当前位置:文档之家› 直驱型风力发电机组建模

直驱型风力发电机组建模

直驱型风力发电机组建模
直驱型风力发电机组建模

直驱型风力发电机组建模

H56-850直驱型感应风力发电机组模型结构如图7所示,包括风力机、齿轮箱、六相同步发电机、励磁控制器、不可控整流器、PWM 逆变器等。风力机中风轮将风能转化为机械能,再通过风力机的转轴把机械能输入到发电机的转子轴上,经由发电机将机械能转变电能,最后通过发电机变流器控制,实现风电系统的变速恒频发电。由于H56-850直驱型风力发电系统控制变流器系统电机侧采用不可控整流,为此须同步发电机励磁控制维持直流母线电压,同时网侧逆变器用以控制有功功率或转速实现最佳风能跟踪控制。

图7 直驱型风力发电系统

2.1 风力机模型

风力机用于截获流动空气所具有的动能,并将其转化为有用的机械能,再驱动发电机旋转生产电能。由风力机的空气动力学特性可以得到,风力机的输出功率,

3

1(,)2

w w w P w

P T AC v ωρλβ==

(1) 叶尖速比λ为,

w w

R

v ωλ?=

(2)

风力机的输出转矩,

2331

(,)2w

w w P w P R T AC ωρλβωλ

== (3)

式中P w 为风机输出功率,ωw 为风力机转子转速,T w 为风力机输出转矩,ρ为风电场的空气密度,A=πR 2为叶片面积,C p (λ, β)为风能利用系数,β为桨距控制角,v w 为风电场风速,R 为叶片半径。下图为Matlab/Simulink 中风力机的模块结构框图。

图8 风力机模块结构

图8中风力机输入的风力机转子转速为标幺值,以风能利用系数Cp 为最大值Cpmax 时(此时桨距角β=0)的额定风速和转速为基准值,可由下式得到叶尖速比λ实际值,

_max _max _1

__w pu

Cp w Cp w pu

w

w pu rated w

v K v v ωλωλω==

? (4)

风力机的风能利用系数(,)P C λβ与桨距角β和叶尖速比λ有关,可采用下式作为Cp 的近似表达式为(来源于1998年Heier 文章,系数须根据武隆的实际数据进行修正),

[]{}

5()1643283

7(2.5)e 1

(2.5)1(2.5)C p C C C C C C C C λβλββ-Λ=+--++ΛΛ=-

++++ (5)

由于风能利用系数Cp 为最大值Cpmax 且转子转速为ωw_pu_rated 时,风力机的输出功率标幺值P w_pu_Cpmax_rated 小于1,可得风力机输出功率为,

___max_3323

_max

max

w rated w pu Cp rated

w p w

p w w Cp p P P P K C v C v v

C ==

(6)

风能利用系数C p

叶尖速比λ

图9 风能利用系数随叶尖速比变化

风能利用系数C p

转速ω/pu

V w =7m/s 风力机出力P w /p u

V w =8m/s V w =9m/s

V w =10m/s V w =11m/s V w =12m/s

转速ω/pu

图10 风能利用系数随叶尖速比变化

取C 1=0.645,C 2=116,C 3=0.4,C 4=5,C 5=21,C 6=0.00912,C 7=0.08,C 8=0.035,Cpmax=0.5,λCpmax =9.9495,v w_Cpmax =11m/s ,ωw_pu_rated =1.2pu ,P w_pu_Cpmax_rated =0.75 pu ,可得桨距角β=0时风能利用系数Cp 随叶尖速比λ变化曲线如图9所示,不同风速下Cp 和风力机出力随转速变化曲线如图10所示,可见不同风速下调节风力机转速即可双馈感应风电机组的最大功率跟踪。

2.2 轴系模型

由于风电系统中齿轮箱的存在,使得风力机发电机组传动轴系存在很大的柔性,由于传动轴系的柔性主要来源于低速传动轴,通常将高速传动轴的柔性忽略或者计入低速传动轴中,将齿轮箱的惯性时间常数计入发电机转子中,这样将风力机和发电机转子分别等效为一个质量块,可以建立两个质量块的风力机发电机组轴系模型,如图11所示。其运动方程的数学模型如下式,

02()2()()w

w

w sh sh mutual w g g

g sh sh mutual w g e sh

w g d H T K D dt d H K D T dt d dt ωθωωωθωωθωωω??=-+-??=+--=- (7)

H w

图11 两质量块轴系结构

图12 机械轴系模块结构

其中H w 和H g 分别为风力机和发电机转子(含齿轮箱)的惯性时间常数,ωw 和ωg 分别为风力机和发电机转子的电角速度,θsh 为风力机相对于发电机转子的角位移,D sh 为风力机和发电机之间的阻尼系数,K sh 为传动轴系刚度系数,D w 和D g 分别为风力机和发电机转子自身的阻尼系数,式(7)中忽略了风力机和发电机转子自身的阻尼系数,且发电机转子运动方程已包含在同步电机模型中。

