当前位置:文档之家› 直驱型风力发电机组的比较

直驱型风力发电机组的比较

直驱型风力发电机组的比较授课:***

编订:Prof. Dr.-Ing. Friedrich Klinger

修改:孙伟

金风大学运维学院

注意:本课件参考Friedrich Klinger教授授课课件编写

2016年2月19日

课程目录

一、直驱风力发电机组整体概述

二、直驱发电机及主回路基本结构

三、各个厂商的直驱风力发电机组

直驱机组的整机结构

直驱机组的整机结构

发电机组励磁方式

电励磁方式永磁体励磁方式

内转子发电机外转子发电机

内转子发电机外转子发电机轮毂内发电机

发电机的冷却方式

二、直驱发电机及主回路结构永磁直驱发电机组主回路

电励磁直驱发电机组主回路

ENERCON公司的机组Enercon E44-E126

工程师Aloys Wobben 于1984年建立了Enercon公司。通过研究开发,Enercon 进行了深层次的革新。1991年,

公司率先制造出了世界上第一台无齿轮箱风能系统。这个概念促使Enercon 决心奉献于为世界创造能源的目标。Enercon公司于1993年开始批量无齿轮箱风机的系列生产以满足市场的大量需求,以及在效率、可靠性及服务寿命的需求。所有关键部件,如:转子叶片、环状电机、电控上网系统都是在内部研发制造的。

Windblatt

发电机采用强制空气冷却

GoldWind / Vensys公司的机组GW1500机组

金风1.5MW机组平台发电机采用自然空气冷却

GoldWind / Vensys公司的机组GW2500机组和GW3000机组

金风2.5MW/3.0MW机组平台发电机采用强制空气冷却

风力发电机组安装

4风力发电机组安装 4.1风力发电机安装 (1)风机设备吊装总体部署 结合风电场区域地形条件,根据吊装重量及起吊高度,吊装车辆采用800t 履带吊作为风机及塔架的主力吊装机械,150t液压汽车吊一台作为辅助机械,配合主吊车提升塔架和叶轮,使部件在吊装时保持向上位置,同时还可单独用于在地面组装叶轮。另外,还需配备2台50t吊车,用于在设备安装期间风场内搬运设备附件和重型工具。 风机设备安装采用组合与散装相结合的施工方案,总体安装顺序如下: 塔架下段吊装→塔架中段吊装→塔架上段吊装→机舱吊装→叶轮组合→叶轮组件吊装。 (2)塔架安装 ①塔架下段吊装 在塔架中下法兰对角安装2个“塔架中下段吊具”,在塔架下法兰安装1个“塔架辅助吊具”。 使用800t履带吊吊住塔架中下法兰面上的2个“塔架中下段吊具”;辅吊抬吊塔架下法兰的1个“塔架辅助吊具”。两车配合将塔架立直,然后辅吊摘钩,由主吊将塔架下段吊装就位。 ②塔架中段吊装 在塔架中下法兰安装1个“塔架辅助吊具”,在塔架中上法兰对角安装2个“塔架中下段吊具”。 使用主吊住塔架中上法兰面上的2个“塔架中上段吊具”,辅吊抬吊塔架中下法兰的1个“塔架辅助吊具”,两车配合将塔架立直,然后辅吊摘钩,由主吊单车将塔架中段吊装就位。 ③塔架上段吊装 在塔架上段法兰安装2个“塔架上段吊具”,在塔架中上法兰对角安装1个“塔架辅助吊具”。 使用主吊吊住塔架上法兰面上的2个“塔架上段吊具”,辅吊抬吊塔架中上法兰的1个“塔架辅助吊具”,两车配合将塔架立直,然后汽车吊摘钩,由主吊单车将塔架上段吊装就位。 (3)机舱安装 该项工作需用800t履带吊一台。 i)将固定机舱和塔架的螺栓及固定叶轮的螺栓放置在机舱内。 ii)将机舱专用吊具安装在机舱的四个吊点上,挂上吊钩。 iii)起吊机舱时机舱纵轴线应处于偏离主风向90°的位置,以便于叶轮的安装。 iv)使用800t履带吊缓慢吊起机舱至上法兰约1厘米处,安装人员用导正棒调整机舱的相对位置,同时指挥吊车缓慢下落机舱,拧上连接螺栓,按对角线顺序均匀地紧固上法兰与偏航轴承连接螺栓。 v)进入机舱,卸开吊具。 (4)叶轮组合及安装 ①叶轮组合

