当前位置:文档之家› 原子发射光谱法公式

原子发射光谱法公式

原子发射光谱法(AES)是一种常用的光谱分析方法,可以用于元素定性分析以及元素的定量分析。以下是原子发射光谱法中常用的公式:

1. 里德伯公式(Rydberg formula):该公式可以用来计算光谱线的波长。其中,R 是里德伯常数,e 是电子的电荷,h 是普朗克常数,n 是主量子数,m 是电子的质量。

2. 洛伦兹公式(Lorentz formula):该公式可以用来计算光谱线的强度。其中,I 是谱线强度,c 是光速,e 是电子的电荷,m 是电子的质量,B 是磁感应强度,g 是洛伦兹因子,v 是谱线的频率。

3. 斯托克斯公式(Stokes formula):该公式可以用来计算谱线的半宽度(即谱线在峰值一半处的宽度)。其中,v 是谱线的频率,k 是玻尔兹曼常数,T 是绝对温度,I 是谱线强度。

这些公式在原子发射光谱法中有着重要的应用,可以帮助我们更好地理解和分析光谱数据。

02.原子发射光谱法

原子发射光谱法 原子发射光谱法(atomic emission spectroscopy,AES)是一种成分分析方法,可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。 第一节基本原理 一、原子发射光谱的产生 原子的外层电子由高能级向低能级跃迁,能量以电磁辐射的形式发射出去,这样就得到发射光谱。原子发射光谱是线状光谱。 二、原子能级与能级图 原子外层有一个电子时,其能级可由四个量子数决定: 主量子数n;角量子数l;磁量子数m;自旋磁量子数m s; 原子外层有多个电子时,其运动状态用: 总角量子数L;总自旋量子数S;内量子数J描述; 三、谱线强度 原子由某一激发态i向低能级j跃迁,所发射的谱线强度与激发态原子数成正比。在热力学平衡时,单位体积的基态原子数N0与激发态原子数N i的之间的分布遵守玻耳兹曼分布定律。 四、谱线的自吸与自蚀 原子在高温时被激发,发射某一波长的谱线,而处于低温状态的同类原子又能吸收这一波长的辐射,这种现象称为自吸现象。 第二节仪器 原子发射光谱法仪器常分为三部分:光源、分光系统和检测器。 一、光源 光源具有使试样蒸发、解离、原子化、激发、跃迁产生光辐射的作用。光源对光谱分析的检出限、精密度和准确度都有很大的影响。目前常用的光源有直流电弧、交流电弧、电火花及电感耦合高频等离子体(ICP)。 电感耦合等离子体(inductively coupled plasma,ICP) 电感耦合高频等离子炬的装置,由三部分组成: 晶体控制高频发生器(用来产生和维持等离子体放电) 进样系统(包括试样雾化器、供气系统) 等离子炬管(三层同心石英玻璃管)

原子发射光谱法原理及利用

原子发射光谱法原理及利用 原子发射光谱法(Atomic Emission Spectrometry,AES)是一种常用的材料分析方法,其主要通过对样品中元素产生的光子特征进行检测和分析,进而实现对样品中元素的定性和定量分析。本文将主要介绍原子发射光谱法在元素分析、化学态分析、表面分析、合金分析和质量检测等方面的原理及应用。 1.元素分析 原子发射光谱法在元素分析方面的应用主要体现在对样品中元素的种类进行识别和定量测定。其基本原理是每种元素都具有独特的原子结构,因此会在特定的能量条件下发射出具有特征波长的光子。通过对这些光子的检测和分析,可以确定样品中含有的元素种类。 在具体实践中,原子发射光谱法通常与火花、电弧或激光等激发源配合使用,以产生足够的光子用于检测。该方法可以同时检测多种元素,且具有较高的灵敏度和准确性。例如,在地质学领域,原子发射光谱法常用于测定岩石、矿物等样品中的常量、微量和痕量元素。 2.化学态分析 原子发射光谱法在化学态分析方面的应用主要是通过对元素产生的化学键合状态进行分析,以了解元素的化合物组成和结构等信息。不同化学态的同一种元素在原子发射光谱法中可能会表现出不同的特征波长,这是因为不同的化学键合状态会导致元素的原子结构发生变化。 例如,在环境科学领域,原子发射光谱法可用于分析水样或土壤