2.3 六相同步发电机及其励磁控制模型

当定、转子均采用电动机惯例时,感应发电机在同步旋转参考坐标系下的电压方程为,

sd

sd s sd s sq sq

sq s sq s sd

rd

rd r rd s rq

rq

rq r rq s rd

d u R i dt d u R i dt

d u R i s dt d u R i s dt ψωψψωψψωψψωψ=+

-=++=+-=++ (8)

磁链方程为,

sd s sd m rd sq s sq m rq rd r rd m sd rq r rq m sq

L i L i L i L i L i L i L i L i ψψψψ=+=+=+=+ (9)

式中,ωs 为电机同步转速;u 、ψ、i 、R 、L 为绕组的电压、磁链、电流、电阻和电感;L m 为定、转子绕组之间的互感;下标s 、r 分别代表电机的定子量和转子量;下标d 、q 分别代表电机的d 、q 轴分量;s 为电机转差率。

电磁转矩的表达式为,

()e p m sq rd sd rq T n L i i i i =- (10)

式中n p 为感应发电机极对数,其转子运动方程即为轴系方程式(7)中的发电机运行方程如下,

2()g g

sh sh mutual w g e d H K D T dt

ωθωω=+-- (11)

风电机组的同步发电机带轴连接励磁机,励磁机由直流电压控制,其产生的交流电通过旋转整流器整流后输入主机转子产生励磁电流。图13为同步发电机励磁控制模块,其中图13(a)为同步发电机定子磁通计算模块,图13(b)中利用直流母线电压偏差信号经PI 调节后得到定子磁通参考值,再由定子磁通跟踪内环实现同步发电机的励磁控制。

(a)

(b)

图13 同步发电机励磁控制

2.4 网侧逆变器及其控制模型

直驱型风力发电机网侧逆变器采用电压矢量定向控制,在电网电压定向的条件下,发电机转子电流的d、q轴分量分别与发电机输出有功功率以及无功功率之间存在一一对应的关系,利用发电机转子励磁电压控制转子电流d、q轴分量就可以达到控制发电机输出有功功率以及无功功率的目的。双馈感应发电机网侧变流器的控制目标是,保障输出直流母线电压恒定且具有良好的动态响应能力,确保网侧输入电流正弦,输入功率因数接近1,图14为网侧PWM逆变器的示意图。

gc

图14 H56-850网侧PWM逆变器

上图中u ia、u ib和u ic分别为变流器侧三相电压(控制量),u ga、u gb、u gc和i ga、i gb、i gc分别为网侧三相电压和电流,L g和R g分别为网侧滤波电感及其损耗电阻,

C dc 和U dc 分别为直流侧电容和母线电压,可得其电压暂态方程为,

ga ia ga g ga g gb ib gb g gb g gc ic gc g gc g

di u u R i L dt di u u R i L dt di u u R i L dt

=--=--=-- (12)

将abc 自然坐标系转化为dq 旋转坐标系可得,

gd id gd g gd g s g gq

gq iq gq g gq g

s g gd

di u u R i L L i dt di u u R i L L i dt

ωω=--+=--- (13)

式中u gd 、u gq 分别为转换到同步旋转坐标系的电网电压d 、q 分量;u id 、u iq 为变流器侧电压d 、q 分量,i gd 、i gq 为网侧变流器电流的d 、q 分量;ωs 是电网电压的角频率。在dq 旋转坐标系中网侧电压和电流矢量可由下式表示,

g gd gq g gd gq

u u ju i i ji =+=+ (14)

可得电网注入变流器的有功和无功如下式,

3

()2

3

()

2g gd gd gq gq g gq gd gd gq P u i u i Q u i u i =

+=- (15)

式(15)中P g 和Q g 为利用电压和电流矢量计算得到的瞬时有功和无功功率,由于采用电压矢量定向控制时,选择初始时刻u gd 与a 相电压相量重合则有u gq =0,为此改变i gq 的大小就可改变整流桥输入的无功功率,当i gq =0时整流桥输入的无功功率为0;此时交流侧输入的电压和电流同相位,由于u gd 大小变化较小即通过调节i gd 即可实现变流器注入有功控制,由下式可知改变i gd 即达到维持直流母线电压U dc 的控制目的。

3

2

g gd gd dc dcg

dc dc dcg dcr

P u i U I dU C I I dt

===- (16)

由于网侧电流变化快和直流侧电压波动慢的特点,网侧变流器控制系统一般采用交流电流内环,直流电压外环控制。由于变流器侧三相电压为控制变量,在式(13)的基础上可构造网侧变流器电流内环控制方程如下所示,

