当前位置:文档之家› 数学建模电力安排问题

数学建模电力安排问题

数学建模电力安排问题
数学建模电力安排问题

电力生产问题

摘要

本文解决的是电力生产中发电机的安排问题,在满足每日各时间段电力需求的条件下,安排各型号发电机来供电,以期获得最小的成本。为解决此问题,我们建立了两个最优化模型。

针对问题一:建立了非线性单目标最优化模型。从已知条件、目标函数、约束条件三方面进行综合分析可知,每天的总成本由总固定成本、总边际成本、总启动成本组成,确定总成本为目标函数,各时段各型号发电机工作数量及其总超出功率为主要变量,并列出相应约束条件。最后通过Lingo软件[2]求出最小成本为1540770元,并得出各时段各型号发电机的数量及其功率如下表(具体见表三):

针对问题二:建立了线性单目标最优化模型。引入非负变量,即为各时段新增开的各型号的发电机台数,通过此变量线性表示出启动成本。以总成本为目标函数,在模型一的基础上,只需改变一个约束条件,即发电机组在任意时间段内所能发出的最大总功率的80%要大于等于该时段的用电需求。最后通过lingo软件求出最小成本为1885420元,并得出各时段各型号发电机的数量及其功率。

关键词:非线性最优化模型线性最优化模型最小生产成本

1 问题重述

1.1 问题背景

在电力生产过程中,为满足每日的电力需求并且使生产成本达到最小,因不同发电性能的发电机成本不同,故可以选用不同型号的发电机组合使用。

1.2 题目信息

题中给出了一天中七个时段的用电需求(见表一)及四种发电机的发电性能和相应成本(见表二)。其中,所有发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于其最小输出功率,且所有发电机均存在一个启动成本,以及工作于其最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。

问题(1):在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少?

问题(2):如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少?

2 模型假设

假设1:不计发电机启动时所需时间;

假设2:各发电机均在24时关闭,即不考虑循环过程;

假设3:各发电机的输出功率在时段初调整好后,保持不变;

假设4:题目所列出的成本以外的成本消耗不计。

3 符号说明

4 问题分析

此题研究的是电力生产中合理安排不同类型发电机的数学建模问题。为满足电力需求,对于每日七个时段,需要对四种不同类型发电机进行合理安排。

针对问题一:从以下三方面来分析

(1)对已知条件的分析:七个时段分别对应不同的用电需求,四种不同类型发电机可供使用,且已知其可用数量、最小输出功率、最大输出功率、固定成本、每兆瓦边际成本、启用成本。要使总成本达到最小,则问题的目标函数就是总成本函数。

(2)对目标函数的分析:发电机总成本包括总固定成本、总边际成本、总启动

成本。该问题的关键在于如何求启动成本。

(3) 对约束条件的分析:四种型号发电机在第i 个时间段的发电总量应不小于

总需求量;型号j 发电机在任一时间段的数量不能超过可用数量;型号j 发电机在任一时间段的超出功率不超过最大功率与最小功率之差。 综合以上分析,我们将建立非线性单目标最优化模型。

针对问题二:为了使求解更简单,我们试图采用线性方法来解决该问题,对于启动成本的求解,将引入ij x V 表示第i 个时段新增开的型号j 的发电机的台数,后一时间段需关闭发电机时,0ij x =V 。此外,只需改变一个约束条件,即发电机组在第i 个时间段所能发出的最大总功率的80%要大于等于该时段的用电需求。最后建立线性单目标最优化模型来求解。

5 问题一的解答

5.1 模型的建立 5.1.1 确定目标函数 要使总成本最小,需合理安排四种发电机来满足七个时间段的用电需求,总成本由以下三个指标组成:

(1)总固定成本=第i 个时间段的时长?第i 个时间段型号j 发电机的数量?型号

j 发电机每小时的固定成本

47

11

j j ij j i p c t x ===∑∑

(2)总边际成本=第i 个时间段的时长?第i 个时间段型号j 发电机的数量?第i 个时间段型号j 发电机超出最小功率部分的功率?型号j 发电机每兆瓦边际成本

47

11

j j ij j i q d t p ===∑∑

(3)总启动成本=型号j 发电机启动数量?型号j 发电机的启动成本

4

4

7

1112

@1

2ij j j ij j j j i sign x s x e x e ===+=+∑∑∑

V V 则总成本 =固定总成本+边际总成本+启动总成本

Q p q s =++

5.1.2 确定约束条件

约束条件一:台数约束

型号j 发电机在任一时间段的数量不超过可用数量

01,271,2,3,4ij ij j ij x x n i j x ?∈N ?

≤≤==??

∈N

?L V

约束条件二:功率约束

型号j 发电机在任一时间段的超出功率不超过最大功率与最小功率只差

()1,27

1,2,3,4ij j j ij

p b a x i j ≤-==L

约束条件三:需求约束

四种型号发电机在第i 个时间段的发电总量应不小于其需求量

()

4

1

1,27i ij j ij j w p a x i =≤+=∑L

5.1.3综上所述,得到问题一的最优化模型

()474

4

7

111

1

12

@1

min 2ij j j ij j j ij j j ij j j i j j i sign x Q c t x d t p x e x e =====+=+++∑∑∑∑∑

V V

()()4

1..0i ij j ij j ij j j ij

ij ij ij j w p a x p b a x s t x x x n

=?

≤+???

≤-??

∈N ∈N ??≤≤?