样品中的重金属元素及其化学形态,以了解这些元素对环境的污染程度和生物毒性的影响。 3.表面分析 原子发射光谱法在表面分析方面的应用主要是通过对样品表面的元素组成和化学状态进行分析,以了解样品的表面形貌、表面化学成分和结构等信息。原子发射光谱法可以应用于各种材料的表面分析,如金属、合金、陶瓷、高分子材料等。 在具体实践中,原子发射光谱法通常与离子束铣削、等离子体刻蚀等手段结合使用,以制备干净的表面样品并进行深入的分析。例如,在材料科学领域,原子发射光谱法可用于研究材料的表面氧化、腐蚀等行为,以及表面涂层的质量检测和评估。 4.合金分析 原子发射光谱法在合金分析方面的应用主要是通过对合金中的元素组成进行分析,以了解合金的成分和相组成等信息。合金中的不同元素在原子发射光谱法中会表现出不同的特征波长,通过对这些特征波长的检测和分析,可以确定合金中含有的元素种类和含量。 例如,在航空航天领域,原子发射光谱法可用于分析航空发动机叶片、涡轮盘等高温合金部件的成分和相组成,以确保其具有优良的力学性能和抗腐蚀性能。此外,原子发射光谱法还可以用于对合金中的相变温度、相变产物等进行深入研究和分析。 5.质量检测 原子发射光谱法在质量检测方面的应用主要是通过对生产过程

原子发射光谱分析方法应用

原子发射光谱分析方法应用 一,光谱定性分析 由于各种元素的原子结构不同,在光源的激发作用下,试样中每种元素都发射自己的特征光谱。光谱定性分析一般多采用摄谱法。试样中所含元素只要达到一定的含量,都可以有谱线摄谱在感光板上.摄谱法操作,价格便宜,快速.它是目前进行元素定性检出的最好方法. (一)元素的分析线与最后线 每种元素发射的特征谱线有多有少(多的可达几千条).当进行定性分析时,只须检出几条谱线即可. 进行分析时所使用的谱线称为分析线.如果只见到某元素的一条谱线,不可断定该元素确实存在于试样中,因为有可能是其它元素谱线的干扰。检出某元素是否存在必须有两条以上不受干扰的最后线与灵敏线。灵敏线是元素激发电位低,强度较大的谱线,多是共振线.最后线是指当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线.它也是该元素的最灵敏线. (二)分析方法 (1)铁光谱比较法 目前最通用的方法,它采用铁的光谱作为波长的标尺,来判断其他元素的谱线.。铁光谱作标尺有如下特点: ① 谱线多. 在210 ~ 660nm范围内有几千条谱线. ② 谱线间距离都很近. 在上述波长范围内均匀分布.对每一条谱线波长,人们都已进行了精确的测量.在实验室中有标准光谱图对照进行分析。标准光谱图是在相同条件下,在铁光谱上方准确地绘出68种元素的逐条谱线并放大20倍的图片。铁光谱比较法实际上是与标准光谱图进行比较,因此又称为标准光谱图比较法。在进行分析工作时将试样与纯铁在完全相同条件下并列并且紧挨着摄谱,摄得的谱片置于映谱仪(放大仪)上;谱片也放大20倍,再与标准光谱图进行比较。比较时首先须将谱片上的铁谱与标准光谱图上的铁谱对准,然后检查试样中的元素谱线。若试样中的元素谱线与标准图谱中标明的某一元素谱线出现的波长位置相同,即为该元素的谱线。判断某一元素是否存在,必须由其灵敏线决定.铁谱线比较法可同时进行多元素定性鉴定。 (3)标准试样光谱比较法 将要检出元素的纯物质和纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱.若两者谱线出现在同一波长位置上,即可说明某一元素的某条谱线存在。 二,光谱半定量分析 光谱半定量分析可以给出试样中某元素的大致含量.若分析任务对准确度要求不高,多采用光谱半定量分析.例如钢材与合金的分类,矿产品位的大致估计等等,特别是分析大批样品时,采用光谱半定量分析,尤为简单而快速。光谱半定量分析常采用摄谱法中比较黑度法,这个方法须配制一个基体与试样组成近似的被测元素的标准系列.在相同条件下,在同一块感光板上标准系列与试样并列摄谱,然后在映谱仪上用目视法直接比较试样与标准系列中被测元素分析线的黑度.黑度若相同,则可做出试样中被测元素的含量与标准样品中某一个被测元素含量近似相等的判断。 例如,分析矿石中的铅,即找出试样中灵敏线283.3 nm,再以标准系列中的铅283.3nm线相比较,如果试样中的铅线的黑度介于0.01% ~ 0.001%之间,并接近于0.01%,则可表示为0.01% ~