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

第3章-风力发电机组整体结构-答案

风力发电技术与风电场工程 第三章练习题及答案 一、填空题 1、并网型风力发电机的功能是将风轮获取的空气动能转换成机械能,再将机械能转换为电能,输送到电网中。 2、并网型风力发电机组的整体结构分为叶轮、机舱、塔架、和基础等几大部分。 3、机舱内布置的传动系统,由主轴、齿轮箱、联轴器和发电机等构成。 4、机舱底座是机组主驱动链和偏航机构固定的基础,并能将载荷传递到塔架上去。 5、铸造底座一般采用球墨铸铁制造,铸件尺寸稳定,吸振性和低温型较好。 6、整流罩是置于轮毂前面的罩子,其作用是整流,减小轮毂的阻力和保护轮毂中的设备。 7、风电机组的基础通常为钢筋混凝土结构,并且根据当地地质情况设计成不同的形式。基础周围还要设置预防雷击的接地系统。 8、塔架的基本形式有桁架式塔架和圆筒式塔架两大类。桁架式塔架优点为制造简单,成本低,运输方便,缺点为通向塔顶的上下梯子不好安排,塔架过于敞开,维护人员上下不安全。塔筒式塔架优点是美观大方,塔身封闭,风电机组维护时上下塔架安全可靠。 9、塔架高度主要依据风轮直径确定。 10、风电机组的基础主要按照塔架的载荷和机组所在地的气候环境条件,结合高层建筑建设规范建造。 11、风力发电机组的机械传动系统包括轮毂、主轴、齿轮箱、制动器、联轴器以及安全装置等。 12、齿轮箱的作用是传递扭矩和提供转速,通过两到三级渐开线圆柱齿轮增速传动得以实现,一般常采用行星齿轮或行星加平行轴齿轮组合传动结构。 13、齿轮箱输出轴(高速轴)通过柔性联轴器与发电机轴连接。 14、联轴器通过绝缘构件阻止发电机磁化齿轮箱内的齿轮和轴承等钢制零件,避免这些零件发生电腐蚀现象。联轴器上还设置有扭矩限制装置用以保护传动轴系,防止过载运行。 15、偏航系统功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫掠面与风向保持垂直。 16、机舱的偏航运动是由偏航齿轮装置自动执行的,它是根据风向仪提供的风向信号,由控制系统发出指令,通过传动机构使机舱旋转,让风轮始终处于迎风位置。 17、风向标是偏航系统的传感器。 18、偏航轴承有滚动轴承和滑动轴承两种,大型机组大多采用滚动轴承。 19、变桨机构中配置蓄电池的作用是以防电网突然掉电或电信号突然中断的紧急情况下,使得风电机组能够安全平稳地实现变桨。 20、液压系统的主要功能是向制动系统或液压、伺服变桨距控制系统的工作油缸提供压力油,由电动机、油泵、油箱、过滤器、管路及各种液压阀组成。 21、制动系统主要分为空气动力制动和机械制动两部分。

风力发电机标准IEC中文版

IEC61400-1第三版本2005-08 风机-第一分项:设计要求 1.术语和定义 1.1声的基准风速acoustic reference wind speed 标准状态下(指在10m高处,粗糙长度等于0.05m时),8m/s的风速。它为计算风力发电机组视在声功率级提供统一的根据。注:测声参考风速以m/s表示。 1.2年平均annual average 数量和持续时间足够充分的一组测试数据的平均值,用来估计均值大小。用于估计年平均的测试时间跨度应是一整年,以便消除如季节性等非稳定因素对均值的影响。 V annual average wind speed 1.3年平均风速 ave 基于年平均定义的平均风速。 1.4年发电量annual energy production 利用功率曲线和在轮毂高度处不同风速频率分布估算得到的一台风力发电机组一年时间内生产的全部电能。假设利用率为100%。 1.5视在声功率级apparent sound power level 在测声参考风速下,被测风力机风轮中心向下风向传播的大小为1pW点辐射源的A—计权声级功率级。注:视在声功率级通常以分贝表示。 1.6自动重合闸周期auto-reclosing cycle 电路发生故障后,断路器跳闸,在自动控制的作用下,断路器自动合闸,线路重新连接到电路。这过程在约0.01秒到几秒钟内即可完成。 1.7可利用率(风机)availability 在某一期间内,除去风力发电机组因维修或故障未工作的时数后余下的小时数与这一期间内总小时数的比值,用百分比表示。 1.8锁定(风机)blocking 利用机械销或其它装置,而不是通常的机械制动盘,防止风轮轴或偏航机构运动,一旦锁定发生后,就不能被意外释放。 1.9制动器(风机)brake 指用于转轴的减速或者停止转轴运转的装置。注:刹车装置利用气动,机械或电动原理来控制。 1.10严重故障(风机)catastrophic failure 零件或部件严重损坏,导致主要功能丧失,安全受到威胁。 1.11特征值characteristic value 在给定概率下不能达到的值(如超越概率,超越概率指出现的值大于或等于给定值的概率)。

