当前位置:文档之家› 线路阻抗的计算

线路阻抗的计算

线路阻抗的计算

线路阻抗的计算

150M 63.9 81 107 115

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.doczj.com/doc/234222368.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

PCB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二.PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产

和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。 防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

并串联电阻计算公式

串、并联电路中的等效电阻 串、并联电路中的等效电阻 学习目标要求: 1.知道串、并联电路中电流、电压特点。 2.理解串、并联电路的等效电阻。 3.会计算简单串、并联电路中的电流、电压和电阻。 4.理解欧姆定律在串、并联电路中的应用。 5.会运用串、并联电路知识分析解决简单的串、并联电路问题。 中考常考内容: 1.串、并联电路的特点。 2.串联电路的分压作用,并联电路的分流作用。 3.串、并联电路的计算。 知识要点: 1.串联电路的特点 (1)串联电路电流的特点:由于在串联电路中,电流只有 一条路径,因此,各处的电流均相等,即;因此,在对串联电路的分析和计算中,抓住通过各段导体的电流相等这个条件,在不同导体间架起一座桥梁,是解题的一条捷径。

(2)由于各处的电流都相等,根据公式,可以得到 ,在串联电路中,电阻大的导体,它两端的电压也大,电压的分配与导体的电阻成正比,因此,导体串联具有分压作用。串联电路的总电压等于各串联导体两端电压之和,即 。 (3)导体串联,相当于增加了导体的长度,因此,串联导体的总电阻大于任何一个串联导体的电阻,总电阻等于各串联导 体电阻之和,即。如果用个阻值均为的 导体串联,则总电阻。 2.并联电路的特点 (1)并联电路电压的特点:由于在并联电路中,各支路两端分别相接且又分别接入电路中相同的两点之间,所以各支路两 端的电压都相等,即。因此,在电路的分析和计算中,抓住各并联导体两端的电压相同这个条件,在不同导体间架起一座桥梁,是解题的一条捷径。 (2)由于各支路两端的电压都相等,根据公式,可得 到,在并联电路中,电阻大的导体,通过它的电流小,电流的分配与导体的电阻成反比,因此,导体并联具有分流作用。并联电路的总电流等于各支路的电流之和,即 。

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

阻抗计算公式、polarsi9000(教程)

一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义。 传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线 层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有. 传输线特性阻抗的计算 首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

阻抗电压计算

阻抗电压计算 一,电抗电压U p %的计算: 6 10···· ····6.49%x t R p p H e K D I w f U ∑= ρ 式中:f----额定频率,50赫兹; W ·I p -----低压线圈安匝数(或取高压线圈安匝数); ∑D -----漏磁通宽,按下式计算 )05.0(3 ·)05.0(3·)05.02 211++-+-=∑A R B R B D ( B 1----低压线圈平均半径; B 2----高压线圈平均半径; A-----高压线圈与低压线圈之间的绝缘距离,按设计手册规定,85KV 电压等级A 最小取27mm 。 e t -----每匝电压; H x ----高低压线圈平均有效电抗高度; λ----漏磁场总厚度 ρ λ ρλ查出洛氏系数有关,按表洛氏系数,与 1)05.0()05.0()05.0(21x R H A B B --++-+-= (X x H U H U ?- =?- == πλ ρπρλ 1,11,整理得或) 将以上各数据代入电抗压降计算公式得: U p =·············· 阻抗电压的允许误差值,按标准规定为%10±。但由于制造时,影响阻抗因素较多,故一般计算时,误差控制在3~4%以下。

二,电阻电压降计算。 n k r S p u 10= 式中:P k ----负载损耗(瓦), S N ----额定容量(千伏安) 负载损耗计算: 1, 圆筒式线圈负载损耗计算 r f k P k P ·= 式中:p r ----线圈电阻损耗(瓦) P r =3·I 2r 2, 饼式线圈的负载损耗。 s y b w r r k p p k k p p p 2)100 ( ++++=∑∑∑ 式中: ∑r p ----线圈电阻损耗之和(瓦),P r =3·I 2r b w K K %,---线圈导线涡流损耗及不完全换位损耗后电阻损耗百分数 K w %= 2 100RW P ·(K H A a n m f ρ·····)2 式中:P RW ------系数,在750时,铜线P RW =3.8,铝线 P RW =4; f----------频率 m 、n----垂直及平行于漏磁场方向的导线根数; a----------垂直于漏磁场方向的裸导线厚度(毫米); A---------每根导线的截面(毫米2) ρ-------洛氏系数 H k -------线圈电抗高度(毫米) K b %=P RB ·C m (K H A a n f ρ ····)

