当前位置:文档之家› 单纯形法的解题步骤

单纯形法的解题步骤

单纯形法的解题步骤
单纯形法的解题步骤

三、单纯形法的解题步骤

第一步:作单纯形表.

)(1)把原线性规划问题化为标准形式;

)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;

)(3)目标函数非基化;

)(4)作初始单纯形表.

第二步:最优解的判定.

(1) 若所有检验数都是非正数,即,则此时线性规划问题已取

得最优解.

(2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划

问题无最优解.

如果以上两条都不满足,则进行下一步.

第三步:换基迭代.

,并确定所在列的非基变量为进基变量.

(1)找到最大正检验数,设为

(2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号.

主元是最大正检验数

所在列,用常数项与进基变量所对应的列向

量中正分量的比值最小者;

替换出基变量,从而得到新的基变量.也就是主元所在

(3)换基:用进基变量

(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;

(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.

例3 求.

解(1)化标准型:令

,引进松弛变量

,其标准型为

(2)作单纯形表:在约束方程组系数矩阵中

的系数构成单位矩阵,故取

为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8

(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为

目标函数取得最优值.

原线性规划问题的最优解为:.目标函数的最优值为14,即.

例4 用单纯形方法解线性规划问题.

求.

解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出

,,

代入目标函数

,

经整理后,目标函数非基化了.

作单纯形表,并进行换基迭代(见表6.9).

最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变出基,非基变量进基.

换,基变量

表 6.9

目前最大检验数

,其所

在列没有正分量,所以该线性规划问题没有最优解. 例5用单纯形方法解线性规划问题. 求

解 此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵,取

为基变

量,而目标函数没有非基化.从约束方程找出

,

代入目标函数,经整理得

,

目标函数已非基化.

作单纯形表,并进行换基迭代(见表6.10).

最大检验数

,由最小比值法知:

为主元,对主元所在列施以行初等变

换,基变量

出基,非基变量x2进基,先将主元

化为1,然后再将主元所在列的

其他元素化为零.

表 6.10

至此,检验数均为非正数,故得基础可行解

.

原问题的最优解为:

.

最优值为6,即

.

如果我们再迭代一次,将基变量

出基,非基变量

进基(见表6.11).

表 6.11

可得到另一个基础可行解

,

原问题的最优解为:

,最优值仍为6,说明该线性规划问题有

无穷多最优解,其最优解均为6.

如何知道线性规划问题有无穷多最优解呢?

这主要反映在单纯形表中.如果非基变量所对应的检验数为0,我们可对此列继续进行换基迭代,就可以得到另一个基础可行解.以此作下去,可得到许多基础可行解,即相对应的最优解有无穷多个.

(4) 0

1

1 0

单纯形法步骤例题详解

单纯形法演算 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 无穷 0 4x 24 6 2 0 1 0 4 0 5x 5 1 1 0 0 1 5 j j z c -(检验数) 2 1 首先列出表格,先确定正检验数最大值所在列为主列,然后用b 除以主列上对应的同行数字。除出来所得值最小的那一行为主行,根据主行和主列可以确定主元(交点)。接着把主元化为1并把X4换成X1. ??? ??? ?≥=++=++=+++++=0,,524261550002max 5152 14213 25 4321x x x x x x x x x x x x x x x z ??????? ≥≤+≤+≤+=0 ,5 24261552max 21212122 1x x x x x x x x x z

j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5 1 1 0 0 1 j j z c - 2 1 这时进行初等行列变换,把主列换单位向量,主元为1。也就是X5所在行减去X1所在行。并且重新计算检验数。 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5-4 1-1=0 1-2/6 =4/6 0-1/6=-1/6 1 j j z c - 2-2*1-0*0-0*1=0 1-0*5-2*2/6-0*4/6=1/3 0-0*0-2*1/6-0*-1/6=-1/3 再次确定主元。为4/6。然后把X5换成X2。并且把主元化成1。