()()

dref gd g dref s g qref p d i d qref gq g qref s g dref p q i q u u R i L i k i k i dt u u R i L i k i k i dt ωω=-++?+?=--+?+??? (17)

(a)

(b)

图15 网侧PWM 变流器内环控制

式中i dref 、i qref 分别为d 、q 轴电流分量的参考值,Δi d =i gd -i dref ,Δi q =i gq -i qref ,kp 和ki 为dq 轴电流分量的比例和积分增益,u dref 、u qref 分别为变流器侧d 、q 轴电压参考值,图15为网侧PWM 变流器基于dq 旋转坐标系的内环控制Matlab/ Simulink 模块结构框图,图15(b)为调制比m 限制和三相参考电压生成环节。

图16 网侧PWM 变流器功率外环控制

转速ω/pu

V w =7m/s 风力机出力P w /p u

V w =8m/s V w =9m/s V w =10m/s

V w =11m/s 功率跟踪曲线

图17 风电机组最大功率跟踪曲线

图18 桨距角控制模块

由前面分析可以变化发电机转速即可实现风电机组的最大功率跟踪,图16中通过测量转速与参考转速比较后经PI 调节得到指令有功功率,再由网侧变流器功率外环控制实现有功和无功的跟踪控制。由于在发电机在额定转速以下时,

最大输出功率与相应的转速呈二次函数关系,因此建模中根据测量的实际输出有功计算参考转速,以实现风力发电系统的最大功率跟踪,图17为最大功率跟踪曲线的示意图。为了保证机组在恒速区和恒功率区的稳定运行,H56-850风电机组模型中还包括桨距角控制模块,通过图18所示的桨距角控制环节调节桨距角限制风速超过额定风速时风力机转速和机组输出功率。

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比 发表时间:2019-03-14T16:13:57.780Z 来源:《建筑模拟》2018年第34期作者:李兵[导读] 清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 李兵 辽宁大唐国际新能源有限公司辽宁沈阳 110000 摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 关键词:电力系统;风力机组;永磁直驱机 风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括两种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技术成熟,国产化高。 一、双馈风力发电系统 双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利用效率及改善供电质量的目的。 1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能; 2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳叶尖速比下运行,输出最大的功率; 3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。 双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控制器组成。双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接和电网连接,转子绕组和变频器相连。变频器控制电机在亚同步和超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,双馈式风力发电机在亚同步和超同步转速下都可发电。故称双馈技术主要特点 发电机采用绕线式异步电机,定子直接与电网相连,转子侧通过变流器与电网相连。当双馈发电机的负载和转速变化时,通过调节馈入转子绕组的电流,不仅能保持定子输出的电压和频率不变,而且还能调节双馈发电机的功率因数。 1发电机转子侧变流器功率仅需要25%~30%的风机额定功率,大大降低了变流器的造价; 2发电机体积小、运输安装方便、成本低; 3可承受电压波动范围:额定电压±10%; 4网侧及直流侧滤波电感、电容功率相应缩小,电磁干扰也大大降低; 5可方便地实现无功功率控制。 主要缺点 1需要采用双向变频器,变速恒频控制回路多,控制技术复杂,维护成本高 2发电机需安装集电环和刷架系统,且须定期维护、检修或更换随着风电机组单机容量的增大,双馈型风电系统中齿轮箱的高速传动部件故障问题日益突出,于是没有齿轮箱而将主轴与低速多极同步发电机直接连接的直驱式布局应运而生;从中长期来看,直驱型和半直驱型传动系统将逐步在大型风电机组中占有更大比例,另外,在传动系统中采用集成化设计和紧凑型结构是未来大型风电机组的发展趋势。在大功率变流技术和高性能永磁材料日益发展完善的背景下,大型风电机组越来越多地采用pmsg(无功控制和低电压穿越能力),pmsg不从电网吸收无功功率,无需励磁绕组和直流电源,也不需要滑环碳刷,结构简单且技术可靠性高,对电网运行影响小。Pmsg与全功率变流器结合可以显著改善电能质量,减轻对低压电网的冲击,保障风电并网后的电网可靠性和安全性,与双馈型机组相比,全功率变流器更容易实现低电压穿越等功能,更容易满足电网对风电并网日益严格的要求。 二、直接驱动型风力发电系统 典型的永磁直驱型变速恒频风力发电系统,包括永磁同步发电机(pmsg)和全功率背靠背双pwm变流器,无齿轮箱。Pmsg通过全功率变流器直接与电网连接,通常极对数较多,低转速,大转矩,径向尺寸较大,轴向尺寸较小,呈圆环状;由于省去了齿轮箱,从而简化了传动链,提高了系统效率,降低了机械噪声,减小了维修量,提高了机组的寿命和运行可靠性;发电机通过变流器与电网隔离,因此其应对电网故障的能力更强,但是变流器容量较大,损耗较大,变流器的成本较高。