∑V 5.2 模型一的求解

根据建立的模型用Lingo 软件代入数据求解(源程序见附录)得最小总成本为1540770元,各时段各型号发电机的数量和总超出功率结果如表三:

5.3 模型一结果分析

经过对上述表格中的数据进行分析,我们可以发现,求出的结果中,发电机的数量和功率均符合要求。型号1的发电机由于启动成本比较大,故不适宜启动过多;型号2的发电机由于固定成本和启动成本比较小,故可以尽量启动;型号3的发电机由于边际成本比较小,故该型号可以尽量采用大功率。型号4的发电机固定成本过高,故不适宜持续启用。

6 问题二的解答

6.1 模型的建立 6.1.1 确定目标函数

通过问题分析已知模型二中固定总成本和边际总成本与模型一相同,而采用线性方法后,启动总成本=第i 个时段新增开的型号j 的发电机的台数?型号j 的发电机的启动成本。故

(1)固定总成本

74

11

j j ij i j p c t x ===∑∑

(2)边际总成本

74

11

j j ij i j q d t p ===∑∑

(3)启动总成本

74

11

ij j i j s x e ===∑∑V

总成本

Q p q s =++

6.1.2 确定约束条件

因为问题二是在问题一的基础上新增了一个约束条件,即发电机组在第i 个时间段所能发出的最大总功率的80%要大于等于该时段的用电需求,可以直接将问题一的约束三变化得到新的约束条件,故

约束条件一:台数约束

01,271,2,3,4ij ij j ij x x n i j x *?∈N ??

≤≤==??∈N ??

L V

约束条件二:功率约束

()1,27

1,2,3,4ij j j ij

p b a x i j ≤-==L

约束条件三:需求约束

()

4

1

0.81,27i ij j ij j w p a x i =≤+=∑L

6.1.3综上所述,得到问题二的最优化模型

()47

11

min ij j j j ij j j ij j i Q x e c t x d t p ===++∑∑V

()()4

10.8.0i ij j ij j ij j j ij

ij ij ij j w p a x p b a x s t x x x n

=*?

≤+???

≤-??∈N ∈N ??≤≤?

∑V 6.2 模型二的求解

根据建立的模型用Lingo 软件代入数据求解(源程序见附录)得最小总成本为1885420元,各时段各型号发电机的数量和总超出功率结果如表四:

6.3 模型二的结果分析

将上述求解结果与表1和表2对照,发现各型号的发电机台数和功率均满足题目要求。因为问题二要使任何时刻发电机组都有20%的发电能力余量,以防用电量突然上升,所以每个时段的发电机按上述分别进行组合后的实际供电量的80%均应大于或等于每时段的供电需求。

此结果与第一问的结果用matlab 编程分析并绘制出在两个问题的结果中发电机在每个时段的功率和台数的变化图(源程序参见附录)如下:

注:图中红线代表无保留电力(问题一)情况下的发电机使用情况,蓝线代表有保留电力(问题二)情况下的发电机使用情况

因该模型只是在模型一的基础上做的改进,故结果改变不大。由上图对比可以看出,型号1的发电机的启动成本过高,故不宜重复启动;对于型号2和型号3的发电机,因其各种成本相对较低,故可尽量多启动这两种型号并使其达到最大功率;型号4的发电机因其启动成本较低而边际成本和固定成本均较高,故输出功率不宜过高,但可重复启动。

7 模型的评价

7.1 模型的优点

优点一:模型一考虑细致,表述简洁,易于理解,便于重复利用,模型二为线性规划模型,易于求解;

优点二:该模型对电力生产问题的考虑比较全面,在电力生产方面有较好的应用前景,对资源的合理利用上有较大的贡献;

优点三:在结果分析的检验证明,我们所建模型得到的结果既满足了题目的约束条件又是相应问题的最优解。

7.2 模型的缺点

缺点一:模型一为非线性规划模型,故求解上有一定的难度;

缺点二: 本文所建模型忽略了发电机输出功率的转换时间与消耗;

缺点三:本文所建模型考虑的是一天中0时-24时发电机组的安排,而实际问题中是长期循环过程。

8 模型的改进

8.1模型改进

改进一:模型一可以改进为线性规划模型,方便求解。

改进二:查询更多相关资料数据,得到发电机输出功率的转换时间与消耗。

改进三:可以考虑长期循环过程,以便模型能够得到更广泛的应用。

8.2 模型推广

上述模型不仅可用于电力生产的优化,也可用于其它生产的优化,特别是对于生产过程中涉及到资源的选择分配问题有很好的适用性。

9 参考文献

[1] 宋来忠,王志明,数学建模与实验,北京:科学出版社,2005

[2] 惠高峰,Lingo软件在求解数学优化问题的使用技巧,《科技视界》,2013

[3] 王能淼,杨华,谢伟,电力生产安排的数学模型,百度文库,2012.7

[4] 赵静,但琦,数学建模与数学实验,高等教育出版社,2008

附录

附录一:问题一程序

model:

sets:

time/1..7/:length,demond;

type/1..4/:startcost,precost,fixcost,pmin,pmax,num;

cost(time,type):p,x;

endsets

!这里是数据;

data:

length=6,3,3,2,4,4,2;

demond=12000,32000,25000,36000,25000,30000,18000;

startcost=5000,1600,2400,1200;

precost=2.7,2.2,1.8,3.8;

fixcost=2250,1800,3750,4800;

pmin=750,1000,1200,1800;

pmax=1750,1500,2000,3500;

num=10,4,8,3;

enddata

@for(cost(i,j):p(i,j)<=(pmax(j)-pmin(j))*x(i,j));

@for(time(i):@sum(type(j):(p(i,j)+pmin(j)*x(i,j)))>=demond(i));

!电机数量约束;

!@for(cost(i,j):ns(i,j)<=num(j));

@for(cost(i,j):x(i,j)<=num(j));

@for(cost:@gin(x));