(完整版)风力发电场安全规程DLT796-2012

风机发电场安全规程 1 范围 本标准规定了风力发电场人员、环境、安全作业的基本要求,风力发电机组安装、调试、检修和维护的安全要求,以及风力发电机组应急处理的相关安全要求。 本标准适用于陆上并网型风力发电场。 2 规范性引用文件 下列文件对于本文件的应用时必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 2894 安全标志及其使用导则 GB/T 2900.53 电工术语风力发电机组 GB/T6096安全带测试方法 GB 7000.1 灯具第一部分:一般要求与试验 GB 18451.1 风力发电机组设计要求 GB19155 高处作业吊篮 GB/T20319 风力发电机组验收规范 GB 26164.1电业安全工作规程第一部分:热力和机械 GB 26859电力安全工作规程电力线路部分 GB 26860 电力安全工作规程发电厂和变电站电气部分

GB 50016 建筑设计防火规范 GB 50140建筑灭火器配置设计规范 GB 50303建筑电气工程施工质量验收规范 DL/T 572 电力变压器运行规程 DL/T 574 变压器分接开关运行维修导则 DL/T 587 微机继电保护装置运行管理规程 DL/T 741 架空输电线路运行规程 DL/T 969 变电站运行导则 DL/T 5284 履带起重机安全操作规程 DL/T 5250 汽车起重机安全操作规程 JGJ 46 施工现场临时用电安全技术规范 3 术语和定义 下列术语和定义适用于本标准 3.1 风电场输变电设备 风电场升压站电气设备、集电线路、风力发电机组升压变等。3.2 坠落悬挂安全带 高出作业或登高人员发生坠落时,将坠落人员安全悬挂的安全带。 3.3

风力发电机设计

高等教育自学考试毕业设计(论文) 风力发电机设计题目 级机电一体化工程09专业班级 姓名高级工程师指导教师姓名、职称

所属助学单位 2011年 4月1 日 目录 1 绪论………………………………………………………………………………… 1 1.1 风力发电机简介 (1) 1.2 风力发电机的发展史简介 (1) 1.3 我国现阶段风电技术发展状况 (2) 1.4 我国现阶段风电技术发展前景和未来发展 (2) 2 风力发电机结构设计……………………………………………………………… 3 2.1 单一风力发电机组成 (3) 2.2 叶片数目 (3) 2.3 机舱 (4) 2.4 转子叶片 (5) 3 风力发电机的回转体结构设计和参数计算 (5) 3.1联轴器的型号及主要参数 (5) 3.2 初步估计回转体危险轴颈的大小 (5) 3.3 叶片扫描半径单元叶尖速比 (6) 4 风轮桨叶的结构设计……………………………………………………………… 6 4.1桨叶轴复位斜板设计 (6) 4.2托架的基本结构设计 (6) 5 风力发电机的其他元件的设计 (6) 5.1 刹车装置的设计 (6) 6 风力发电机在设计中的3个关键技术问题 (7) 6.1空气动力学问题 (7) 6.2结构动力学问题 (7) 6.3控制技术问题 (7)

7 风力发电机的分类………………………………………………………………… 7 8 风力发电机的选取标准 (8) 9 风力发电机对风能以及其它的技术要求………………………………………… 8 9.1风力发电机对风能技术要求 (8) 9.2风力发电机建模的技术是暂态稳定系统 (9) 9.3风力电动机技术之间的能量转换 (10) 10 风力发电机在现实中的使用范例 (10) 结论 (12) 致谢 (13) 参考文献 (14) 摘要 随着世界工业化进程不断加快,能源消耗不断增加,全球工业有害物质排放量与日俱增,造成了能源短缺和恶性疾病的多发,致使能源和环境成为当今世界两大问题。因此,风力发电的研究显得尤为重要。 我国风电场内无功补偿的方式是在风电场汇集站内装设集中无功补偿装置,这造成风电场无功补偿的投资很大。文章结合实例,通过对不同发电量下风电场的无功损耗和电压波动情况进行计算,提出利用风力发电机的无功功率可基本实现风电场的无功平衡,风电场母线电压的变化是无功补偿设备选型的依据,对于发电量变化引起的母线电压变化不超出电网要求的风电场,应利用风力发电机的无功功率减小汇集站内无功补偿装置的容量,降低无功补偿的投资。 关键词:风力发电、风电场、无功补偿、电压波动