永磁直驱式风力发电机的工作原理

你好,你的这个问题问的比较广。我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双 馈机和永磁直驱发电机。 永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。 总所周知,一般发电机要并网必须满足相位、幅频、周期同步。而我国电网频率为50hz这就表示发电机要发出50hz的交流电。学过电机的都知道。转速、磁极对数、与频率是有关系的n=60f/p。 所以当极对数恒定时,发电机的转速是一定的。所以一般双馈风机的发电机额定转速为1800r/min。而叶轮转速一般在十几转每分。这就需要在叶轮与发电机之间加入增速箱。 而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。而齿轮箱是风力发电机组最容易出故障的部件。所以,永磁直驱的可靠性要高于双馈。 对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。 风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。 不知道有木有解释清楚。 还有什么不清楚可以继续追问,知无不言。 风力发电机也在逐步的永磁化。采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。

风力机的直驱化也是当前的一个热点趋势。目前大多风电系统发电机与风轮 并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。 直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速 齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高;增 速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好; 直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁 材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。

风力发电机设计

高等教育自学考试毕业设计(论文) 风力发电机设计题目 级机电一体化工程09专业班级 姓名高级工程师指导教师姓名、职称

所属助学单位 2011年 4月1 日 目录 1 绪论………………………………………………………………………………… 1 1.1 风力发电机简介 (1) 1.2 风力发电机的发展史简介 (1) 1.3 我国现阶段风电技术发展状况 (2) 1.4 我国现阶段风电技术发展前景和未来发展 (2) 2 风力发电机结构设计……………………………………………………………… 3 2.1 单一风力发电机组成 (3) 2.2 叶片数目 (3) 2.3 机舱 (4) 2.4 转子叶片 (5) 3 风力发电机的回转体结构设计和参数计算 (5) 3.1联轴器的型号及主要参数 (5) 3.2 初步估计回转体危险轴颈的大小 (5) 3.3 叶片扫描半径单元叶尖速比 (6) 4 风轮桨叶的结构设计……………………………………………………………… 6 4.1桨叶轴复位斜板设计 (6) 4.2托架的基本结构设计 (6) 5 风力发电机的其他元件的设计 (6) 5.1 刹车装置的设计 (6) 6 风力发电机在设计中的3个关键技术问题 (7) 6.1空气动力学问题 (7) 6.2结构动力学问题 (7) 6.3控制技术问题 (7)

7 风力发电机的分类………………………………………………………………… 7 8 风力发电机的选取标准 (8) 9 风力发电机对风能以及其它的技术要求………………………………………… 8 9.1风力发电机对风能技术要求 (8) 9.2风力发电机建模的技术是暂态稳定系统 (9) 9.3风力电动机技术之间的能量转换 (10) 10 风力发电机在现实中的使用范例 (10) 结论 (12) 致谢 (13) 参考文献 (14) 摘要 随着世界工业化进程不断加快,能源消耗不断增加,全球工业有害物质排放量与日俱增,造成了能源短缺和恶性疾病的多发,致使能源和环境成为当今世界两大问题。因此,风力发电的研究显得尤为重要。 我国风电场内无功补偿的方式是在风电场汇集站内装设集中无功补偿装置,这造成风电场无功补偿的投资很大。文章结合实例,通过对不同发电量下风电场的无功损耗和电压波动情况进行计算,提出利用风力发电机的无功功率可基本实现风电场的无功平衡,风电场母线电压的变化是无功补偿设备选型的依据,对于发电量变化引起的母线电压变化不超出电网要求的风电场,应利用风力发电机的无功功率减小汇集站内无功补偿装置的容量,降低无功补偿的投资。 关键词:风力发电、风电场、无功补偿、电压波动

直驱型风力发电机组建模

直驱型风力发电机组建模 H56-850直驱型感应风力发电机组模型结构如图7所示,包括风力机、齿轮箱、六相同步发电机、励磁控制器、不可控整流器、PWM 逆变器等。风力机中风轮将风能转化为机械能,再通过风力机的转轴把机械能输入到发电机的转子轴上,经由发电机将机械能转变电能,最后通过发电机变流器控制,实现风电系统的变速恒频发电。由于H56-850直驱型风力发电系统控制变流器系统电机侧采用不可控整流,为此须同步发电机励磁控制维持直流母线电压,同时网侧逆变器用以控制有功功率或转速实现最佳风能跟踪控制。 图7 直驱型风力发电系统 2.1 风力机模型 风力机用于截获流动空气所具有的动能,并将其转化为有用的机械能,再驱动发电机旋转生产电能。由风力机的空气动力学特性可以得到,风力机的输出功率, 3 1(,)2 w w w P w P T AC v ωρλβ== (1) 叶尖速比λ为, w w R v ωλ?= (2) 风力机的输出转矩, 2331 (,)2w w w P w P R T AC ωρλβωλ == (3)