线圈电阻计算方法

计算电阻公式为: S L R *ρ= 其中,ρ为铜的电阻率,值为:mm *24.17Ωμ(m *01724.0Ωμ),L 为导线长度,S 为导线的横截面积。 1. 导线长度的求法:方法有两种。 第一种,估算: K D D n L ++≈2*21π 式中 n 为圈数,D 1、D 2分别为内外径,K 为不足一圈的长度 其中,误差有:2 21D D E +≤π 由我们的线圈n=32,D 1=4.8mm ,D 2=24.4mm ,K=0。 算得L=1467mm ,E=45.8,则L 应该大于1421.1mm ,而小于1512.8mm 第二种,精确计算: 设螺线的方程为θπ *2d r =,式中,d 代表相邻螺线间的距离,在本文中,指代间距(d )和一半线宽(b ,8mil )之和(4mil+4mil=8mil=0.203mm ) 则[] d D d D K In d L M M N N N M π?π?θθθθπ??==+++++=,)1(1422 式中,D N 是外径,D M 是开始时的内径。d 也可表示为(D N -D M )/2n 带入算得:[]0)1(1122.0250 4922+++++=θθθθIn L ,

L=1466.6mm 有结果看出,两者相差不大。对计算阻抗影响不大。 2.计算铜线截面积 在PCB工艺中,铜线为长方体,其厚度由敷铜时的参数决定,一般是1oz(盎司)敷铜,此时铜线厚度为35微米,相应的,若在制板时采用2oz或者更厚的敷铜,则厚度倍增。计算时假设是1oz敷铜,设计时导线宽度为8mil(0.2032mm)所以横截面积为 S=0.2032*0.035=0.007112mm2 μ,大概3.55欧姆 由此算得:R=17.24*1466.6/0.007112=Ω 那么两个线圈串联电阻约为2*3.55=7.1欧姆

阻抗计算

关于电缆的正序阻抗和负序阻抗的计算 对于电缆当提到正序阻抗和负序阻抗时,一般是指电力电缆产品,像控制电缆和计算机电缆不提此参数。 当电力系统在对称状态下短路时,正序阻抗和负序阻抗是相等的,其计算公式是: Z1(正序阻抗)=Z2(负序阻抗)=R+jX 上述公式中:R为导体在工作温度下的交流电阻值; X为电抗值。 不同的产品和不同的产品结构(或敷设方式),其正序和负序阻抗是不同的。根据不同的产品计算如下: 导体在工作温度下的交流电阻值R的计算: R=R'(1+ Ys + Yp ) R'=R20(1+α20(t-20)) R20为导体在20度时直流电阻(Ω/m) α20电阻的温度系数:对铜α20=0.00393 对铝α20=0.00403 Yp为邻近效应系数取决与线芯与线芯之间的距离,对于0.6/1 kV及以下的电缆,Yp近似为0。 X为电抗值计算 (工频情况下) X=ωL=2πfL=314L(Ω/m)(L单位为H) L为回路的电感 三芯电缆时:电感计算公式如下: L=2×10×ln(a÷0.39D)(mH/km) a是电缆线芯与线芯的中心距离(mm),D为电缆导体的直径(mm)。 举例:YJV22 0.6/1 kV 3*50 在对称状态下短路时,正序阻抗和负序阻抗为: R'=R20(1+α20(t-20)) =0.000387(1+0.00393(90-20) (90是电缆的工作温度) =0.000493(Ω/m) R=R'(1+ Ys + Yp )