风电标准大全

风电标准大全 电工术语 发电、输电及配电 通用术语 电工术语风力发电机组 风力发电机组型式与基本参数 离网型风力发电机组用发电机 第1部分:技术条件 离网型风力发电机组用发电机 第2部分:试验方法 风力机设计通用要求 小型风力发电机组安全要求 风力发电机组安全要求 风力发电机组功率特性试验 风电场风能资源测量方法 风电场风能资源评估方法 离网型风力发电机组第 1部分:技术条件 离网型风力发电机组第 2部分:试验方法 离网型风力发电机组第 3部分:风洞试验方法 风力发电机组控制器技术条件 风力发电机组控制器试验方法 风力发电机组 异步发电机第1部分:技术条件 风力发电机组 异步发电机第2部分:试验方法 风力发电机组塔架 风力发电机组齿轮箱 离网型户用风光互补发电系统 第1部分:技术条件 离网型户用风光互补发电系统 第2部分:试验方法 风力发电机组装配和安装规范 风力发电机组第1部分:通用技术条件 风力发电机组第2部分:通用试验方法 风电场接入电力系统技术规定 风力发电机组验收规范 GB/T 2900.50-1998 GB/T 2900.53-2001 GB/T 8116-87 GB/T 10760.1-2003 GB/T 10760.2-2003 GB/T 13981-1992 GB 17646-1998 GB 18451.1-2001 GB/T 18451.2-2003 GB/T 18709-2002 GB/T 18710-2002 GB/T 19068.1-2003 GB/T 19068.2-2003 GB/T 19068.3-2003 GB/T 19069-2003 GB/T 19070-2003 GB/T 19071.1-2003 GB/T 19071.2-2003 GB/T 19072-2003 GB/T 19073-2003 GB/T 19115.1-2003 GB/T 19115.2-2003 GB/T 19568-2004 GB/T 19960.1-2005 GB/T 19960.2-2005 GB/Z 19963-2005 GB/T 20319-2006 GB/T 20320-2006

风力发电机组总体设计

1.总体设计 一、气动布局方案 包括对各类构形、型式和气动布局方案的比较和选择、模型吹风,性能及其他气动特性的初步计算,确定整机和各部件(系统)主要参数,各部件相对位置等。最后,绘制整机三面图,并提交有关的分析计算报告。 二、整机总体布置方案 包括整机各部件、各系统、附件和设备等布置。此时要求考虑布置得合理、协调、紧凑,保证正常工作和便于维护等要求,并考虑有效合理的重心位置。最后绘制整机总体布置图,并编写有关报告和说明书。 三、整机总体结构方案 包括对整机结构承力件的布置,传力路线的分析,主要承力构件的承力型式分析,设计分离面和对接型式的选择,和各种结构材料的选择等。整机总体结构方案可结合总体布置一起进行,并在整机总体布置图上加以反映,也可绘制一些附加的图纸。需要有相应的报告和技术说明。 四、各部件和系统的方案 应包括对各部件和系统的要求、组成、原理分析、结构型式、参数及附件的选择等工作。最后,应绘制有关部件的理论图和有关系统的原理图,并编写有关的报告和技术说明。五、整机重量计算、重量分配和重心定位 包括整机总重量的确定、各部分重量的确定、重心和惯量计算等工作。最后应提交有关重量和重心等计算报告,并绘制重心定位图。 六、配套附件 整机配套附件和备件等设备的选择和确定,新材料和新工艺的选择,对新研制的部件要确定技术要求和协作关系。最后提交协作及采购清单等有关文件。总体设计阶段将解决全局性的重大问题,必须精心和慎重地进行,要尽可能充分利用已有的经验,以求总体设计阶段中的重大决策建立在可靠的理论分析和试验基础上,避免以后出现不应有重大反复。阶段的结果是应给出风力发电机组整机三面图,整机总体布置图,重心定位图,整机重量和重心计算报告,性能计算报告,初步的外负载计算报告,整机结构承力初步分析报告,各部件和系统的初步技术要求,部件理论图,系统原理图,新工艺、新材料等协作要求和采购清单等,以及其他有关经济性和使用性能等应有明确文件。 2.总体参数 在风轮气动设计前必须先确定下列总体参数。 一、风轮叶片数B 一般风轮叶片数取决于风轮的尖速比λ。目前用于风力发电一般属于高速风力发电机组,即λ=4-7 左右,叶片数一般取2—3。用于风力提水的风力机一般属于低速风力机,叶片数较多。叶片数多的风力机在低尖速比运行时有较低的风能利用系数,即有较大的转矩,而且起动风速亦低,因此适用于提水。而叶片数少的风力发电机组的高尖速比运行时有较高的风能利用系数,且起动风速较高。另外,叶片数目确定应与实度一起考虑,既要考虑风能