式中P w 为风机输出功率,ωw 为风力机转子转速,T w 为风力机输出转矩,ρ为风电场的空气密度,A=πR 2为叶片面积,C p (λ, β)为风能利用系数,β为桨距控制角,v w 为风电场风速,R 为叶片半径。下图为Matlab/Simulink 中风力机的模块结构框图。 图8 风力机模块结构 图8中风力机输入的风力机转子转速为标幺值,以风能利用系数Cp 为最大值Cpmax 时(此时桨距角β=0)的额定风速和转速为基准值,可由下式得到叶尖速比λ实际值, _max _max _1 __w pu Cp w Cp w pu w w pu rated w v K v v ωλωλω== ? (4) 风力机的风能利用系数(,)P C λβ与桨距角β和叶尖速比λ有关,可采用下式作为Cp 的近似表达式为(来源于1998年Heier 文章,系数须根据武隆的实际数据进行修正), []{} 5()1643283 7(2.5)e 1 (2.5)1(2.5)C p C C C C C C C C λβλββ-Λ=+--++ΛΛ=- ++++ (5) 由于风能利用系数Cp 为最大值Cpmax 且转子转速为ωw_pu_rated 时,风力机的输出功率标幺值P w_pu_Cpmax_rated 小于1,可得风力机输出功率为, ___max_3323 _max max w rated w pu Cp rated w p w p w w Cp p P P P K C v C v v C == (6)

风力发电机组总体设计

1.总体设计 一、气动布局方案 包括对各类构形、型式和气动布局方案的比较和选择、模型吹风,性能及其他气动特性的初步计算,确定整机和各部件(系统)主要参数,各部件相对位置等。最后,绘制整机三面图,并提交有关的分析计算报告。 二、整机总体布置方案 包括整机各部件、各系统、附件和设备等布置。此时要求考虑布置得合理、协调、紧凑,保证正常工作和便于维护等要求,并考虑有效合理的重心位置。最后绘制整机总体布置图,并编写有关报告和说明书。 三、整机总体结构方案 包括对整机结构承力件的布置,传力路线的分析,主要承力构件的承力型式分析,设计分离面和对接型式的选择,和各种结构材料的选择等。整机总体结构方案可结合总体布置一起进行,并在整机总体布置图上加以反映,也可绘制一些附加的图纸。需要有相应的报告和技术说明。 四、各部件和系统的方案 应包括对各部件和系统的要求、组成、原理分析、结构型式、参数及附件的选择等工作。最后,应绘制有关部件的理论图和有关系统的原理图,并编写有关的报告和技术说明。五、整机重量计算、重量分配和重心定位 包括整机总重量的确定、各部分重量的确定、重心和惯量计算等工作。最后应提交有关重量和重心等计算报告,并绘制重心定位图。 六、配套附件 整机配套附件和备件等设备的选择和确定,新材料和新工艺的选择,对新研制的部件要确定技术要求和协作关系。最后提交协作及采购清单等有关文件。总体设计阶段将解决全局性的重大问题,必须精心和慎重地进行,要尽可能充分利用已有的经验,以求总体设计阶段中的重大决策建立在可靠的理论分析和试验基础上,避免以后出现不应有重大反复。阶段的结果是应给出风力发电机组整机三面图,整机总体布置图,重心定位图,整机重量和重心计算报告,性能计算报告,初步的外负载计算报告,整机结构承力初步分析报告,各部件和系统的初步技术要求,部件理论图,系统原理图,新工艺、新材料等协作要求和采购清单等,以及其他有关经济性和使用性能等应有明确文件。 2.总体参数 在风轮气动设计前必须先确定下列总体参数。 一、风轮叶片数B 一般风轮叶片数取决于风轮的尖速比λ。目前用于风力发电一般属于高速风力发电机组,即λ=4-7 左右,叶片数一般取2—3。用于风力提水的风力机一般属于低速风力机,叶片数较多。叶片数多的风力机在低尖速比运行时有较低的风能利用系数,即有较大的转矩,而且起动风速亦低,因此适用于提水。而叶片数少的风力发电机组的高尖速比运行时有较高的风能利用系数,且起动风速较高。另外,叶片数目确定应与实度一起考虑,既要考虑风能

直驱式和双馈式风力发电机组介绍

双馈式与直驱式风力发电机组介绍 1、双馈式发电机组 双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接与电网连接,转子绕组与频率、幅值、相位都可以按照要求进行调节的变流器相连。变流器控制电机在亚同步与超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。 双馈风力发电变速恒频机组示意图 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率与相位与电网相同,并且可根据需要进行有功与无功的独立控制。变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机与电网造成的不利影响。提供多