原子发射光谱法

原子发射光谱法Atomic Emission Spectrometry, AES 基本原理:一、概述二、原子发射光谱的产生三、谱线强度四、谱线自吸与自蚀 分析装置: 定性、定量分析方法及其应用 =hc/λ AES 基本原理:利用物质在热或电激发下,气态原子的外层电子由基态跃迁到激发态(极不稳定),返回到基态时,以辐射(发射光谱)的形式释放能量,产生的辐射经单色器形成按一定波长顺序排列的光谱线,以此进行元素定性与定量分析,来判断物质的组成的成分分析方法。 原子发射光谱分析法的优点: 缺点:1)需要内标样进行对照,且内标样的纯度要高; 2)只能测元素浓度,不能测元素存在形态,不能给出分子有关信息;3)对一些非金属,难以检测或灵敏度低。 概念:①激发电位(Excited potential):由低能态向高能态跃迁所需要的能量,单位:eV 。每条谱 线对应一激发电位。 ②电离电位(Ionization potential) :原子受激后得到足够能量而失去电子—电离;所需的能量称 为电离电位。 ③共振线(Resonance line):凡是由电子激发态与电子基态能级间跃迁所产生的谱线均是。,激发 电位最小,故最易激发为最强谱线(第一共振线或主共振线)。 共振吸收线 :由激发态向 基态(Ground state) 跃迁所产生的谱线 ④原子线:原子外层电子的跃迁所发射的谱线,在谱线表图中用罗马字“Ⅰ”表示 ⑤离子线:离子的外层电子跃迁也发射光谱。失去一个电子称为一次电离,一次电离的离子再 失去一个电子称为二次电离,依此类推,以II ,III ,IV 等表示 例, Mg Ⅰ285.21nm 为原子线 Mg Ⅱ 280.27nm 为一次电离离子线 三、谱线强度 四、谱线的自吸与自蚀 当弧焰中心的激发态原子发射的光通过边缘时被处于边缘低温状态的同种原子所吸收的现象称 为自吸,自吸对谱线中心处的强度影响较大 元素浓度低时(b=1),不出现自吸。如果自吸严重,谱线中心的辐射被强烈的吸收,致使谱线中 心的强度比边缘更低,似乎变成两条谱线,这种现象成为自蚀。 原子发射光谱分析的三个主要过程: ①样品蒸发、原子化,原子激发并产生光辐射;②分光, 形成按波长顺序排列的光谱;③检测光谱中谱线的波长和强度 原子发射光谱仪构成:光源→分光系统→检测器 (一)光源种类及其 00E E E h u u -=∆=ν

原子发射光谱法及其应用

原子发射光谱法及其应用 摘要:本文介绍了原子发射光谱法的原理、特点及分析仪器。并对原子发射光谱法尤其是电感耦合等离子体原子发射光谱法在环境、冶炼、矿产开发、材料等领域的应用做了介绍。 关键词:原子发射、光谱法、应用 1.原子发射光谱法概述 1.1原子发射光谱法简介 原子发射光谱法(AES,atomic emission spectrometry),是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种。 原子发射光谱法的研究对象是被分析物质所发出的线光谱,利用待测物质的原子或离子所发射的特征光谱线的波长和强度来确定物质的元素种类及其含量。 原子发射光谱分析过程分为三步,即激发、发光和检测。第一步是利用激发光源使试样蒸发,解离成原子,或进一步解离成离子,最后使原子或离子得到激发,发射辐射;第二步是利用光谱仪把光源发射的光按波长展开,获得光谱;第三步是利用检测系统记录光谱,测量谱线波长、强度,根据谱线波长进行定性分析,根据谱线强度进行定量分析。 1.2原子发射光谱法发展概况 原子发射光谱法是光学分析法中产生和发展最早的一种。早在1860年,德