(完整word版)单纯形法的解题步骤

三、单纯形法的解题步骤 第一步:作单纯形表. )(1)把原线性规划问题化为标准形式; )(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵; )(3)目标函数非基化; )(4)作初始单纯形表. 第二步:最优解的判定. (1) 若所有检验数都是非正数,即,则此时线性规划问题已取 得最优解. (2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划 问题无最优解. 如果以上两条都不满足,则进行下一步. 第三步:换基迭代. ,并确定所在列的非基变量为进基变量. (1)找到最大正检验数,设为 (2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号. 主元是最大正检验数 所在列,用常数项与进基变量所对应的列向 量中正分量的比值最小者; 替换出基变量,从而得到新的基变量.也就是主元所在 (3)换基:用进基变量 (4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表; (5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止. 例3 求.

解(1)化标准型:令 ,引进松弛变量 ,其标准型为 求 (2)作单纯形表:在约束方程组系数矩阵中 的系数构成单位矩阵,故取 为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8

(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为 目标函数取得最优值. 原线性规划问题的最优解为:.目标函数的最优值为14,即. 例4 用单纯形方法解线性规划问题. 求. 解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出 ,, 代入目标函数 , 经整理后,目标函数非基化了. 作单纯形表,并进行换基迭代(见表6.9). 最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变出基,非基变量进基. 换,基变量

单纯形法典型例题

科学出版社《运筹学》教材 第一章引言 第二章线性规划,姜林 第三章对偶规划,姜林 第四章运输问题,姜林 第五章整数规划,姜林 第六章非线性规划,姜林 第七章动态规划,姜林 第八章多目标规划,姜林 第九章图与网络分析,熊贵武 第十章排队论,熊贵武 第十一章库存论,王勇 第十二章完全信息博弈,王勇 第十三章不完全信息博弈,王勇 第十四章决策论与影响图 第十五章运筹学模型的计算机求解 成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。问 如何选择食品才能在满足营养的前提下使购买食品的费用最小? 食品名称热量(kcal) 蛋白质(g) 钙(mg)价格(元)猪肉1000 50 400 14 鸡蛋800 60 200 6

大米900 20 300 3 白菜200 10 500 2 营养需求量 2000 55 800 解:设需猪肉、鸡蛋、大米和白菜各需 x1,x2,x3,x4斤。则热量的需求量为: 2000 20090080010004 3 2 1 x x x x 蛋白质 某工厂要做100套钢架,每套有长 3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原 料长12.3米,问应如何下料使需用的原材料最省。 解:假设从每根 12.3米的原材料上截取 3.5米、2.8米和2根2.4 米,则每根原材料需浪费 1.2米,做100套需浪费材料 120米,现 采用套裁的方法。 方案一二三四五六3.5 2.8 2.4 0 0 5 0 4 0 1 2 1 1 3 0 2 0 2 2 1 1 合计剩余 12 0.3 11.2 1.1 11.5 0.8 11.9 0.4 11.8 0.5 12.2 0.1 现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程: minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6 约束条件: x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200 ,,,800 50030020040055 102060503000 2009008001000. .23614min 4 3214 3 2 1 4 32 14 32 14321x x x x x x x x x x x x x x x x t s x x x x z

单纯形法求最优解问题及一些知识点整理

单纯形法求最优解问题 题目(老师布置的那道作业题):2153m ax x x f +=,其中 ??? ??? ?=≥=++=+=+5,4,3,2,1,0182312245214 231j x x x x x x x x j ,求2153m ax x x f +=的最大值。 这张表是根据题目画的,Cj (行向量)为5432100053m ax x x x x x f ++++=中各个变量的系数,Ci (列向量)为与X B (列向量)相对应的各项的系数,X B 称为基变量(3列,由题目中的方程个数决定),起初的基变量由构造的变量x3、x4、x5组成,b 为对应三个方程等式右边的常数,z j 为Ci 各列与xj 各列乘积的和,如z1=0*1+0*0+0*3=0。i θ为判别将哪个基变量换出的依据,根据c j -z j 为正,要先将x2换入XB 中,关键是判断x3、x4、x5哪个跟x2换,这就要根据各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,如上表可知x2跟x4换,换完之后注意原来x4所对应的列向量为[0 1 0]T ,故要将x2所对应的列向量变换为为[0 1 0]T ,注意b 也要跟着变化,于是得下表.