种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器采用三相电压型交-直-交双向变流器技术。在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态与输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功与无功的解耦控制,就是目前双馈异步风力发电机组的一个代表方向。 2、直驱式发电机组 直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。为了提高低速发电机效率,直驱式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发电机的调速。 直驱风力发电变速恒频机组示意图 直驱发电机按照励磁方式可分为电励磁与永磁两种。电励磁直驱

直驱式风力发电机知识

是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数 以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了直驱永磁风力发电机组特点 直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。 直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。随着近几年技术的发展,其优势才逐渐凸现。德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。 1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。 目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。 编辑本段直驱永磁风力发电机组特点 直驱永磁风力发电机有以下几个方面优点[1]: 1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。

直驱风力发电机分类

直驱风力发电机分类 直驱式风力发电机组在我国是一种新型的产品,但在国外已经发展了很长时间。目前我国在直驱式风机中系统的研究相对传统机型较少,但开发直驱式风力发电机组也是我国日后风机制造的趋势之一。 直驱永磁风力发电机取消了沉重的增速齿轮箱,发电机轴直接连接到叶轮轴上,转子的转速随风速而改变,其交流电的频率也随之变化,经过置于地面的大功率电力电子变换器,将频率不定的交流电整流成直流电,再逆变成与电网同频率的交流电输出。另外一些无齿轮箱直驱风力发电机,沿用低速多极永磁发电机,并使用一台全功率变频器将频率变化的风电送入电网。直接驱动式风力发电机组由于没有齿轮箱,零部件数量相对传统风电机组要少得多。 我国主要的直驱型风力发电机组采用水平轴、三叶片、上风向、变桨距调节、直接驱动、永磁同步发电机并网的总体设计方案,相对于传统的异步发电机组其优点如下:(1)由于传动系统部件的减少,提高了风力发电机组的可靠性和可利用率; (2)永磁发电技术及变速恒频技术的采用提高了风电机组的效率; (3)机械传动部件的减少降低了风力发电机组的噪音; (4)可靠性的提高降低了风力发电机组的运行维护成本; (5)机械传动部件的减少降低了机械损失,提高了整机效率; (6)利用变速恒频技术,可以进行无功补偿; (7)由于减少了部件数量,使整机的生产周期大大缩短。

永磁式硅整流风力发电机设计 小型永磁式硅整流风力发电机,由于采用了永磁体励磁,省去了碳刷、滑环及励磁绕组,避免了碳刷与滑环引起的火花放电,且工艺简单、维护方便、效率较高。但由于永磁式发电机的磁场无法人工调节,在电机制成之后,输出电压随风速(转速)的变化而波动。而其所带负载—蓄电池及用电设备则要求供电电压恒定不变。当供电电压较低时,对蓄电池无法充电,用电设备无法长期工作,而当电压超过额定值较多时,则会造成蓄电池的过充损伤,降低使用寿命,严重的可能烧坏用电设备。图1表示风力发电机输出电压对12V灯泡发光强度及使用寿命的关系特性。 图1端电压相对光通量和使用寿命的关系

风力发电机设计

摘要 自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。 风能利用发展中的关键技术问题风能技术是一项涉及多个学科的综合技术。而且,风力机具有不同于通常机械系统的特性:动力源是具有很强随机性和不连续性的自然风,叶片经常运行在失速工况,传动系统的动力输入异常不规则,疲劳负载高于通常旋转机械几十倍。 本文通过对风力发电机的总体设计,叶片、轮毂机构的设计,水平回转机构的设计,齿轮箱系统的设计,以达到利用风能发电的目的,有效利用风能资源,减少对不可再生资源的消耗,降低对环境的污染。 关键词:风能;风力发电机;叶片;轮毂;齿轮箱

Abstract Natural wind speed and direction of change is random, wind characteristics of uncertainty, how to make wind turbine output power stability, wind power technology is an important subject. So far, have raised a variety of ways to improve the quality of the wind, such as the use of variable speed control technology, can make use of wind round the moment of inertia smooth power output. Because variable speed wind power group using a power electronic devices, when it will transfer to the output of electric power grids, will change in the wave's power, and power factor deterioration. Use of wind energy in the development of key technical issues involved in wind energy technology is one of a number of integrated technical disciplines. Moreover, the wind turbine is usually different from the mechanical system characteristics: a strong power source is not random and continuity of the natural wind, the leaves often run in the stall condition, the power transmission system very irregular importation, fatigue load than Rotating Machinery usually several times. Based on the wind turbine design, leaves, the wheel design, level of rotating the design, gear box system design, use of wind power to achieve the objective of effective use of wind energy resources, reduce non-renewable resources Consumption, reduce the environmental pollution. Key words: wind power;wind power generators;blade;wheel;Gearbox