国学者霍夫(Kirchhoff)和本生(Bunsen)把分光镜应用于化学分析,发现了光谱与物质组成之间的关系,确认和证实各种物质都具有其特征光谱,从而奠定了光谱定性分析的基础。 随着光谱仪器和光谱理论的发展,发射光谱分析进入了新的阶段。火焰、火花和弧光光源稳定性的提高,给定量分析的发展开辟了道路。20世纪20年代,W.Gerlach提出了内标原理,奠定了定量分析的基础;30年代,棱镜光谱仪形成了系列,促进了定量分析的发展,形成了定量分析的经验公式;40年代,棱镜光谱仪飞速发展,使发射光谱分析得到了广泛的应用;50年代,光栅光谱仪基本上形成系列;60年代,电感耦合等离子体(ICP)光源的引入,大大推动了发射光谱分析的发展。 近几十年来,中阶梯光栅光谱仪、干涉光谱仪等仪器的出现,加之电子计算机的应用,使发射光谱分析进入了自动化阶段。 原子发射光谱法不仅过去曾在原子结构理论的建立及元素周期表中某些元素的发现过程中对科学的发展起到重要推动作用,而且已经并将继续在各种材料的定性定量分析中占有重要地位。 1.3原子发射光谱法的特点 与其他分析方法相比,原子发射光谱法具有如下特点。 (1)灵敏度高。一般光源灵敏度可达0.1~10μg·g-1(或μg·ml-1),ICP 光源可达10-4~10-3μg·ml-1。 (2)选择性好。每种元素的原子被激发后,都产生一组特征光谱,根据这些特征光谱,便可以准确无误地确定该元素的存在,所以发射光谱分析至今仍是元素定性分析的最好方法。

【名师讲堂】——原子发射光谱分析

【名师讲堂】——原子发射光谱分析 一、原子发射光谱的产生 原子发射光谱分析法(atomic emission spectroscopy ,AES) :元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 原子发射光谱分析法的特点 (1)可多元素同时检测各元素同时发射各自的特征光谱; (2)分析速度快试样不需处理,同时对几十种元素进行定量分析; (3)选择性高各元素具有不同的特征光谱; (4)检出限较低10~0.1μg.g-1(- 般光源); ng.g-1(ICP) (5)准确度较高5%~10% (一般光源) ; <1 % (ICP) ; (6) ICP-AES性能优越线性范围4~6数量级,可测高、中、低不同含量试样。 缺点:非金属元素不能检测或灵敏度低。 一、原子发射光谱的产生: 在正常状态下,元素处于基态,元素在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱) 。

必须明确如下几个问题: 1.原子中外层电子(称为价电子或光电子)的能量分布是量子化的,所以△E的值不是连续的,原子光谱是线光谱; 2.同一原子中,电子能级很多,有各种不同的能级跃迁,即可以发射出许多不同的辐射线。但跃迁要遵循“光谱选律”,不是任何能级之间都能发生跃迁; 3.不同元素的原子具有不同的能级构成,△E不一样,各种元素都有其特征的光谱线,从识别各元素的特征光谱线可以鉴定样品中元素的存在,这就是光谱定性分析; 4.元素特征谱线的强度与样品中该元素的含量有确定的关系,所以可通过测定谱线的强度确定元素在样品中的含量,这就是光谱定量分析。 二、原子的共振线与离子的电离线: 原子中外层电子从基态被激发到激发态后,由该激发态跃迁回基线所发射出来的辐射线,称为共振线。 由最低激发态(第一激发态)跃迁回基态所发射的辐射线,称为第一共振线,通常把第一共振线称为主共振线。第一共振线,最易发生,能量最小,一般是该元素最强的谱线。 由原子外层电子被激发到高能态后跃迁回基态或较低能态,所发

