若点M 是Ω中位于直线AC 右侧的点,则过M ,作与BD 平行的直线交ADC 于一点N ,则N 优于M ,从而点Q 必不在直线AC 右侧半圆内;其次,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .则F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上. 二、填空题 11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- . 12.圆:0642 2 =+-+y x y x 和圆:062 2 =-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --= 13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5) 14.过点A (-2,0)的直线交圆x 2+y 2 =1交于P 、Q 两点,则AP →·AQ →的值为________. [答案] 3 [解析] 设PQ 的中点为M ,|OM |=d ,则|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d 2 -1-d 2,|AQ →|=4-d 2+1-d 2 ,

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程 一、直线的方程 1、倾斜角: ,范围0≤α<π, x l //轴或与x 轴重合时,α=00。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 1、 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b)

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案) 一、两直线的位置关系 1.求直线斜率的基本方法 (1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1 x 2-x 1. 2.判断两直线平行的方法 (1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2?l 1∥l 2. (2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法 (1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1?l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2. 1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2且l 1过点(-3,-1); (2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.② 解①②组成的方程组得??? a =2, b =2. (2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即a b =1-a .③ 又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,

即4 b =-(-b ).④ 由③④联立,解得??? a =2, b =-2或????? a =23 ,b =2. 经检验此时的l 1与l 2不重合,故所求值为 ??? a =2, b =-2或????? a =23 , b =2. 注: 已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0 (1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去. (2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-4 3 C .2 D .3 解析:选D 由2a -6=0得a =3.故选D. 3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0 D .-2 解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =3 2.故选A. 二、直线方程 1.直线方程的五种形式

中职数学:第八章直线与圆测试题

第八章:直线与圆测试题 、选择题(本大题共10小题,每小题3 分, 共 30 分) 1?点M 2,1与点N 5, 1的距离为 A ,13 B 、 ,14 C 、 .15 2.在平面内,一条直线倾斜角的范围是 0,2 B 、 0, C 、 ,0 3.直线x=3的倾斜角是 A 、 00 B 4.已知 口 A (- 5,: A -1 B 5.如图直线l 1 ,12 A k 2 > k 3 B k 2 > k 1 > k 3 C k 3 > k 2 > k 1 D k 2 > k 3 > k 1 6.经过点(1 ,2) 、1 1 A 、 y ,B( 0, 300 -3) 7.直线2x A 1 2 8.直线x A 、相交 、900 、不存在 则直线AB 斜率为 ,I 3的斜率分别为 k 1 , k 2 , k a 则 且倾斜角为45°的直线方程为 ( ) A y 2x C 、 y x 3 0与两坐标轴围成的三角形面积为 、18 2x 0和y 1 0的位置关系是 B 、平行 C 、重合 D 、以上都不对

9.过点A(2,1),且与直线2x y 10 0垂直的直线I的方程为() A、x2y 0 B 、2x y 0 C 、x2y 0D、2x y 0 10.圆心为(-1,4 ) ,半径为5的圆的方程为() A、(x1)2 (y4)225 B、(x1)2(y4)225 C、(x1)2 (y4)2 5 D、(x1)2(y4)25 二、填空题(本大题共8小题,每小题3分,共24分) 11. 已知A(7,4),B(3,2),则线段AB的中点坐标是_________ . 12. 直线y 1 0的倾斜角为, 13. 经过点(1,3),(5,11)的直线方程为_____________________ 14. 直线y kx 1 经过(2,-9 ),贝U k= ___________________ 15. 直线mx y 6 0与直线2x 3y 6 0平行,则m= _______ 16. 原点到直线4x 3y 8 0的距离为 ____________ 17. 已知圆的方程为x2 y2 2x 4y 0,则圆心坐标为 ___________________ ,半径为___ 18. 直线与圆最多有多少个公共点 ___________ 三、解答题(本大题共6小题,共46分,解答应写出文字说明、证明过程或演 算步骤) 19. 已知三角形的顶点是A(1,5),B(1,1), C(6 ,3),求证:ABC是等腰三角 形。(6分)

相关主题
文本预览
相关文档 最新文档