风力发电机组安装质量验收讲解

风力发电机组安装工程质量验收标准

1、编制依据 1.1风力发电场项目工程验收规程 DL/T5191-2004; 1.2风力发电机组塔架 GB/T19072-2003; 1.3风力发电机组验收规范 GB/T 20319—2006; 1.4风力发电场运行规程 DL/T 666-1999; 1.5风力发电场安全规程DL 796-2001; 1.6风力发电场检修规程 DL/T 797-2001; 1.7风力发电机组安全要求 GB 18451.1-2001; 1.8风力发电机组装配和安装规范 GB/T 19568-2004; 1.9风力发电机组第2部分:通用试验方法 GB/T 19960.2-2005; 1.10风力发电机组异步发电机第2部分:试验方法 GB/T 19071.2-2003; 1.11风力发电机组功率特性试验 GB/T 18451.2-2003; 1.12风力发电机组控制器试验方法 GB/T 19070-2003; 1.13风力发电机组齿轮箱 GB/T 19073-2003; 1.14风力发电机组风轮叶片JB/T 10194-2000; 1.15风力发电机组偏航系统第2部分:试验方法 JB/T 10425.2-2004; 1.16风力发电机组制动系统第2部分:试验方法 JB/T 10426.2-2004; 1.17风力发电机组一般液压系统 JB/T 10427-2004; 1.18电气设备交接试验标准 GB 50150-2006; 1.19电气装置安装工程质量检验及评定规程DL/T5161-2002; 1.20参照《风力发电工程施工与验收》中国水利水电出版社2009、华锐风电科技(集团)股份有限公司、广东明阳风电产业集团有限公司等风机生产厂家的风力发电机组安装手册。 2、总则 2.1 本标准适用于xxx风力发电有限公司所属1.5MW及以上风力发电机组安装工程的质量验收,其它型号的风电机组可参照执行。 2.2 相关单位应按本标准及有关规定的要求,及时进行质量检查验收并签证。对本标准中尚未涉及的项目和不具体、不完善的质量标准,由建设单位负责组织设计、制造、监理等单位代表,在现场依据有关标准,协商制订补充规定作为该工程质量检验依据。 2.3 本标准按每台机组安装为一个子单位工程,共有机舱叶轮安装、塔架安装和电缆敷设

风力发电机设计

摘要 自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。 风能利用发展中的关键技术问题风能技术是一项涉及多个学科的综合技术。而且,风力机具有不同于通常机械系统的特性:动力源是具有很强随机性和不连续性的自然风,叶片经常运行在失速工况,传动系统的动力输入异常不规则,疲劳负载高于通常旋转机械几十倍。 本文通过对风力发电机的总体设计,叶片、轮毂机构的设计,水平回转机构的设计,齿轮箱系统的设计,以达到利用风能发电的目的,有效利用风能资源,减少对不可再生资源的消耗,降低对环境的污染。 关键词:风能;风力发电机;叶片;轮毂;齿轮箱

Abstract Natural wind speed and direction of change is random, wind characteristics of uncertainty, how to make wind turbine output power stability, wind power technology is an important subject. So far, have raised a variety of ways to improve the quality of the wind, such as the use of variable speed control technology, can make use of wind round the moment of inertia smooth power output. Because variable speed wind power group using a power electronic devices, when it will transfer to the output of electric power grids, will change in the wave's power, and power factor deterioration. Use of wind energy in the development of key technical issues involved in wind energy technology is one of a number of integrated technical disciplines. Moreover, the wind turbine is usually different from the mechanical system characteristics: a strong power source is not random and continuity of the natural wind, the leaves often run in the stall condition, the power transmission system very irregular importation, fatigue load than Rotating Machinery usually several times. Based on the wind turbine design, leaves, the wheel design, level of rotating the design, gear box system design, use of wind power to achieve the objective of effective use of wind energy resources, reduce non-renewable resources Consumption, reduce the environmental pollution. Key words: wind power;wind power generators;blade;wheel;Gearbox

风力发电机组验收标准

国电电力山西新能源开发有限公司 风力发电机组验收规范为确保风力发电机组在现场安装调试完成后,综合检验风电机组的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 一、编制依据: 1、风力发电机组验收规范 GB/T20319-2006 2、建筑工程施工质量验收统一标准GB50300 3、风力发电场项目建设工程验收规程 DL/T5191-2004 4、电气设备交接试验标准GB50150 5、电气装置安装工程接地装置施工及验收规范GB50169 6、电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 7、电气装置安装工程低压电器施工及验收规范GB50254 8、电器安装工程高压电器施工及验收规范GBJ147 9、建筑电气工程施工质量验收规范GB50303 10、风力发电厂运行规程DL/T666 11、电力建设施工及验收技术规程DL/T5007 12、联合动力风电机组技术说明书、使用手册和安装手册

13、风电机组订货合同中的有关技术性能指标要求 14、风力发电机组塔架及其基础设计图纸与有关标准 二、验收组织机构 风电机组工程调试完成后,建设单位组建验收领导小组,设组长1名、副组长4名、组员若干名,由建设、设计、监理、施工、安装、调试、生产厂家等有关单位负责人及有关专业技术人员组成。 三、验收程序 1 现场调试 (1)风力发电机组安装工程完成后,设备通电前应符合下列要求: (a)现场清扫整理完毕; (b)机组安装检查结束并经确认(内容见附表1); (c)机组电气系统的接地装置连接可靠,接地电阻经检测符合机组的设计要求(小于4欧姆); (d) 测定发电机定子绕组、转子绕组的对地绝缘电阻,符合机组的设计要求; (e) 发电机引出线相序正确,固定牢固,连接紧密; (f) 照明、通讯、安全防护装置齐全。 (2) 机组启动前应进行控制功能和安全保护功能的检查和试验,确认各项控制功能好安全保护动作准确、可靠。