!@for(cost(i,j)|i#gt#1:ns(i,j)>=x(i,j)-x(i-1,j));

!目标函数;

min=@sum(cost(i,j):x(1,j)*startcost(j)+(@sign(x(i,j)-@if(i#ge#2,x((i-1),j),0))+1)/2*( x(i,j)-@if(i#ge#2,x((i-1),j),0))*startcost(j)+fixcost(j)*length(i)*x(i,j)+p(i,j)*precost(j) *length(i));

end

附录二:问题二程序

model:

sets:

time/1..7/:length,demond;

type/1..4/:startcost,precost,fixcost,pmin,pmax,num;

cost(time,type):p,ns,x;

endsets

data:

length=6,3,3,2,4,4,2;

demond=12000,32000,25000,36000,25000,30000,18000;

startcost=5000,1600,2400,1200;

precost=2.7,2.2,1.8,3.8;

fixcost=2250,1800,3750,4800;

pmin=750,1000,1200,1800;

pmax=1750,1500,2000,3500;

num=10,4,8,3;

enddata

!功率约束;

@for(cost(i,j):p(i,j)<=(pmax(j)-pmin(j))*x(i,j));

!需求约束;

@for(time(i):@sum(type(j):(p(i,j)+pmin(j)*x(i,j))*0.8)>=demond(i));

!电机数量约束;

!@for(cost(i,j):ns(i,j)<=num(j));

@for(cost(i,j):x(i,j)<=num(j));

@for(cost:@gin(x));

@for(cost(i,j):ns(1,j)=x(1,j));

@for(cost(i,j)|i#ge#2:ns(i,j)>=x(i,j)-x(i-1,j));

!目标函数;

min=@sum(cost(i,j):startcost(j)*ns(i,j)*(ns(i,j)#ge#0)+fixcost(j)*length(i)*x(i,j)+p(i,j )*precost(j)*length(i));

End

附录三:模型一与模型二的结果分析的matlab源程序

figure('color','w')

x=1:7;

A1=[0 2000 1500 2000 0 1100 0];

subplot(2,2,1)

plot(x,A1,'-r',x,A1,'ro')

hold on

B1=[250 7000 400 8000 0 5600 0];

plot(x,B1,'-b',x,B1,'b*')

title('型号1发电机超出功率变化')

A2=[2000 2000 2000 2000 1700 2000 2000];

subplot(2,2,2)

plot(x,A2,'-r',x,A2,'ro')

hold on

B2=[2000 2000 2000 2000 1350 2000 1750];

plot(x,B2,'-b',x,B2,'b*')

title('型号2发电机超出功率变化')

A3=[0 6400 6400 6400 6400 6400 6400];

subplot(2,2,3)

plot(x,A3,'-r',x,A3,'ro')

hold on

B3=[3200 6400 6400 6400 6400 6400 6400]; plot(x,B3,'-b',x,B3,'b*')

title('型号3发电机超出功率变化')

A4=[600 1100 0 5100 0 0 0];

subplot(2,2,4)

plot(x,A4,'-r',x,A4,'ro')

hold on

B4=[0 350 0 3600 0 0 0];

plot(x,B4,'-b',x,B4,'b*')

title('型号4发电机超出功率变化')

%%

figure('color','w')

x=1:7;

A1=[0 2 2 2 2 2 0];

subplot(2,2,1)

plot(x,A1,'-r',x,A1,'or')

hold on

B1=[1 7 7 8 6 6 1];

plot(x,B1,'-b',x,B1,'b*')

title('型号1发电机的台数')

A2=[4 4 4 4 4 4 4];

subplot(2,2,2)

plot(x,A2,'-r',x,A2,'or')

hold on

B2=[4 4 4 4 4 4 4];

plot(x,B2,'-b',x,B2,'b*')

title('型号2发电机的台数')

A3=[0 8 8 8 8 8 6];

subplot(2,2,3)

plot(x,A3,'-r',x,A3,'or')

hold on

B3=[4 8 8 8 8 8 8];

plot(x,B3,'-b',x,B3,'b*')

title('型号3发电机的台数')

A4=[3 3 0 3 1 3 0];

subplot(2,2,4)

plot(x,A4,'-r',x,A4,'ro')

hold on

B4=[0 3 2 3 3 3 0];

plot(x,B4,'-b',x,B4,'b*')

title('型号4发电机的台数')

数学建模野兔生长问题

野兔生长问题 摘要 根据题目,野兔生长属自然范畴,若在生存条件良好,且无外力干扰的情况下,其种群数量是呈对数型增长的,从著名的斐波纳契数列解决兔子生长问题也可以看出,兔子的生长,呈递增的状态。可由题目条件可知,野兔生长并不是处于理想的情况下的,中间有递减的情况,考虑到自然的各种原因,诸如,天敌的捕杀,自然灾害,疾病,生存地的减少等。 对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型拟和多项式拟合来模。Logistic模型是种群生态学的核心理论之一。它可以用来描述种群生长规律,利用它可以表征种群的数量动态。用多项式拟合可以大致模拟预测未来的兔子数量。 之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。该结果比较符合客观规律。 利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。描述某一研究对象的增长过程如生态旅游区环境容量的确定,森林资源的管理以及耐用消费品社会拥有量的预测、国民生产总值的预测等;也可作为其它复杂模型的理论基础如Lotka-Volterra两种群竞争模型;以上的大多数的工作都是拿逻辑斯蒂模型来用,但也由此可看出逻辑斯蒂方程不管在自然科学领域还是在社会科学中都具有非常广泛的用途。 关键字:Logistic模型生态学 MATLAB程序 问题重述 野兔生长问题。首先,野兔是生长在自然环境中的。自然很复杂,存在着许多影响种群发展的因素。我们知道,假如给野兔一个理想的环境,野兔数量是呈J型增长的。现实情况中,种群一般是呈S型增长的,从题中表格看出,野兔的数量并不是单一地增长,T=3,6.90568;T=4,6.00512;T=5,5.56495;T=6,5.32807。第四年到第七年,这三年野兔的数量不增反降,说明其间有影响野兔生长的因素存在。我们探讨了其中的因素: (1),兔子内部因素,竞争,雄雌比利失去平衡,老化严重等。 (1),自然灾害,比如说草原火灾,使野兔生长环境遭到破坏;再如气候反常,使野兔的产卵,交配受影响。 (2),天敌的捕食,狼,狐狸等天敌大量地捕食使野兔生存受到威胁。 (3),疾病的侵扰,野兔种群中,蔓延并流行疾病,必然使野兔存活率下降。。(4),人类的影响,城市扩建,使其栖息地面积减少;捕杀。