由上表知c 1-z 1=3>0,故仍需将x1换入XB 中,用各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,结合i θ可知,x1跟x5换,于是得下表。 由上表可知c j -z j 均非正,故5432100053m ax x x x x x f ++++=取最大值时,????? ?? ?????????=00662x , 对应的最大值36max =f . 系统工程导论知识点整理: 系统是由相互作用和相互依赖的若干组成部分(要素)结合的具有特定功能的有机整体。 系统的特征:整体性、相关性、目的性、环境适应性。 系统的功能是指系统与外部环境相互作用所反映的能力。 结构是功能的内在根据,功能是结构的外在表现。 系统功能的特性:易变性、相关性。 系统工程就是用科学的方法规划和组织人力、物力、财力,通过最优途径的选择,使人们的工作在一定期限内收到最合理、最经济、最有效的效果。 科学的方法:从整体观念出发,通盘筹划,合理安排整体中的每一个局部,以求得整体的最优规划、最优管理和最优控制,使每个局部都服从一个整体目标,力求避免资源的损失和浪费。

单纯形法步骤

单纯形法步骤: 1. 给定初始点 )0(x 初始单纯形边长 a , α , 收缩系数 β , 延伸系数 γ 以及精度要求 ε。 2. 作出初始单纯形图 3. 找出坏点 )(h x 、好点 )(e x 计算中心点 )1(+n x 及 反射点 )2(+n x 和各点上的目标函数值 4. 比较反射点和除了坏点上的函数值, 5. ⑴. 如果反射点上的函数值比好点差,但比坏点外的其他顶点函数值好,认为反射成功,将反射点代替坏点构成新的单纯形,转7 ⑵. 如果反射点上的函数比好点还要好,说明反射点很好,可以沿此方向作延伸尝试,如果延伸点上的函数值比好点还好,则将延伸点取代坏点,形成新单纯形,转7。反之,延伸点上函数值不如好点,说明延伸失败,但反射还是成功的,所以仍可用反射点代替坏点,然后转7 5. 如果反射点连坏点都不如,说明反射失败,那么作收缩,找出收缩点的函数值,并转 6.;如果反射点仅比坏点好,则将反射点取代坏点,然后收缩,转下一步6。 6. 如果收缩点上函数比坏点还差,说明收缩也失败,作缩小运算,形成缩小后的单纯形转7;反之(即收缩点上的函数值比坏点好),说明收缩成功,用收缩点代替坏点,形成新的单纯形转。转下一步7。 7. 检查是否满足精度要求 ()(1)max (()i n f x f x ε+-≤ 如满足,停止迭代,否则转3,继续迭代。 %三个考察点,最优,次差,最差 best = vx(: , 1) ; fbest = vf(1) ;

soso = vx(: , n) ; fsoso = vf(n) ; worst = vx(: , n+1) ; fworst = vf(n+1) ; center = sum(vx(: , 1:n) , 2) ./ n ; r = 2 * center - worst ;%反射点 fr = feval(fun , r) ; if fr < fbest %比最好的结果还好,说明方向正确,考察扩展点,以期望更多的下降 e = 2 * r - center ; %扩展点 fe = feval(fun , e) ; if fe < fr %在扩展点和反射点中选择较优者去替换最差点 vx(: , n+1) = e ; f(: , n+1) = fe ; else vx(: , n+1) = r ; vf(: , n+1) = fr ; end else if fr < fsoso %比次差结果好,能够改进 vx(: , n+1) = r ; vf(: , n+1) = fr ; else %比次差结果坏,当压缩点无法得到更优值的时候,考虑收缩 shrink = 0 ; if fr < fworst %由于r点更优所以向r点的方向找压缩点 c = ( r + center ) ./ 2 ; fc = feval(fun , c) ; if fc < fr %确定从r压缩向c可以改进 vx(: , n+1) = c ; vf(: , n+1) = fc ; else %否则的话,准备进行收缩