直驱式风力发电机原理及发电机组概述

直驱式风力发电机原理及发电机组概述 二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。 使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。 低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。

近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。采用永磁体技术的直驱式发电机结构简单、效率高。永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。 下图是一个内转子直驱式风力发电机组的结构示意图。其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。 外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。

直驱式永磁同步风力发电机组的建模与仿真

张 梅等:直驱式永磁同步风力发电机组的建模与仿真第6期新能源 直驱式永磁同步风力发电机组的建模与仿真 张 梅1,何国庆2,赵海翔2,张靠社1 (1.西安理工大学电力工程系,陕西西安 710048;2.中国电力科学研究院,北京 100192) 摘要:阐述基于直驱式永磁同步风力发电机组(D-PMSG)的工作原理,在电力系统分析软件DIgSILENT/ PowerFactory中建立了D-PMSG及其控制系统的仿真模型,结合某实际地区电网进行仿真分析。仿真结果 验证了所建模型的正确性和控制策略的可行性。关键词:风力发电;永磁同步发电机;解耦控制中图分类号:TM315 文献标识码:A 文章编号:1004-9649(2008)06-0079-06 中国电力ELECTRICPOWER 第41卷第6期2008 年6月Vol.41,No.6 Jun.2008收稿日期:2008-03-05作者简介:张 梅(1981-),女,陕西西安人,硕士研究生,从事电力系统分析和风力发电研究。E-mail:zhangmei@epri.ac.cn 0引言 风力发电是一种很有潜力的可再生能源,10多 年来得到了快速的发展。目前主流变速风力发电机组有2种:双馈感应风力发电机组和直驱永磁同步风电机组。国内外对基于双馈感应发电机(doubly fedinductiongenerators,DFIG)的变速风力发电技术 的研究很多,已经发展得很成熟。关于直驱永磁同步风力发电机组(D-PMSG)的研究则相对较少,但其以效率高、噪声小、发电机结构简单和维护工作量小等特点,在风力发电领域受到了越来越多的 重视。 目前,对于D-PMSG的建模与仿真是研究的热点。一些文献研究了D-PMSG的建模问题,但比较简单,如文献[1-2]中给出了变频器系统的控制框图,但没有详细论述其解耦控制的原理。文献[3]建立了包括风力机模型、传动系统模型和发电机模型的D-PMSG数学模型, 并提出了桨距角及发电机 转速的控制策略,但忽略了网侧变频器的影响。文献[4-7]采用不同的控制策略,对经由不可控整流和可控逆变电路构成的变频器并网的D-PMSG系统进行了研究, 实现了最大风能跟踪控制及并网 有功和无功功率的解耦控制。文献[8]研究了D- PMSG的桨叶控制及相应的功率和转速的变化过 程。文献[9]建立了基于MTLAB/SIMULINK软件的 D-PMSG仿真模型,对机组的输出特性进行了分 析。文献[10]研究了一种用于D-PMSG并网的中性点箝位变频器系统, 并提出了变频器相应的控 制策略。文献[11]着重分析了双脉宽调制(PWM)D-PMSG发电机侧变频器的控制问题,提出了增加 约束方程来确定发电机端电压的稳定控制方案。这些文献基本集中于风电机组或机组所采用变频器的研究, 没有在实际电网中对模型的特性进行 仿真,不能突出D-PMSG的并网运行特性。 本文介绍了D-PMSG的工作原理,建立了PMSG、变频器模型及轴系的两质块数学模型,提出了全功率变频器的解耦控制策略,实现了有功和无功的解耦控制; 在电力系统仿真软件DIgSILENT/Power Factory中建立了D-PMSG的仿真模型,并结合某 实际地区电网,通过对有功功率突变、调整功率因数设定值以及电网三相短路故障时风电机组的动态响应分析,验证了该模型的正确性和控制策略的可行性。仿真结果较全面地反映了D-PMSG的并网运行特性。 1D-PMSG工作原理 D-PMSG主要包括风力机、PMSG、 全功率变频器以及控制系统4部分,其基本结构如图1所示。其中全功率变频器系统又可分为: 发电机侧变频器 (generator-sideconverter)、 直流环节(DC-link)和电网侧变频器(grid-sideconverter)。 风力机和PMSG通过轴系直接耦合,提高了系统的可靠性,大大减少了系统的运行噪声,降低了发电机的维护工作量。 PMSG经全功率变频器系统与电网相连,通过施加 在变频器系统上的控制系统作用,来实现风电机 组的变速运行。PMSG的输出经发电机侧变频器整 流后由电容支撑,再经网侧变频器将能量馈送给 电网。