三峡大学数学建模第一题电力生产问题

电力生产问题 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 ( 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 电力生产问题的数学模型 摘要 本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。 对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为

146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。 对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,将所要求的7个时段4种型号的发电机的平均功率一共28个未知数用X1,X2,,,,X28表示,将其对应的发电机数量用X29,X30,,,X56表示,并利用矩阵列出约束条件和目标函数,然后编程并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。 ! 关键词:线性规划、总功率、使用数量、总成本 1.问题重述 1.1问题背景 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 任何代价。 1.2需要解决的问题 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2.模型假设 假设1:调整发电机功率没有成本 :

数学建模一周试题。

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 试 题 说 明 1.本次数学建模周共有如下十五道题。每支队伍(2-3人/队)必须从以下题中任意选取一题,并完成一篇论文,具体要求参阅《论文格式规范》。 2.指导老师会根据题目的难度对论文最后的评分进行调整。 3.题目标注为“A ”的为有一定难度的题目,选择此题你们将更有可能得到高分。 (一)乒乓球赛问题 (A) A 、 B 两乒乓球队进行一场五局三胜制的乒乓球赛,两队各派3名选手上场,并各有3种选手的出场顺序(分别记为123,,ααα 和123,,βββ)。根据过去的比赛记录,可以预测出如果A 队以i α次 序出场而B 队以 j β次序出场,则打满5局A 队可胜ij a 局。由此得矩阵 () ij R a =如下: (1) 根据矩阵R 能看出哪一队的实力较强吗? (2) 如果两队都采取稳妥的方案,比赛会出现什么结果? (3) 如果你是A 队的教练,你会采取何种出场顺序? (4) 比赛为五战三胜制,但矩阵R 中的元素却是在打满五局的情况下得到的,这样的数据处理和预测方式 有何优缺点? (二)野兔生长问题 时野兔的数量。 (三)停车场的设计问题 在New England 的一个镇上,有一位于街角处面积100?200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。 容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。 (四)奖学金的评定 (A) 背景 A Better Class (ABC)学院的一些院级管理人员被学生成绩的评定问题所困扰。平均来说,ABC 的教员们一向打分较松(现在所给的平均分是A —),这使得无法对好的和中等的学生加以区分.然而,某项十分丰厚的奖学金仅限于资助占总数10%的最优秀学生,因此,需要对学生排定名次. 教务长的想法是在每一课程中将每个学生与其他学生加以比较,运用由此得到的信息构造一个排名顺序.例如,某个学生在一门课程中成绩为A,而在同一课程中所有学生都得A,那么就此课而言这个学生仅仅属于“中等”。反之,如果一个学生得到了课程中唯一的A ,那么,他显然处在“中等至上”水平。综合从几门不同课程所得到的信息,使得可以把所有学院的学生按照以10%划分等级顺序(最优秀的10%,其次的10%,等等)排序。 问题 (1)假设学生成绩是按照(A+,A, A —, B+ ,…)这样的方式给出的,教务长的想法能否实现?

数学建模之电力的生产问题

数学建模之电力的生产问 题 Prepared on 22 November 2020

电力生产最小成本 摘要 本文是需解决发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启和关闭以及运行时的输出功率,既使得一天内总发电成本最小,又使发电机组在一天中各个时段的总输出功率达到用电需求的问题,为解决这个问题,采用了单目标非线性规划方法,建立了所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本,以此制定发电机组的启停计划。 问题一:为了使发电厂一天总的发电成本最低,同时还要考虑到不同时间段开机数量不同对启动成本的相互影响,将七个时间段的成本统一考虑,其中,启动成本与发电机开启数量有关,要让成本少,应在满足相应约束条件下尽量减少开机数量,尽量让上一阶段的发电机下一阶段依然工作,边际成本与开启发电机台数、输出功率、最小功率、时长有关,固定成本与开启发电机台数、时长有关,选取相应的约束条件对目标函数进行约束,从而给出优化模型,运用非线性规划的方法,利用Lingo编程求解,得到发电厂每天最小发电总成本为:1427179 元。具体的发电机使用方案见附录一中表一、表二。 问题二:根据题目的要求,在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,在建模时将每台发电机的实际输出功率降至80%,所以可以按照问题一建立的模型,将其约束条件中每个时间段的实际输出功率改为功率的80%但同时要满足用电量,同样利用Lingo编程求解,得到发电厂每天最小发电总成本为:1444670元。具体的发电机使用方案见附录一中表三、表四。 在得到上述两个问题的结果后,对结果的正确性性进行检验,并且对所得结果进行分析,给出自己的评价,并且对所建模型的合理性进行判断,以及对模型做了适当的推广。 关键词:单目标非线性规划发电机的合理搭配电力生产最优解