原子发射光谱法及其的应用

原子发射光谱法与其应用 摘要:本文介绍了原子发射光谱法的原理、特点与分析仪器。并对原子发射光谱法尤其是电感耦合等离子体原子发射光谱法在环境、冶炼、矿产开发、材料等领域的应用做了介绍。 关键词:原子发射、光谱法、应用 1.原子发射光谱法概述 1.1原子发射光谱法简介 原子发射光谱法〔AES,atomic emission spectrometry〕,是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进展元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种。 原子发射光谱法的研究对象是被分析物质所发出的线光谱,利用待测物质的原子或离子所发射的特征光谱线的波长和强度来确定物质的元素种类与其含量。 原子发射光谱分析过程分为三步,即激发、发光和检测。第一步是利用激发光源使试样蒸发,解离成原子,或进一步解离成离子,最后使原子或离子得到激发,发射辐射;第二步是利用光谱仪把光源发射的光按波长展开,获得光谱;第三步是利用检测系统记录光谱,测量谱线波长、强度,根据谱线波长进展定性分析,根据谱线强度进展定量分析。 1.2原子发射光谱法开展概况 原子发射光谱法是光学分析法中产生和开展最早的一种。早在1860年,德国学者霍夫〔Kirchhoff〕和本生〔Bunsen〕把分光镜应用于化学分析,发现了光谱与物质组成之间的关系,确认和证实各种物质都具有其特征光谱,从而奠定了光谱定性分析的根底。 随着光谱仪器和光谱理论的开展,发射光谱分析进入了新的阶段。火焰、火花和弧光光源稳定性的提高,给定量分析的开展开辟了道路。20世纪20年代,W.Gerlach提出了内标原理,奠定了定量分析的根底;30年代,棱镜光谱仪形成了系列,促进了定量分析的开展,形成了定量分析的经验公式;40年代,棱镜光谱仪飞速开展,使发射光谱分析得到了广泛的应用;50年代,光栅光谱仪根本上形成系列;60年代,电感耦合等离子体〔ICP〕光源的引入,大大推动了发射光谱分析的开展。 近几十年来,中阶梯光栅光谱仪、干预光谱仪等仪器的出现,加之电子计算机的应用,使发射光谱分析进入了自动化阶段。 原子发射光谱法不仅过去曾在原子结构理论的建立与元素周期表中某些元素的发现过程中对科学的开展起到重要推动作用,而且已经并将继续在各种材料

原子发射光谱法测定方法

原子发射光谱法测定方法原子发射光谱法是一种用于元素分析的传统方法,也是目前最常用的表征原子能级结构的方法。本文将详细介绍原子发射光谱法的原理、测定方法以及应用。 一、原理 原子发射光谱法基于原子能级结构的理论,利用激发源将样品原子激发为激发态,然后通过介质,将这些激发态原子的电子跃迁回到较低的能级,从而实现发射光谱。每种元素的原子发射光谱是独特的,可以根据这些发射光谱来确定样品中各种元素的含量。 二、测定方法 1. 原子发射光谱法的装置 原子发射光谱法的装置一般包括以下部分:样品供给装置、激发源、光谱仪、信号放大器和信息处理装置。 2. 样品处理 样品处理的重要性不言而喻,因为精确的分析结果必须从准确的样品中获得。可以通过显微观察或分析其外观和颜色来确定样品中的化学成分和杂质。灰吸收法和氮化方法常用于消除样品的有机和无机杂质。 3. 激发源 激发源是原子发射光谱法中最关键的部分,它负责激发样品原子的电子从基态跃迁到激发态,强制性激发分为

热力学激发和非热力学激发。热力学激发是通过样品表面的火焰或电弧等电离条件来完成的,使原子达到雇员,它们可以受激光量输入并产生较高的激发能量。非热力学激发则是通过化学气氛或单独的电离源激发,也必须使用高能量输入的激发源。 4. 光谱仪 当样品中的原子被激发时,它们将发出放射性,从而产生辐射谱线。重要的是收集这些发光谱线并将其分解成其组成部分。这可以通过光谱仪完成,光谱仪利用棱镜或光栅将光谱分离成单色光信号并记录光谱。光谱准确度与光谱仪精度有关,应选择质量好,精度高的光谱仪。 5. 信号放大器和信息处理 信号放大器和信息处理是相互关联的,在信号处理程序中可以调整放大器的控制,以及记录和处理光谱图的算法和软件。在信号放大器和信息处理的整个过程中,确定计算要素浓度的算法和过程是至关重要的。 三、应用 原子发射光谱法在我们的日常工作中有着广泛应用的地方,如石化、机械、金属、环保、农业、医药、食品等各个领域。其中的一些应用包括: 1. 土壤、水、大气和湖泊的监测