=0.000493(1+0.0136+0) (导体Ys 在截面70到300范围中取0.02) =0.0005(Ω/m) L=2×ln(a÷0.39D) =2×ln(10÷0.39×8) (a取导体直径加二倍的绝缘厚度,D为导体直径) =2×1.16 =2.32(mH/km)) X=314L =314×2.32×10 =0.00007(Ω/m) 那么: Z1(正序阻抗)=Z2(负序阻抗)=R+jX=0.0005+0.00007j(Ω/m) 其他型号和规格可以参照上述计算。 如有问题请电话联系 吴长顺 2005/04/02

电感阻抗的计算公式

电感阻抗的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

如何计算阻抗

如何计算阻抗(上) 关于阻抗的话题已经说了这么多,想必大家对于阻抗控制在pcb layout中的重要性已经有了一定的了解。俗话说的好,工欲善其事,必先利其器。要想板子利索的跑起来,传输线的阻抗计算肯定不能等闲而视之。 在高速设计流程里,叠层设计和阻抗计算就是万里长征的第一步。阻抗计算方法很成熟,所以不同的软件计算的差别很小,本文采用Si9000来举例。 图1 阻抗的计算是相对比较繁琐的,但我们可以总结一些经验值帮助提高计算效率。对于常用的FR4,50ohm的微带线,线宽一般等于介质厚度的2倍;50ohm的带状线,线宽等于两平面间介质总厚度的二分之一,这可以帮我们快速锁定线宽范围,注意一般计算出来的线宽比该值小些。

除了提升计算效率,我们还要提高计算精度。大家是不是经常遇到自己算的阻抗和板厂算的不一致呢?有人会说这有什么关系,直接让板厂调啊。但会不会有板厂调不了,让你放松阻抗管控的情况呢?要做好产品还是一切尽在自己的掌握比较好。 以下提出几点设计叠层算阻抗时的注意事项供大家参考: 1,线宽宁愿宽,不要细。这是什么意思呢?因为我们知道制程里存在细的极限,宽是没有极限的。如果到时候为了调阻抗把线宽调细而碰到极限时那就麻烦了,要么增加成本,要么放松阻抗管控。所以在计算时相对宽就意味着目标阻抗稍微偏低,比如单线阻抗50ohm,我们算到49ohm就可以了,尽量不要算到51ohm。 2,整体呈现一个趋势。我们的设计中可能有多个阻抗管控目标,那么就整体偏大或偏小,不要100ohm的偏大,90ohm的偏小。 3,考虑残铜率和流胶量。当半固化片一边或两边是蚀刻线路时,压合过程中胶会去填补蚀刻的空隙处,这样两层间的胶厚度时间会减小,残铜率越小,填的越多,剩下的越少。所以如果你需要的两层间半固化片厚度是5mil,要根据残铜率选择稍厚的半固化片。 4,指定玻布和含胶量。看过板材datasheet的工程师都知道不同的玻布,不同的含胶量的半固化片或芯板的介电系数是不同的,即使是差不多高度的也可能是3.5和4的差别,这个差别可以引起单线阻抗3ohm左右的变化。另外玻纤效应和玻布开窗大小密切相关,如果你是10Gbps或更高速的设计,而你的叠层又没有指定材料,板厂用了单张1080的材料,那就可能出现信号完整性问题。 当然残铜率流胶量计算不准,新材料的介电系数有时和标称不一致,有的玻布板厂没有备料等等都会造成设计的叠层实现不了或交期延后。咋办?最好的办法就是在设计之初让板厂按我们的要求,他们的经验设计个叠层,这样最多几个来回就能得到理想又可实现的叠层了。

水电阻阻值的计算方法

水电阻的调试方法 1、起动电阻的确定: 串入电机转子回路的每相电阻值R0,应按下式确定 R0=2U2e/√3I2e k*I1e/I1 注:U2e转子开路电压 I2e转子额定电流 I1e定子额定电流 I1定子运行电流 K常数(1.1至1.3之间) 简化公式: RO=0.7*U2e/I2e 2、液体的配制 A、将动极板移到起始位置,(转动皮带轮移动极板),加入清水至 水箱规定水位的四分之三处; B、将电解粉与清水按3%的配比注入三个水箱,然后移动动极板数 次,使溶液浓度均匀后将动极板复位; C、测量任两极之间的电阻值R,若R在R0范围内,配制即完成, 若R偏大,则适当增加电解粉。使液体浓度增加,若R偏小则加入适量清水。 3、液阻的测量 将液阻的动极板移到起始位置后,在任何两极间通入10A左右、50Hz 的电流I,测量两极的电压降U,按欧姆定律原则计算出来就行。 高压电动机液体电阻起动器调试[原创]