数学建模生产计划有关问题解析

201数学建模生产计划 摘要 本文主要研究足球生产计划的规划问题。 对于问题一足球总成本包括生产成本与储存成本,又由于足球各月的生产成本、储存成本率及需求量已知,故各月足球的生产量对总成本起决定因素。在此建立总成本与足球生产量之间的关系,运用Matlab求出了总成本的最优解。 对于问题二储存成本率的大小影响了储存成本的高低,要使总成本最低,在储存成本率变化的情况下必须不断调整足球各月生产量,我们在Matlab中运用散点法,取了501个点,进而对图形进行线性拟合,得出储存成本率减小时各月足球生产量的变化情况。 对于问题三考虑到储存容量不能用储存成本率直接由函数表达,因此在Matlab 采用散点法结合表格分析法对501个点进行分析可得到储存成本率为0.39%时,储存容量达到最大。 关键词:最优解散点法线性拟合表格分析法 问题的重述 皮革公司在6个月的规划中根据市场调查预计足球需求量分别是10,000、15,000、30,000、35,000、25,000和10,000,在满足需求量的情况下使总成本最低,其包括生产成本及库存成本。根据预测,今后六个月的足球的生产单位成本分别是$12.50、$12.55、$12.70、$12.80、$12.85和$12.95,而每一个足球在每个月中的持有成本是该月生产成本的5%。目前公司的存货是5,000,每个月足球最大产量为30,000,而公司在扣掉需求后,月底的库存量最多只能储存10,000个足球。 问题一、建立数学模型,并求出按时满足需求量的条件下,使生产总成本和储存成本最小化的生产计划。 问题二、如若储存成本率降低,生产计划会怎样变化? 问题三、储存成本率是多少时?储存容量达到极限。 问题的分析 问题一要求在足球的需求量一定的情况下,使生产总成本和储存成本最小。又足球的生产成本和储存成本率已知,故只需要建立生产总成本和储存成本与各月足球的生产量之间的优化模型,运用Matlab即可求出足球生产总成本和储存成本的最优化组合。

数学建模36套试题

第1题企业评价 选定20个评价者对某一企业的市场营销效果进行评价,将评价等级分为五等,如表一所示,评价等级的数字表示人数,如“资产负债率”一栏表示有6个人认为很好,9个人认为较好等等,采用适当的方法对该企业属于哪一等级作出评价。 表一企业市场营销效果评价情况 第2题强烈的碰撞 美国国家航空和航天局(NASA)从过去某个时间以来一直在考虑一颗大的小行星撞击地球会产生的后果。 作为这种努力的组成部分,要求你们队来考虑这种撞击的后果,加入小行星撞击到了南极洲的话。人们关心的是撞到南极洲比撞到地球的其它地方可能会有很不同的后果。 假设小行星的直径大约为1000米,还假设它正好在南极与南极洲大陆相撞。 要求你们对这样一颗小行星的撞击提供评估。特别是,NASA希望有一个关于这种撞击下可能的人类人员伤亡的数量和所在地区的估计,对南半球海洋的食物生产的破坏的估计,以及由于南极洲极地冰岩的大量融化造成的可能的沿海岸地区的洪水的估计。

第3题灌溉问题 下图是一个农田图,边表示田埂,周围是灌溉渠,问至少要挖开多少个田埂才能使每一块地都能灌上水?给出挖开田埂的一个方案。 第4题路线设计 现在有8个城市,已知两个城市之间的路费如下表,现在有一个人从A城市出发旅行,应该选择怎样的路线才能刚好每个城市都到达一次又回到A城市,其总路费最少? A B C D E F G H A B C D E F G 56 35 21 51 60 43 39 21 57 78 70 64 49 36 68 --- 70 60 51 61 65 26 13 45 62 53 26 50 第5题水质评价 按照《中华人民共和国地下水质量标准》,地下水水质共分六个等级(如表一)。现经过抽样得到三个地区的水质状况(如表二),对照标准,试评价他们各属哪一级。 Ⅰ类Ⅱ类Ⅲ类Ⅳ类Ⅴ类

数学建模电力安排问题

电力生产问题 摘要 本文解决的是电力生产中发电机的安排问题,在满足每日各时间段电力需求的条件下,安排各型号发电机来供电,以期获得最小的成本。为解决此问题,我们建立了两个最优化模型。 针对问题一:建立了非线性单目标最优化模型。从已知条件、目标函数、约束条件三方面进行综合分析可知,每天的总成本由总固定成本、总边际成本、总启动成本组成,确定总成本为目标函数,各时段各型号发电机工作数量及其总超出功率为主要变量,并列出相应约束条件。最后通过Lingo软件[2]求出最小成本为1540770元,并得出各时段各型号发电机的数量及其功率如下表(具体见表三): 针对问题二:建立了线性单目标最优化模型。引入非负变量,即为各时段新增开的各型号的发电机台数,通过此变量线性表示出启动成本。以总成本为目标函数,在模型一的基础上,只需改变一个约束条件,即发电机组在任意时间段内所能发出的最大总功率的80%要大于等于该时段的用电需求。最后通过lingo软件求出最小成本为1885420元,并得出各时段各型号发电机的数量及其功率。 关键词:非线性最优化模型线性最优化模型最小生产成本

1 问题重述 1.1 问题背景 在电力生产过程中,为满足每日的电力需求并且使生产成本达到最小,因不同发电性能的发电机成本不同,故可以选用不同型号的发电机组合使用。 1.2 题目信息 题中给出了一天中七个时段的用电需求(见表一)及四种发电机的发电性能和相应成本(见表二)。其中,所有发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于其最小输出功率,且所有发电机均存在一个启动成本,以及工作于其最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。 问题(1):在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2):如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2 模型假设 假设1:不计发电机启动时所需时间; 假设2:各发电机均在24时关闭,即不考虑循环过程; 假设3:各发电机的输出功率在时段初调整好后,保持不变; 假设4:题目所列出的成本以外的成本消耗不计。