等离子电感耦合—原子发射光谱(ICP-AES)方法测定土壤中若干元素

实验二、等离子电感耦合—原子发射光谱(ICP-AES)方法测 定土壤中若干元素 一、实验目的 1、了解ICP光谱仪的使用方法。 2、了解ICP-AES方法的基本原理及实验影响因素 二、实验原理 电感耦合等离子发射光谱(ICP)定量分析依据与经典的原子发射光谱法相同。即待测元素的浓度与其发射的特征谱线强度关系符合赛柏-罗马金公式:I=ac b或lgI=blgc+lga 式中I为谱线强度;c为待测元素浓度;a为与蒸发解离等有关的常数;b为与自吸有关的系数。当试液浓度较小时,b≈1,又实验条件固定时a为常数。∴lgI=lgc+K。ICP炬是继火花、电弧之后又一种新的激发光源,它是一个火焰形状的放电体光源(炬中心形成温度为67000°K)。常规工作方式为溶液样品雾化后,送入ICP炬中激发,产生发射光谱被检测。IRIS等离子体光谱仪采用中阶梯光谱光学系统和独特的(CID)固体检测器来提供完整的和全波长覆盖的分析谱图。ICP光源主要优点是:(1)检出限低:许多元素可达到1 g/L。(2)耗样少:3~5mL。(3)精密度好,相对标准偏差0.5%~3%。(4)准确度通常相对误差小于10%。(5)线性范围宽:可达到4~6个数量级。(6)可多元素同时分析等。 三、实验步骤 (1)样品处理 称取风干研细土样5.00g,滴加少量去离子水润湿,加1:1HNO 3 30mL,缓缓 加热煮沸冷却(40℃左右),加10滴H 2O 2 ,加热煮沸几分钟,冷却,过滤,滤液 收集于50mL容量瓶中,用去离子水定容,摇匀备用。(2)ICP光谱仪测定溶液中若干离子浓度。 仪器操作步骤见附件。

四、实验结果报告参数 (一)、仪器参数 仪器生产商:美国Thermo Elemental公司 型号:IRIS Intrepid 光谱仪类型:简称ICP—AES 以电感耦合氩气等离子体为光源的原子发射光谱 全称:Inductively coupled Argon plasma-Atomic Emission Spectrometer 分析参数: RF功率1150 W 雾化器压力28.0 PSI 辅助气流0.5 l / min 等离子气流15 l / min 观察方向Axial 或Radial 积分时间US狭缝30 S、Vis 狭缝5 S 同心式雾化器提升量 1.85 ml / min (二)、数据以及处理 1. 测量的数据如下: 测量的数据以及结果如下: 2. 计算土壤中各种金属的含量: K7604的含量:162.4ug/ml ×50ml ÷5g = 1624 ug/g 即1624mg/kg 同理算出其他金属元素在土壤中的含量,结果: Ca3179 的含量:11070 mg/kg Mg2802的含量:413.5mg/kg Cd2265的含量:3.195mg/kg C r2677的含量:22.60 mg/kg Cu3247的含量:121.0mg/kg Mn2576的含量:363.7mg/kg