风力发电场设计技术规范----DL

风力发电场设计技术规范DL/T 2383-2007 Technical specification of wind power plant design 1. 范围本标准规定了风力发电场设计的基本技术要求。本标准适用于装机容量5MW 及以上风力发电场设计。 2. 规范性引用文件 GB 50059 35~110KV 变电所设计规范 GB 50061 66KV 及以下架空电力线路设计规范 DL/T 5092 110KV~500KV 架空送电线路设计技术规程 DL/T 5218 220KV~500KV 变电所设计技术规程 3. 总则 3.0.1 风力发电场的设计应执行国家的有关政策,符合安全可靠、技术先进和经济合理的要求。 3.0.2 风力发电场的设计应结合工程的中长期发展规划进行,正确处理近期建设与远期发展的关系,考虑后期发展扩建的可能。 3.0.3 风力发电场的设计,必须坚持节约用地的原则。 3.0.4 风力发电场的设计应本着对场区环境保护的,减少对地面植被的破坏。 3.0.5 风力发电场的设计应考虑充分利用声区已有的设施,避免重复建设。 3.0.6 风力发电场的设计应本着“节能降耗”的原则,采用先进技术、先进方法,减少损耗。 3.0.7 风力发电场的设计除应执行本规范外,还应符合现行的国家有关标准和规范的规定。 4. 风力发电场总体布局 4.0.1 风力发电场总体布局依据:可行性研究报告、接入系统方案、土地征占用批准文件、地质勘测报告、环境影响评价报告、水土保持评价报告及国家、地方、行业有关的法律、法规等技术资料、 4.0.2 风力发电场总体布局设计应由以下部分组成: 1.风力发电机组的布置 2.中央监控室及场区建筑物布置 3.升压站布置。 4.场区集电线路布置 5.风力发电机组变电单元布置 6.中央监控通信系统布置 7.场区道路

风电机组选型

5 风电机组选型、布置及风电场发电量估算 5.1 风电机组选型 5.1.1 单机容量范围及方案的拟定 5.1.1.1 风电机组发电机类型的确定 风电场机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效益。随着国内外风力发电设备制造技术日趋成熟,针对不同区域风资源条件,各风机设备制造厂家已经开发出不同结构型式、不同控制调节方式的风力发电机组可供选择。按照IEC61400-1标准(风电机组设计要求),风电场机组按50年一遇极大风速可分为I、II、III三个标准等级,每个等级按15m/s风速区间的湍流强度可分为A、B、C三个标准等级,为特殊风况和外部条件设计的为S级。因此,根据怀宁风电场场址的地形、交通运输情况、风资源条件和风况特征,结合国内外商品化风电机组的制造水平、技术成熟程度以及风电机组本地化率的要求,进行风电场机组型式选择。 风力发电机组选型应考虑的几种因素 (1) 风电机组应满足一定的安全等级要求 表5.1.1.1-1 IEC61400-1各等级WTGS基本参数 上表中各数据应用于轮毂高度,其中V ref为10min平均参考风速,A 表示较高湍流特性,B表示中等湍流特性,C表示较低湍流特性,Iref为湍流强度15m/s时的特性。在轮毂高度处,15m/s风速区间的湍流强度值不大于0.12,极大风速为28.2m/s。根据国际电工协会IEC61400-1(2005)标准判定本风电场工程70~90m轮毂高度适宜选择IECⅢC及以上等级的风力发电机组。

(2) 风轮输出功率控制方式 风轮输出功率控制方式分为失速调节和变桨距调节两种。两种控制方式各有利弊,各自适应不同的运行环境和运行要求。从目前市场情况看,采用变桨距调节方式的风电机组居多。 (3) 风电机组的运行方式 风电机组的运行方式分为变速运行与恒速运行。恒速运行的风力机的好处是控制简单,可靠性好。缺点是由于转速基本恒定,而风速经常变化,因此风力发电机组经常工作在风能利用系数(Cp)较低的点上,风能得不到充分利用。变速运行的风电机组一般采用双馈异步发电机或多极永磁同步发电机。变速运行方式通过控制发电机的转速,能使风力机的叶尖速比接近最佳值,从而最大限度的利用风能,提高风力发电机组的运行效率。 (4) 发电机的类型 目前,市场上主流的变速变桨恒频型风电机组技术分为双馈式和直驱式两大类。双馈式变桨变速恒频技术的主要特点是采用了风轮可变速变桨运行,传动系统采用齿轮箱增速和双馈异步发电机并网,而直驱式变速变桨恒频技术采用了风轮与发电机直接耦合的传动方式,发电机多采用多极同步电机,通过全功率变频装置并网。直驱技术的最大特点是可靠性和效率都进一步得到了提高。 还有一种介于二者之间的半直驱式,由叶轮通过单级增速装置驱动多极同步发电机,是直驱式和传统型风力发电机的混合,但是该类产品还不是很成熟,因此本工程不推荐。 双馈式:交流励磁发电机又被人们称之为双馈发电机。双馈风电机组中,为了让风轮的转速和发电机的转速相匹配,必须在风轮和发电机之间用齿轮箱来联接,这就增加了机组的总成本;而齿轮箱噪音大、故障率高、需要定期维护,并且增加了机械损耗;机组中采用的双向变频器结构和控制复杂;电刷和滑环间也存在机械磨损。目前,世界各国正在针对这些缺点改进机组或研制新型机组,如无刷双馈机组。 永磁直驱风电机组,就是取消了昂贵而又沉重的增速齿轮箱,风轮轴直接和发电机轴直接相连,转子的转速随来流风速的变化而改变,其交流