电力生产问题数学模型

电力生产问题数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力生产问题数学模型 摘要 本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。 因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。 解决问题(1)时,我们运用LINGO 工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 2 0 2 0 1 0 0 1750 750 1750 1000 1300 750 … … … … … … … … 型号4 0 3 3 3 3 3 3 0 2166.6 1800 3500 1800 1800 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的j ij j D P m ≤≤改为 8.0?≤≤j ij j D P m 。得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 5 0 8 1 5 0 0 1400 1400 1400 1400 1400 0 … … … … … … … … 型号4 3 3 3 3 3 3 3 1866.6 2466.6 2466.6 2400 2000 1800 1800 关键词:非线性 整体最优化 LIGNO 软件 时 段 型 号 时 段 型 号

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模-草原鼠患问题(1)

摘要: 在我国的内蒙古大草原,由于各种人为因素对自然生态系统的破坏(如过度放牧、大量消灭草原上的狼群等),造成草原鼠患问题严重,并由此引发了严重的生态问题。由生物知识知道,鼠患的主要原因是由于人为对自然环境的损坏使得生态失去了平衡,至使老鼠的视线得到了很好的扩充,在加上天敌数量的减少,使得老鼠数目得不到有效控制。为了更好的对其进行有效、合理的控制,并对其各种方案进行有效性分析,本文主要通过对老鼠和天敌数目之间的关系利用微分等数学方法对模型进行了建立,并在最后给出了自己的最好的方案,但本文存在一定的缺点,对数据的要求较高,需要对大量数据进行统计,使得模型过于复杂。 关键字:微分方程、几何型曲线、生态平衡、鼠患 一、问题重述 在我国的内蒙古大草原,由于各种人为因素对自然生态系统的破坏(如过度放牧、大量消灭草原上的狼群等),造成草原鼠患问题严重,并由此引发了严重的生态问题。 老鼠在草原上是家族式掘洞群居。它们食量巨大,繁殖力强。由于挖掘造成的环境损失远远大于单纯的食草所造成的危害。所有鼠害发生的地方水土流失严重。有的甚至形成了大面积寸草不生的“鼠荒地”。 更糟糕的是至今我们尚未找到能有效控制进而消灭草原老鼠的办法。也就是说,至少以目前的技术力量,我们还不能用人工种草的办法永久地恢复自然植被。因为不当的灭治方法,鼠害日益泛滥,而且越灭越多,因而也就不得不继续灭下去了。但是,能否最终将老鼠赶出草原,目前尚难以作出定论。 控制草原鼠患,现在人们通常采用的有下面几种方法: (1) 灭鼠药现在所用的灭鼠药在杀死老鼠的同时,也杀死了老鼠的天敌。因此,实际的情况是,撒灭鼠药后老鼠的数量反而以几何级数增长。改进的方法是,可以研制无公害的灭鼠药,但这需要一定的时间和大量资金的投入。 (2) 引入老鼠的天敌通过人工喂养和驯化老鼠的天敌,如鹰、狐狸、狼等,将一定数量的老鼠的天敌引入鼠患严重的草原,利用它们控制老鼠的数量。这种方法在短期内有效,但也有一定的问题:一是费用比较高,例如,喂养和驯化一只银狐的费用要上千元;二是引入的数量难以确定,数量太小,难以控制鼠患,数量太多就会引起新的生态问题。 (3) 人工种植牧草鼠类是一种需要开阔视野的生物种,只要有茂密的牧草生长,它们就无法生存。它们的视线之内如果毫无遮拦,便会肆意横行。在草场植被密集的地方,老鼠并不容易打洞,而且在这样的环境中,老鼠遇到天敌追捕时也难以及时躲避,所以数量不会激增。但是,据有关资料显示,青藏高原上几乎所有的人工种草都会在一定时间内自行退化。 问题1、建立恰当数学模型,对上述灭鼠方法的效果进行评估分析,要考虑到短期和长期的效果以及资金投入的问题;

数学建模 生产计划问题

第一题:生产计划安排 2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变 3)如果劳动力数量不增,材料不足时可从市场购买,每单位元,问该厂要不要购进原材料扩大生产,以购多少为宜 4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产 答: max3x1+x2+4x3! 利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量 st!限制条件 6x1+3x2+5x3<45! 劳动力的限制条件 3x1+4x2+5x3<30! 材料的限制条件 End!结束限制条件 得到以下结果 1.生产产品甲5件,丙3件,可以得到最大利润,27元 2.甲利润在—元之间变动,最优生产计划不变 3. max3x1+x2+4x3 st 6x1+3x2+5x3<45 end 可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位 4. max3x1+x2+4x3+3x4 st 6x1+3x2+5x3+8x4<45 3x1+4x2+5x3+2x4<30 end ginx1 ginx2 ginx3 ginx4 利润没有增加,不值得生产 第二题:工程进度问题 某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一样,下表提供了这些项目的基本数据。