钠原子发射光谱

钠原子发射光谱 通过钠原子光谱的拍摄,加深对钠原子光谱规律认识;计算钠原子中价电子的各能级和相应的量子亏损,同时了解摄谱仪的结构及使用。 一、实验原理: (一)原子光谱的产生: 1、原子的壳层结构 原子是由原子核与绕核运动的电子所组成。每一个电子的运动状态可用主量子数n、角量子数l、磁量子数m l 和自旋量子数m i等四个量子数来描述。 主量子数n,决定了电子的主要能量E。 角量子数l,决定了电子绕核运动的角动量。电子在原子核库仑场中在一个平面上绕核运动,一般是沿椭圆轨道运动,是二自由度的运动,必须有两个量子化条件。这里所说的轨道,按照量子力学的含义,是指电子出现几率大的空间区域。对于一定的主量子数n,可有n个具有相同半长轴、不同半短轴的轨道,当不考虑相对论效应时,它们的能量是相同的。如果受到外电磁场或多电子原子内电子间的相互摄动的影响,具有不同l的各种形状的椭圆轨道因受到的影响不同,能量有差别,使原来简并的能级分开了,角量子数l最小的、最扁的椭圆轨道的能量最低。 磁量子数m l(轨道方向的量子数),决定了电子绕核运动的角动量沿磁场方向的分量。所有半长轴相同的在空间不同取向的椭圆轨道,在有外电磁场作用下能量不同。能量大小不仅与n和l有关,而且也与m l有关。 自旋量子数m s(自旋方向量子数),决定了自旋角动量沿磁场方向的分量。电子自旋在空间的取向只有两个,一个顺着磁场;另一个反着磁场,因此,自旋角动量在磁场方向上有两个分量。 电子的每一运动状态都与一定的能量相联系。主量子数n决定了电子的主要能量,半长轴相同的各种轨道电子具有相同的n,可以认为是分布在同一壳层上,随着主量子数不同,可分为许多壳层,n=1的壳层,离原子核最近,称为第一壳层;依次n=2、3、4、……的壳层,分别称为第二、三、四壳层……,用符号K、L、M、N、……代表相应的各个壳层。角量子数l决定了各椭圆轨道的形状,不同椭圆轨道有不同的能量。因此,又可以将具有同一主量子数n的每一壳层按不同的角量子数l分为n个支壳层,分别用符号s、p、d、f、g、……来代表。原子中的电子遵循一定的规律填充到各壳层中,首先填充到量子数最小的量子态,当电子逐渐填满同一主量子数的壳层,就完成一个闭合壳层,形成稳定的结构,次一个电子再填充新的壳层。这样便构成了原子的壳层结构。周期表中同族元素具有相类似的壳层结构 2、光谱项 由于核外电子之间存在着相互作用,其中包括电子轨道之间的相互作用,电子自旋运动之间的相互作用以及轨道运动与自旋运动之间的相互作用等,因此原子的核外电子排布并不能准确地表征原子的能量状态,原子的能量状态需要用以n、L、S、J等四个量子数为参 数的光谱项来表征:,n为主量子数。L为总角量子数。其数值为外层价电子角量子数l的矢量和即: (1-1-1) 两个价电子耦合所得的总角量子数 L 与单个价电子的角量子数 l1、l2有如下的关系:

原子发射光谱试题及答案

原子发射光谱试题及答案 一、选择题(50分) 1.下面几种常用的激发光源中,激发温度最高的是 ( ) A 、直流电弧 B 、交流电弧 C 、电火花 D 、高频电感耦合等离子体 2.下面哪种光源,不但能激发产生原子光谱和离子光谱,而且许多元素的离子线强度大于原子线强度?( ) A 、直流电弧 B 、交流电弧 C 、电火花 D 、高频电感耦合等离子体 3.原子发射光谱是由下列哪种跃迁产生的? ( ) A 、辐射能使气态原子外层电子激发 B 、辐射能使气态原子内层电子激发 C 、电热能使气态原子内层电子激发 D 、电热能使气态原子外层电子激发 4.下面几种常用的激发光源中,分析的线性范围最大的是 ( ) A 、直流电弧 B 、交流电弧 C 、电火花 D 、高频电感耦合等离子体 5.当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是 ( ) A 、K B 、Ca C 、Zn D 、Fe 6.用摄谱法进行光谱定性全分析时应选用下列哪种条件? ( ) A 、大电流,试样烧完 B 、大电流,试样不烧完 C 、小电流,试样烧完 D 、先小电流,后大电流至试样烧完 7.以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则 ( ) A 、光谱色散率变大,分辨率增高 B 、光谱色散率变大,分辨率降低 C 、光谱色散率变小,分辨率增高 D 、光谱色散率变小,分辨率亦降低 8.几种常用光源中,产生自吸现象最小的是 ( ) A 、交流电弧 B 、等离子体光源 C 、直流电弧 D 、火花光源 9.下面几种常用激发光源中,分析灵敏度最高的是 ( ) A 、直流电弧 B 、交流电弧 C 、电火花 D 、高频电感耦合等离子体 10.NaD 双线[λ(D 1)=5895.92, 由3P 1/2跃迁至3S 1/2;λ(D 2)=5889.95, 由3P 3/2跃迁至3S 1/2]的相对强度比I (D 1)/I (D 2)应为 ( ) A 、1/2 B 、1 C 、3/2 D 、2 11.发射光谱摄谱仪的检测器是 ( ) A 、暗箱 B 、感光板 C 、硒光电池 D 、光电倍增管 12.连续光谱是由下列哪种情况产生的? ( ) A 、炽热固体 B 、受激分子 C 、受激离子 D 、受激原子 13.发射光谱定量分析中产生较大背景而又未扣除分析线上的背景,会使工作曲线的下部( ) A 、向上弯曲 B 、向下弯曲 C 、变成折线 D 、变成波浪线 14.在进行发射光谱定性分析时,要说明有某元素存在,必须 ( ) A 、它的所有谱线均要出现 B 、只要找到2~3条谱线 C 、只要找到2~3条灵敏线 D 、只要找到1条灵敏线 15.当浓度较高时进行原子发射光谱分析,其工作曲线(lg I ~lg c )形状为 ( ) A 、直线下部向上弯曲 B 、直线上部向下弯曲 C 、直线下部向下弯曲 D 、直线上部向上弯曲 A 。A 。