风电标准大全

风电标准大全 GB/T 2900.50-1998电工术语发电、输电及配电通用术语 GB/T 2900.53-2001电工术语风力发电机组 GB/T 8116-87风力发电机组型式与基本参数 GB/T 10760.1-2003 离网型风力发电机组用发电机第1部分:技术条件GB/T 10760.2-2003离网型风力发电机组用发电机第2部分:试验方法 GB/T 13981-1992风力机设计通用要求 GB 17646-1998小型风力发电机组安全要求 GB 18451.1-2001风力发电机组安全要求 GB/T 18451.2-2003风力发电机组功率特性试验 GB/T 18709-2002 风电场风能资源测量方法 GB/T 18710-2002 风电场风能资源评估方法 GB/T 19068.1-2003离网型风力发电机组第1部分:技术条件 GB/T 19068.2-2003离网型风力发电机组第2部分:试验方法 GB/T 19068.3-2003离网型风力发电机组第3部分:风洞试验方法 GB/T 19069-2003风力发电机组控制器技术条件 GB/T 19070-2003风力发电机组控制器试验方法 GB/T 19071.1-2003风力发电机组异步发电机第1部分:技术条件 GB/T 19071.2-2003风力发电机组异步发电机第2部分:试验方法 GB/T 19072-2003风力发电机组塔架 GB/T 19073-2003风力发电机组齿轮箱 GB/T 19115.1-2003离网型户用风光互补发电系统第1部分:技术条件 GB/T 19115.2-2003离网型户用风光互补发电系统第2部分:试验方法 GB/T 19568-2004风力发电机组装配和安装规范 GB/T 19960.1-2005风力发电机组第1部分:通用技术条件 GB/T 19960.2-2005风力发电机组第2部分:通用试验方法 GB/Z 19963-2005风电场接入电力系统技术规定 GB/T 20319-2006风力发电机组验收规范 GB/T 20320-2006风力发电机组电能质量测量和评估方法

风力发电机组安装及验收规定

风力发电机组安装及验收规定 1.总则 1.1为加强风力发电场项目建设工程风力发电机组安装及验收管理工怍,确保风力发电机组安装质量,特制定本规定。 1.2本规定依据《风力发电机组装配和安装规范》(GB/T19568-2004)和《风力发电机组验收规范》(GB/T20319-2006)制定。 1.3本规定适用于公司实施风力发电场项目建设工程监理的各项目监理部。 2.风力发电机组安装的一般要求 2.1安装风力发电机组的地基应按照有效批准程序批准的技术文件进行施工,并且能够保证承受其安装后最大工作状态的强度。 2.2基础环应用水平仪校验,基础环与塔架接触面的水平度应符合厂家规定要求,以满足机组安装后塔架与水平面的垂直度要求。 2.3基础环和相应构件位置应准确无误并牢固地浇筑在基础上。 2.4基础应有良好的接地装置,其接地电阻值应符合设计要求。 2.5风力发电机组的部、组件运到现场后,应进行详细检查,防止在运输中碰伤、变形、构件脱落、松动等现象。不合格的产品不得安装。 2.6现场安装人员应具有一定的安装经验。关键工序,如吊装工、焊接及焊接检验人员应持有当地省市劳动部门颁发的上岗证,方可上岗。 2.7安装现场的工作人员应佩戴安全装备,如:安全鞋、安全帽、工作服、防护手套、安全带等。 2.8高空作业的现场地面不允许停留闲杂人员,不允许上下抛掷任何物体,也不允许将任何物体遗漏在高空作业场所。 2.9安全防护区应有警告标志。 2.10吊装物应固定牢靠,防止坠落,发生意外。 2.11大型零部件在运输时应采取有效措施,保证运输安全;应提出对道路的宽度、最小转弯半径、最大承载力的要求。 2.12平均风速大于10m/s时和雷雨气候下不允许进行吊装工作。 2.13应有吊装现场的风力发电机组和吊车在吊装中的位置图。 3.塔架安装