工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。然而,每个工程在他的规定时间内必须至少完成25%。每年底,工程完成的部分立刻入住,并且实现一定比例的收入。例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是*50(第二年)+*50(第三年)+(+)*50(第四年)+(+)*50(第五年)=(4*+2*)*50(单位:万元)。试为工程确定最优的时间进度表,使得五年内的总收入达到最大。 答: 假设某年某工程的完成量为Xij, i表示工程的代号,i=1,2,3,j表示年数,j=1,2,3,如第一年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。 另有一个投入与完成的关系,即第一年的投入总费用的40%,该工程在年底就完成40%,工程1利润: 50*X11+50*(X11+X12)+50*(X11+X12+X13)+50*(X11+X12+X13) 工程2利润: 70*X22+70*(X22+X23)+70*(X22+X23+X24) 工程3利润: 20*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34) 工程4利润: 20*X43+20*(X43+X44) max(50*X11+50*(x11+x12)+50*(X11+X12+X13)+50*(X11+X12+X13))+(70*X22+70*(X22+X23) )+70*(X22+X23+X24)+(150*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34)) +(20*X43+20*(X43+X44)) st 5000*X11+15000*X31=3000 5000*X12+8000*X22+15000*X32=6000 5000*X13+8000*X23+15000*X33+1200*X43=7000 8000*X24+15000*X34+12000*X44=7000 8000*X25+15000*X35=7000 X11+X12+X13=1 X22+X23+X24+X25≥ X22+X23+X24+X25≤1 X31+X32+X33+X34+X35≥ X31+X32+X33+X34+X35≤1 X43+X44=1 全为大于零的数

数学建模狐狸野兔问题

狐狸野兔问题 摘要:封闭自然环境中的狐狸和野兔存在捕食与被捕食关系,本题旨在通过对自然状态下 两物种数量变化规律的分析,推测加入人类活动(即人工捕获)时两物种数量的变化,进而得出人类活动对自然物种的影响,为人类活动提供参考,使其在自然允许的范围内,促进人与自然和谐相处。 对于问题一,首先建立微分方程,描述两物种数量随时间变化的Volterra 模型 ()0,0,0,021212211>>>>?????? ?+-=-=r r k k xy r y k dt dy xy r x k dt dx 并用解析法求得狐狸与野兔数量的关系 ()()2211k r x k r y x e y e c --= 为直观反映两物种数量随时间的变化规律,选取三组有代表性的初值,利用Matlab 软件绘图。在狐狸和野兔随时间的变化图像中,大致得出其数量呈周期变化,为进一步检验周期性,再用Matlab 绘图做出狐狸与野兔数量的关系图,得到封闭曲线,因此分析结果为:狐狸和野兔的数量都呈现周期性的变化,但不在同一时刻达到峰值。 对于问题二,利用数值解法,令模型中两式皆为0,即求得狐狸和野兔数量的平衡状态。且由问题一中狐狸与野兔数量的关系图知野兔和狐狸的平衡量恰为他们在一个周期内的平均值。 对于问题三,在Volterra 模型基础上引入人工捕获系数。 只捕获野兔时,野兔的自然增长率降低,狐狸自然死亡率增加,改进后模型同问题二处理方式一样,求得平衡状态,得出结论:捕获野兔时,狐狸数量减少,野兔数量反而增加,即Volterra 原理:为了减少强者,只需捕获弱者。 只捕获狐狸时,分析方法与只捕获野兔时相同,并得出野兔狐狸数量皆增加的结论。 问题三为自然界人类捕获生物提供了新的思路,即可以在正常允许范围内,为了达到减少某一种群数量的目的,相应的捕获其食饵,或适度地捕获捕食者使捕食者与被捕食者的数量都有所增加。 关键词:Volterra 模型Matlab 软件解析法周期性

数学建模——人员安排问题

B题人员安排问题 “PE公司”是一家从事电力工程技术的中美合资公司,现有41个专业技术人员,其结构和相应的工资水平分布如表1所示。 表1 公司的人员结构及工资情况 目前,公司承接有4个工程项目,其中2项是现场施工监理,分别在A地和B地,主要工作在现场完成;另外2项是工程设计,分别在C地和D地,主要工作在办公室完成。由于4 个项目来源于不同客户,并且工作的难易程度不一,因此,各项目的合同对有关技术人员的收费标准不同,具体情况如表2所示。 表2 不同项目和各种人员的收费标准 为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,具体情况如表3 所示: 表3:各项目对专业技术人员结构的要求 说明: ●表中“1~3”表示“大于等于1,小于等于3”,其他有“~”符号的同理; ●项目D,由于技术要求较高,人员配备必须是助理工程师以上,技术员不能参加; ●高级工程师相对稀缺,而且是质量保证的关键,因此,各项目客户对高级工程师的配备 有不能少于一定数目的限制。各项目对其他专业人员也有不同的限制或要求; ●各项目客户对总人数都有限制; ●由于C、D两项目是在办公室完成,所以每人每天有50元的管理费开支。 由于收费是按人工计算的,而且4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41。因此需解决的问题是:如何合理的分配现有的技术力量,使公司每天的直接收益最大?并写出相应的论证报告。

问题重述: 本问题是人事安排,在满足客户要求,和公司人员结构的前提下,公司获得最大利润问题,即: 4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41。因此需解决的问题是:如何合理的分配现有的技术力量,使公司每天的直接收益最大? 要建立模型: 1,客户要求:不同工种的人数,见表3. 2,公司人员结构:见表1. 3,不同项目,和各种人员收费标准:见表2. 建立最佳收益模型f(x)max,并列出不同项目的人员结构. 模型假设: 假设四个项目同时开始,并且同时结束,所有人都工作.同等级别的人的能力一样. C 、D 项开支由公司支付。 符号说明 i :用i =1,2,3,4分别表示高级工程师,工程师,助理工程师和技术员。 j :用j =1,2,3,4分别表示项目A,B,C 和D 。 ij X :公司分配第i 级别工作人员到第j 个项目上的人数。例如23X 表示公司 分配工程师到项目C 上的人数。 ij a :第i 级别工作人员分配到第j 个项目上的收费。 ij b : 第i 级别工作人员分配到第j 个项目上时公司的开支(包括工资和管理 费)。 ij A : 表示到项目j 工作的第i 级别工作人员为公司贡献的纯利润收入。 j λ: 表示第j 个项目的总工时(即项目j 的总工作量)。 模型的建立: 总收益=总收入-总支出 公司每天的总收费为: ij i j ij X a ∑∑==414 1 , 每天的总开支为:ij i j ij X b ∑∑==41 4 1 公司每天的直接收益为: ij i j ij ij X a X f ∑∑===4 14 1 )( - ij i j ij X b ∑∑==4 14 1 = ij i j ij ij X b a )(4 14 1 ∑∑==- (1) 由此可得,方程模型:Max :ij i j ij ij ij X b a X f )()(414 1 ∑∑==-=