单纯形法表的解题步骤

单纯形法表的解题步骤 单纯形法表结构如下: j c → 对应变量的价值系数 i θ B C b X b 1x 2x 3x " j x 基变量的价值系数 基变量 资源列 θ规则 求的值 j σ 检验数 ①一般形式 若线性规划问题标准形式如下: 123451231425max 23000284164120,1,2,5 j z x x x x x x x x x x x x x j =++++++=??+=?? +=??≥=?" 取松弛变量345,,x x x 为基变量,它对应的单位矩阵为基。这样就得到初始可 行基解:()()0 0,0,8,16,12T X =。将有关数字填入表中,得到初始单纯形表,如表 1-1所示: 表 1-1 ()()00,0,8,16,12T X = j c → 2 3 0 0 0 i θ B C b X b 1x 2x 3x 4x 5x 0 3x 8 1 2 1 0 0 4 0 4x 16 4 0 0 1 0 -

5x 12 0 [4] 0 0 1 3 j σ 2 3 0 0 0 若检验数均未达到小于等于0,则对上表进行调整。选择上表中检验数最大的列,该列对应的非变量为入基变量;再应用θ规则该列对应的各基变量对应的 θ值,选出其中最小的一行,该行对应的基变量为出基变量。修改单纯形表,对各行进行初等变换,确保基变量组成的矩阵为单为矩阵。修改后的单纯形表如表 1-2所示: 表 1-2 ()()10,3,2,16,0T X = 检验数12,0σσ>,则进行继续调整,调整后的单纯形法表如表1-3所示: 表 1-3 ()()22,3,0,8,0T X =

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 这个函数用来判断是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零 这个函数用来判断线性规划是否是无解的 bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)

单纯形法例题(20210121173229)

单纯形法例题 1、例1、目标函数max z=2 * +3 禹+ 2x2 W 8' 4xi W 16 4x2 W 12 k Ki,财鼻0』 解:首先要将约束条件化为标准形:由此可以看出我们需要加上三个松弛变量, ;汁Hi吃:弋"審得到的标准形式为: max z=2~ +3-+ 0 勺+g +O 5 'xt + 2xj + x] = 8 1 4?i X4 =16 4x;+ 巧=12 11 巾弓^3j 乂4, ^5 $ ? 2 3 0 0 0 C R b *4 0 8 1 2 1 0 0 4 0 16 4 0 0 1 0 - 0 ◎12 0[E(|00 1 3 k - z) 2 3 0 0 0 引」一弋木日lk(i才I) 熙=') (也就是如果与主元素同行,则用现在的值除以主元素即可得到即将要填入的值, 否则,就用现在的值减去与主元素构成矩形的边角上的值的乘积再除以主元素之后 的值。例如:上面的第一行所对应的b值为8-(12*2)/4=2 ,故填入值应该为2。而「 则是由我们根据非基变量的检验数的大小,挑选出最大的那个,作为换入变量,然 后用b的值除以该换入变量所在的列的所有值,得到 约束条件:

由于在检验数中仍然存在大于等于的数,而且, 的坐标中有正分量存在,所以需要继续进行迭代运算。通过观察可以看出主元素为1,换入变量为|勒,换出 由于检验数中存在正数,且P5和P3中有正分量存在,所以需要继续迭代(换入变 此时可以发现检验数中没有大于的数,表明已经得到了最优解,所以最优解是: (4,2,0,0,4 ),故目标函数值z=2*4+2*3=14 2、合理利用线材问题,现在要做100套钢架,每套用长为,,和的钢各一根,