风力发电机的分类

,风力发电机按叶片分类. 按照风力发电机主轴地方向分类可分为水平轴风力发电机和垂直轴风力发电机. ()水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平地风力发电机. 水平轴风力发电机相对于垂直轴发电机地优点;叶片旋转空间大,转速高.适合于大型风力发电厂.水平轴风力发电机组地发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高.到目前为止,用于发电地风力发电机都为水平轴,还没有商业化地垂直轴地风力发电机组. 资料个人收集整理,勿做商业用途 ()垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直地风力发电机.垂直轴风力发电机相对于水平轴发电机地优点在于;发电效率高,对风地转向没有要求,叶片转动空间小,抗风能力强(可抗级台风),启动风速小维修保养简单. 垂直轴与水平式地风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式地要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式地更加安全稳定;另外,国内外大量地案例证明,水平式地风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故.资料个人收集整理,勿做商业用途 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机. 凡属轴流风扇地叶片数目往往是奇数设计. 这是由于若采用偶数片形状对称地扇叶,不易调整平衡.还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生地疲劳,将会使叶片或心轴发生断裂. 因此设计多为轴心不对称地奇数片扇叶设计.对于轴心不对称地奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内地各种扇叶设计中.包括家庭使用地电风扇都是个叶片地,叶片形状是鸟翼型(设计术语),这样地叶片流量大,噪声低,符合流体力学原理.所以绝大多数风扇都是三片叶地.三片叶有较好地动平衡,不易产生振荡,减少轴承地磨损.降低维修成本.资料个人收集整理,勿做商业用途 按照风机接受风地方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型.资料个人收集整理,勿做商业用途 上风向风机一般需要有某种调向装置来保持叶轮迎风. 而下风向风机则能够自动对准风向, 从而免除了调向装置.但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片地气流而形成所谓塔影效应,使性能有所降低.资料个人收集整理,勿做商业用途 ,按照风力发电机地输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列. ()小型风力发电机是指发电机容量为地风力发电机. ()中型风力发电机是指发电机容量为地风力发电机. ()大型风力发电机是指发电机容量为地风力发电机. 兆瓦级风力发电机是指发电机容量为以上地风力发电机. ,按功率调节方式分类.可分为定桨距时速调节型,变桨距型,主动失速型和独立变桨型风力发电机. ()定桨距失速型风机;桨叶于轮毂固定连接,桨叶地迎风角度不随风速而变化.依靠桨叶地气动特性自动失速,即当风速大于额定风速时依靠叶片地失速特性保持输入功率基本恒定.资料个人收集整理,勿做商业用途 ()变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内.资料个人收集整理,勿做商业用途 ()主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功率增加资料个人收集整理,勿做商业用途 ()独立变桨控制风力机:由于叶片尺寸较大,每个叶片有十几吨甚至几十吨,叶片运行在不同地位置,受力状况也是不同地故叶片中立对风轮力矩地影响也是不可忽略地.通过对三个叶片进行独立地控制,可以大大减小风力机叶片负载地波动及转矩地波动,进而减小传动机构与齿轮箱地疲劳度,减小塔架地震动,输出功率基本恒定在额定功率附近.资料个人收集整理,勿做商业用途

风力发电机组标准模板

风力发电机组标准(外部条件) -6-1411:23:58中国船级社 外部条件(内容没经过教对,上载上可能有一定的错误) 一般要求 在风力发电机组的设计中, 至少应考虑本节所述的外部条件。 风力发电机组承受环境和电网的影响, 其主要体现在载荷、使用寿命和正常运行等方面。为保证安全和可靠性, 在设计中应考虑到环境、电网和土壤参数, 并在设计文件中明确规定。环境条件可划分为风况和其它外部条件。土壤特性关系到风力发电机组的基础设计。各类外部条件可分为正常外部条件和极端外部条件。正常外部条件一般涉及结构长期承载和运行状态。极端外部条件是潜在的临界外部设计条件。设计载荷系由这些外部条件和风力发电机组的运行状态组合而成。 对结构整体而言, 风况是最基本的外部条件。其它环境条件对设计特性, 诸如控制系统功能、耐久性、锈蚀等均有影响。 根据风力发电机组安全等级的要求, 设计中要考虑本节所述的正 常外部条件和极端外部条件。 风力发电机组分级

风力发电机组的设计中, 外部条件应由其安装场地和场地类型决定。风力发电机组的安全等级及相应的风速和风湍流参数应符合表2.2.2.1的规定。 对需要特殊设计( 如特殊风况或其它特殊外部条件) 的风力发电机组, 规定了特殊安全等级——S级。S级风力发电机组的设计值由设计者确定, 并应在设计文件中详细说明。对这样的特殊设计, 选取的设计值所反映的外部条件比预期使用的外部条件更为恶劣。近海安装为特殊外部条件, 要求风力发电机组按S级设计。 各等级风力发电机组的基本参数①表2.2.2.1 注: 表中数据为轮毂高度处值, 其中: A表示较高湍流特性级; 参考风速Vref为10min平均风速; B表示中等湍流特性级; I15风速为15m/s时的湍流强度特性值。C表示较低湍流特性级; 除表基本参数外, 在风力发电机组设计中, 还需要某些更重要的参数来规定外部条件。对风力发电机组IA~IIIC级, 统称为风力发电机组的标准等级, 在本节2.2.3、2.2.4、2.2.5中规定了这些等级的补充参数值。 一般风力发电机组的设计寿命应为20年。

相关主题
文本预览
相关文档 最新文档