数学建模野兔汇总.

数学建模 1 辽宁工程技术大学 数学建模课程成绩评定表 学期2014-2015学年1 学期姓名高显利 李浩申 李金胜 专业工程管理班级14-工中职一班课程名称数学建模 论文题目航空机票超订票问题 评定标准 评定指标分值得分 知识创新性20 理论正确性20 内容难易性15 结合实际性10 知识掌握程度15 书写规范性10 工作量10 总成绩100 评语: 任课教师林清水时间2015年11月15日备注

高显利李浩申李金胜:种群的繁殖与稳定收获 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 关键词 种群繁殖野兔数学建模稳定收获异常现象 Logistic模型生态学 MATLAB程序

数学建模 根据题目:在某地区野兔数量在连续十年统计数量(单位十万)如下: 分析该数据,得出野兔的生长规律。并指出在哪些年内野兔的增长有异常现象。对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型来模拟。Logistic 模型是种群生态学的核心理论之一。它可以用来描述种群生长规律,利用它可以表征种群的数量动态。 之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。该结果比较符合客观规律。 利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 2010070102019 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用matlab或lingo编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 时,若使产品品产品III不值得生产。用matlab运算分析,当产品III的利润增加至25 3 种计划最优,此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用lingo得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 资源利润 技术服务劳动力行政管理 产品I 1 10 2 10 II 1 4 2 6 III 1 5 6 4 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品III值得生产的话,它的利润是多少?假使将产品III的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品III,试确定最优产品品种规划。

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

数学建模之兔子问题(出稿)

数学建模一周论文 论文题目:野兔生长问题 姓名1:李宝川学号:09023320 姓名2:彭亚学号:09023308 姓名3:刘新斌学号:09023304 专业:勘查技术与工程 班级:090233 指导教师:虞先玉老师 2010年1月1日、

摘要 参照题目,野兔生长属自然范畴,在生存条件良好,且无外力干扰的情况下,其种群数量是呈对数型增长的。题中可读,野兔生长并不是处于理想的情况下的,考虑到自然的各种原因,诸如,天地的捕杀,自然灾害,疾病等。 对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型来模拟。Logistic模型是种群生态学的核心理论之一。它可以用来描述种群生长规律,利用它可以表征种群的数量动态。 之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。该结果比较符合客观规律。 利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。描述某一研究对象的增长过程如生态旅游区环境容量的确定,森林资源的管理以及耐用消费品社会拥有量的预测、国民生产总值的预测等;也可作为其它复杂模型的理论基础如Lotka-Volterra两种群竞争模型;以上的大多数的工作都是拿逻辑斯蒂模型来用,但也由此可看出逻辑斯蒂方程不管在自然科学领域还是在社会科学中都具有非常广泛的用途。 关键字:Logistic模型生态学 MATLAB程序

问题重述 野兔生长问题。首先,野兔是生长在自然环境中的。自然很复杂,存在着许多影响种群发展的因素。我们知道,假如给野兔一个理想的环境,野兔数量是呈J型增长的。现实情况中,种群一般是呈S型增长的,从题中表格看出,野兔的数量并不是单一地增长,T=3,6.90568;T=4,6.00512;T=5,5.56495;T=6,5.32807。第四年到第七年,这三年野兔的数量不增反降,说明其间有影响野兔生长的因素存在。我们探讨了其中的因素: (1),兔子内部因素,竞争,雄雌比利失去平衡,老化严重等。 (1),自然灾害,比如说草原火灾,使野兔生长环境遭到破坏;再如气候反常,使野兔的产卵,交配受影响。 (2),天敌的捕食,狼,狐狸等天敌大量地捕食使野兔生存受到威胁。 (3),疾病的侵扰,野兔种群中,蔓延并流行疾病,必然使野兔存活率下降。。(4),人类的影响,城市扩建,使其栖息地面积减少;捕杀。 考虑到上述因素,野兔的生长就不能完全用一个Logistic模型来模拟 模型假设 上述,野兔生长问题,我们假设 (1),假设它使处于自然的情况(没有人的作用),人类活动对其生存不产生影响。 (2),假设各个环境因素对野兔生长的影响是互不影响的。 (3),假设兔子的内部因素对其生存率的影响不大。 (4),假设野兔在各年龄段中的分布率不变,即年龄结构不变,并采用各种措施维持这一结构; 那它是可以用Logistic模型来模拟的。 分析与建立模型 对于生物模型,首先考虑的是logistic模型,考虑到logistic模型的增长曲线是单调的,而题目所给的数据中有一段是下降的,这是反常的情况,而正常情况应当是单调上升的。考虑到可能在这段时间内有使野兔减少的因素。不能在整个时间段进行拟合,我们应当在每个单调区间上进行拟合。

相关主题
文本预览
相关文档 最新文档