单纯形法例题讲解

例1 max z=2x1+3x2 (标准形式即所有的变量均为负、所有约束条件为等式、所有的右端项系数非负) a=(2,3) b1=(80,160,120) A2=NULL b2=NULL A3=NULL b3=NULL n.iter=n+2*m maxi=TRUE ● simplex(a=a,A1=A1,b1=b1,maxi=TRUE): m1=3,m2=0,m3=0 m=3,n=2 a.o=a=(2,3) if(maxi) a=-a(-2,-3) if(m2+m3==0) a=(-2,-3,0,0,0) b=(80,160,120) init=(0,0,0,80,160,120) basic=(3,4,5) eps=1e -10 out1<-simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps) ? simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps): N=5,M=3 nonbasic=(1,2) if(stage==2) obfun=(-2,-3) it=1 ◆ while(!all(obfun > -eps) && (it <= n.iter))循环 pcol=3 if(stage==2) neg=(1,3) x1+2x2<=80 4x1<=160 4x2<=120 x1,x2>=0 A1= 1 2 4 0 0 4 A= 1 2 1 0 0 4 0 0 1 0 0 4 0 0 1 tableau= 80 -1 -2 160 -4 0 120 0 -4 tableau= 80 -1 -2 160 -4 0 120 0 -4 0 -2 -3 转化为标准形式 x1+2x2+x3=80 4x1+x4=160 4x2+x5=120 x1,x2,x3,x4,x5>=0

图解法和单纯形法求解线性规划问题

图解法和单纯形法求解以下线性规划问题 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直 角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大。 1.2 单纯形法解线性规划问题 它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 1.3 线性规划问题的标准化 使用单纯形法求解线性规划时,首先要化问题为标准形式

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive();其中row2为主元所在的行,col为主元所在的列,row1为要处理的行 void PrintAnswer();数不合法"<

单纯形法例题

单纯形法例题 1、例1、目标函数 max z=2+3 约束条件: 解:首先要将约束条件化为标准形:由此可以看出我们需要加上三个松弛变量, .得到的标准形式为: max z=2+3+ 0+0+0 然后要将其初始的单纯形表画出来: 23000 b 08121004 01640010- 01200013 23000 由初始单纯形表可以看出,为换入变量,而为换出变量;然后根据:= (也就是如果与主元素同行,则用现在的值除以主元素即可得到即将要填入的值,否则,就用现在的值减去与主元素构成矩形的边角上的值的乘积再除以主元素之后的值。例如:上面的第一行所对应的b值为8-(12*2)/4=2,故填入值应该为2。而则是由我们根据非基变量的检验数的大小,挑选出最大的那个,作为换入变量,然后用b的值除以该换入变量所在的列的所有值,得到列的值。 23000 b 02010-1/22 016400104 3301001/4- 2000-3/4由于在检验数中仍然存在大于等于0的数,而且P1,P5的坐标中有正分量存在,所以需要继续进行迭代运算。通过观察可以看出主元素为1,换入变量为,换出变量为,故得到的单纯形表如下:

23000 b 221010-1/2- 0800-414 3301001/412 00-201/4由于检验数中存在正数,且P5和P3中有正分量存在,所以需要继续迭代(换入变 23000 b 241001/40 0400-21/21 32011/2-1/80 00-3/2-1/80 (4,2,0,0,4),故目标函数值z=2*4+2*3=14 2、合理利用线材问题,现在要做100套钢架,每套用长为,,和的钢各一根, 已知原料长,问应如何下料,使用的原材料最省; 解:首先我们必须要清楚该问题的需要设立的变量是什么。我们分析一下问题,做100套钢架,需要长的钢100根,的钢100根,的钢100根。而一份原料长度是, 长度/m 下料根数 截取方案 12345 112 212 3132所用长度 剩余长度0 方案,使得剩余的总长度最少。由此,我们可以将目标函数和约束条件表述出来: 目标函数:min z=+++ 约束条件 首先可以写出线性方程组的矩阵形式:发现不存在单位矩阵,所以要采用人造基的方式,也就是要添加人工变量:,那么线性方程组可以