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ错误!未找到引用源。错误!未找到引用源。 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△ t P t P t P s t a t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段内V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

永磁直驱风力发电实验报告

实验一永磁同步风力发电系统接线实验 一、实验目的 1.掌握永磁同步风力发电系统的基本结构及组成; 2.掌握永磁同步风力发电实验系统各部分间的接线。 二、实验原理 1.永磁同步风力发电系统的结构及组成 永磁步风力发电系统主要由模拟风力发电机、双向变流器、电网以及电量监视仪表等部分组成。系统组成及控制原理框图如图1-1所示。 机侧变流器网侧变流器 图1-1永磁同步风力发电系统原理框图 2.模拟风力发电机 模拟风力发电机即永磁直驱风力发电机组,包括风力机及永磁同步发电机、和增量编码器等组成,其中风力机由三相异步变频调速电动机组成,其由单独地变频控制转动,来模拟风力机转动,如图1-2所示。另外,图1-3中的永磁直驱风力发电模拟系统控制柜里面包含三相变频器,是控制三相异步变频调速电机转动,模拟风机带动永磁同步电机转动发电,风力机的定子接线端接到该控制柜。图1-4中的直驱永磁风力发电机组变频柜里面包含机侧变流器和网侧变流器,是对永磁同步发电机发出的电进行PWM整流和逆变,增量编码器的A、A_、B、B_、Z、Z_信号输出端,以及永磁同步电机的定子输出端都要接到该控制柜。直驱永磁风力发电机组变频柜的输出端接到电网上,如图1-2所示。

增增增增增 增增增增增增增增增增增增增增 增增增 增增增增增增增增增增增增增增增 图1-2 永磁直驱发电机组结构图 图1-3 永磁直驱风力发电模拟系统控制柜

机侧控制 板 网侧 控制 板增量式 输入接 口 图1-4 永磁直驱风力发电机组变频柜 图1-5 电网接入端口 三、 实验内容及步骤 1. 实验准备 实验前请仔细阅读系统的安全操作说明及系统相关的使用说明书,识别并准备完成实验开始前所需的器件。 2. 实验步骤 1) 将机组中三相异步变频调速电动机的定子输入三相线接到永磁直驱风力发电模拟系统控制柜的U ,V ,W 端子上,注意变频器输出相序和风力机的定子输出相序一致。 2) 将机组中增量式编码器输出端口的A 、A _、B 、B _、Z 、Z _ 信号输出端口接到永磁直驱

风力发电机组设计与制造课程设计精编版

风力发电机组设计与制 造课程设计 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

课程设计(综合实验)报告 ( 2012 – 2013 年度第二学期) 名称: 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数: 成绩: 日期:2013年 7月3日 目录

任务书设计内容

风电机组总体技术设计 目的与任务 主要目的: 1. 以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2. 熟悉相关的工程设计软件; 3. 掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1. 确定风电机组的总体技术参数; 2. 关键零部件(齿轮箱、发电机和变流器)技术参数; 3. 计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数; 4. 完成叶片设计任务; 5. 确定塔架的设计方案。 6. 每人撰写一份课程设计报告。 主要内容 每人选择功率范围在至6MW之间的风电机组进行设计。 1.原始参数:风力机的安装场地50米高度年平均风速为s,60米高度年平均风速为s,70米高度年平均风速为 m/s,当地历史最大风速为49m/s,用户希望安装 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为m3。 2.设计内容

(1)确定整机设计的技术参数。设定几种风力机的C p 曲线和C t 曲线,风力机 基本参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p 曲线和C t 曲线,计算几种 关键零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。进度计划 设计(实验)成果要求 提供设计的风电机组的性能计算结果;

永磁直驱式风力发电机的工作原理

-- 你好,你的这个问题问的比较广。我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双馈机和永磁直驱发电机。 永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。?总所周知,一般发电机要并网必须满足相位、幅频、周期同步。而我国电网频率为50hz这就表示发电机要发出50hz 的交流电。学过电机的都知道。转速、磁极对数、与频率是有关系的n=60f/p。?所以当极对数恒定时,发电机的转速是一定的。所以一般双馈风机的发电机额定转速为1800r/mi n。而叶轮转速一般在十几转每分。这就需要在叶轮与发电机之间加入增速箱。 而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。而齿轮箱是风力发电机组最容易出故障的部件。所以,永磁直驱的可靠性要高于双馈。?对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。?风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。?不知道有木有解释清楚。 还有什么不清楚可以继续追问,知无不言。 风力发电机也在逐步的永磁化。采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。?风力机的直驱化也是当前的一个热点趋势。目前大多风电系统发电机与风轮并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。 直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高; 增速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修 保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好;?直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。 --

相关主题
文本预览
相关文档 最新文档