原子吸收光谱法知识题及答案解析

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同) 无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少) 原子线(少) 离子线(谱线多)

(7)分析对象 多元素同时测定 单元素 单元素、多元素 (8)应用 可用作定性分析 定量分析 定量分析 (9)激发方式 光源 有原子化装置 有原子化装置 (10)色散系统 棱镜或光栅 光栅 可不需要色散装置 (但有滤光装置) (11)干扰 受温度影响严重 温度影响较小 受散射影响严重 (12)灵敏度 高 中 高 (13)精密度 稍差 适中 适中 3.已知钠蒸气的总压力(原子+离子)为1.013⨯l0-3Pa ,火焰温度为2 500K 时,电离平衡常数(用压力表示)为4.86⨯l0-4Pa 。试计算: (1)未电离钠原子的分压和电离度; (2) 加入钾为缓冲剂,电子分压为为1.013⨯l0-2Pa 时未电离的钠原子的分压。 (3) 设其它条件(如温度等)不变,加入钾后的钠原子线发射强度和吸光度的相对变化。 [提示:火焰气态原子行为可近似看成“理想”气体,即p =nkT 。火焰气体的电离忽略不计] 解:(1)Na ==Na + + e a b b ⎪⎩⎪⎨⎧⨯=+⨯==--Pa b a Pa a b K 34210013.11086.4/ ⎪⎩⎪⎨⎧⨯=⨯=--Pa b Pa a 4410995.410135.5 则未电离的钠原子的分压为5.135×10-4Pa 电离度494.0=+=b a b x (2)加入钾缓冲剂 Pa p p p K Na Na e 41086.4-⨯=⋅= + 即Pa p p Na Na 4321086.4)10013.1(10013.1---⨯=-⨯⨯⨯

原子发射光谱实验报告

原子发射光谱实验报告 篇一:电感耦合等离子体发射光谱实验报告 电感耦合等离子体发射光谱法 1.基本原理 1.1概述 原子发射光谱分析(atomic emission spectrometry,AES)是一种已有一个世纪以上悠久历史的分析方法,原子发射光谱分析的进展,在很大程度上依赖于激发光源的改进。 到了60年代中期,Fassel和Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体(inductively coupled plasma,ICP)原子发射光谱(ICP-AES)新技术,这在光谱化学分析上是一次重大的突破,从此,原子发射光谱分析技术又进入一个崭新的发展时期。 1.2方法原理 原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。 原子发射光谱法的量子力学基本原理如下: (1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;(2)当处于基态的气态原子或离子吸收

了一定的外界能量时,其核外电子就从一种能量状态(基态)跃迁到另一能量状态(激发态),设高能级的能量为E2,低能级的能量为E1,发射光谱的波长为λ(或频率ν),则电子能级跃迁释放出的能量△E与发射光谱的波长关系为△E= E2- E1=hν=hc/λ (3)处于激发态的原子或离子很不稳定,经约10-8秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来; (4)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);(5)由于原子或离子的能级很多并且不同元素的结构是不同的,因此,对特定元素的原子或离子可产生一系列不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。 半定量是对样品中一些元素的浓度进行大致估算。 一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。

相关主题
文本预览
相关文档 最新文档