单纯形法的计算方法

第4章 单纯形法的计算方法 单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。这就是迭代, 直到目标函数实现最大值或最小值为止。 4.1 初始基可行解的确定 为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。 (1)第一种情况:若线性规划问题 max z =n j j j=1c x ∑ 1,1,2,...,0,1,2,...n ij j i j j a x b i m x j n =?==???≥=?∑ 从Pj ( j = 1 , 2 , ? , n )中一般能直接观察到存在一个初始可行基 121(,,...,)n B P P P 0 0?? ?0 1 0 ?== ? ?0 0 1?? (2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。经过整理, 重新对 j x 及ij a ( i = 1 , 2 , ? , m ; j = 1 , 2 , ? , n )进行编号, 则可得下列方 程组 11,1111 22,1122,1112.........,,...,0 m m n n m m n n m m m m nn n n n x a x a x b x a x a x b x a x a x b x x x +++++++++=?? +++=?? ??+++=??≥? 显然得到一个m ×m 单位矩阵

单纯形法的解题步骤

单纯形法的解题步骤

三、单纯形法的解题步骤 第一步:作单纯形表. (1)(1)把原线性规划问题化为标准形式; (2)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵; (3)(3)目标函数非基化; (4)(4)作初始单纯形表. 第二步:最优解的判定. (1) 若所有检验数都是非正数,即 ,则此时线性规划问题已取得最优解. (2) 若存在某个检验数是正数,即,而 所对应的列向量无正分量,则线性规划问题无最 优解. 如果以上两条都不满足,则进行下一步. 第三步:换基迭代. (1)找到最大正检验数,设为,并确定

(2)作单纯形表:在约束方程组系数矩阵中的系数构成单位矩阵,故取为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8). 表 6.8 x1 x2x3x4x5常数 x 3 x 4 x 51 0 1 0 0 1 2 0 1 0 0 (1)0 0 1 5 10 4 S′ 1 3 0 0 0 0 x 3 x 4 x2 1 0 1 0 0 (1)0 0 1 -2 0 1 0 0 1 5 2 4 S′ 1 0 0 0 -3 -12 x 3 x 1 x 20 0 1 -1 2 1 0 0 1 -2 0 1 0 0 1 3 2 4 S′0 0 0 -1 -1 -14

(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为 目标函数取得最优值. 原线性规划问题的最优解为:.目标函数的最优值为14,即. 例4 用单纯形方法解线性规划问题. 求. 解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出

最新单纯形法例题讲解

单纯形法例题讲解

基可行解 单纯形法是针对标准形式的线性规划问题进行演算的,任何线性规划问题都可以化为标准形式。 min cx f = (1) s.t b Ax = (2) 0≥x (3) 其中 T m mn m m n n T n n b b b b a a a a a a a a a A x x x x c c c c )...,(,............ ... ..., ),...,,(),,...,(212 1 22221112 112121=??? ???????????=== 假设1≥≥m n ,并设系数矩阵A 的秩为m ,即 设约束方程(2)中没有多余的方程,用j p 表示A 的第j 列,于是(2可写成 b p x m k j j =∑=1 (4) 矩阵A 的任意一个m 阶非奇异子方阵为LP 的一个基(或基阵),若 ),...,(21jm j j p p p B = (5)

是一个基,则对应变量jm j j x x x ,...,,21,称关于B 的基变量,其余变量成为关于B 的非基变量,若令非基变量都取零值,则(4)变为 b p x m k jk jk =∑=1 (6) 由于此方程组的系数矩阵B 是满秩方阵,故知(6)有唯一解,记为T jn j j x x x ) ,...,,()0() 0(2) 0(1于是按分量 {}{}),...,,\,...2,1(0) ,....3,2,1(21) 0(m j jk jk j j j n j x m k x x ∈=== 所构成的向量) 0(x 是约束方程组b Ax =的一个 解,称此)0(x 为LP 的对应于基B 的基解 (或基本解),也可称为方程组b Ax =的一个基解,如果) 0(x 为一基解,且满足 0)0(≥x 即它的所有分量都非负,则称此) 0(x 是LP 的一个基可行解,基可行解对应的基 称为可行基。

相关主题
文本预览
相关文档 最新文档