液体电阻起动器调试 (一) 、准备工作 1、检查液体起动柜内配线,液体起动器与一次柜、DCS系统的联锁控制线,确保无误。 2、转子线先不与液体电阻起动器连接,等测完电阻再连接。 3、确认端子间或各暴露的带电部位没有短路或对地短路情,确认端子连接、螺钉等均紧固无松动。 4、 PLC程序检查,调出PLC内部程序,检查程序是否合理,是否满足控制逻辑,如存在问题,就地修改。 (二)、液体起动器动作试验: 1、用手动盘车方法使动极板处于上、下限位的中间,检查控制电源三相电正常后,将“试验”钮子开关左旋于运行位置,合上柜内空气开关,此时若极板上行则为正常; 2、用手动作上限位行程开关应停止运行,若极板下行则相序错误。此时关掉电源交换两相电源线即可; 3、然后合上电源将“试验”钮子开关右旋于“试验”位置,极板向下运行直到下限位置停止,且短接接触器吸合。 (三)、液体电阻配制: 配制方案:根据电机转子回路内电阻配液; 1、配液用水:一般选用经过净置后去掉沉淀物的生活用水即可。 2、电阻溶剂即电阻粉,由生产厂商提供。 3、液体起动电阻RO的确定:

电感阻抗计算公式

加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷ 圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式:

l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方) μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

变压器短路阻抗测试和计算公式

变压器短路阻抗测试和计算公式 一、概述变压器短路阻抗试验的目的是判定变压器绕组有无变形。变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算:式中uk75 --75℃下的阻抗电压,%; ukt—试验温度下的阻抗电压,%; fN --额定频率(Hz); f′--试验频率(Hz); Pkt 试验温度下负载损耗(W);-- SN --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别

阻抗的有关计算公式

影响高频测试的因素 一、影响特性阻抗的主要因素 即电容与电感间的关系(公式见图) 从阻抗公式看影响特性阻抗值的只有外径(外径可以看成和导线间距α相等)、总的绞合系数(λ)、组合绝缘介质的等效相对介 电常数(εr)。而且,Z正比于α和λ,反比于εr。所以只要控制好了α、λ、εr的值,也就能控制好了Z。一般来说节距越小Z越小,稳定性也越好,ZC 的波动越小。 1导体外径:绝缘外径越小阻抗越大。 2电容:电容越小发泡度越大同时阻抗也越大; 3绝缘外观:绝缘押出不能偏心,同心度控制在90%以上;外观要光滑均匀无杂质,椭圆度在85%以上。 电线押完护套后基本上阻抗是不会再出现变化的,生产过程中的随机缺陷较小时造成的阻抗波动很小,除非在生产过程有过大的外部压力致使发泡线被压伤或压变形。当较严重的周期性不均匀缺陷时,且相邻点间的距离等于电缆传输信号波长的一半时,在此频率点及其整数倍频率点上将出现显着的尖峰(即突掉现象),这时不但阻抗不过,衰减也过不了。 二、各工序影响衰减的主要因素 a 衰减=a 金属衰减 +a 介质材料衰减 +a 阻抗不均匀时反射引起的附加衰减 1.导体: 导体外径下公差,电阻增大,影响传输效果及阻抗;所以一般都采用上公差的导体做发泡线。 高频时信号传输会出现集肤效应,信号只是在导体的表面流过,所以要求导体表面要平滑,绞合绝对不能出现跳股现象,单支导体及绞合后的圆整度要好。 导体束绞、绝缘押出及芯线对绞时张力都不能过大,以防拉细导体。 2.绝缘: 在绝缘时影响衰减的因素主要有绝缘材料、绝缘线径稳定性、发泡电容值及气泡匀密度、同心度(发泡层及结皮的同心度)、芯线的圆整度。在测试频率越高时对发泡材料的要求越高,但现在所用的DGDA3485是现在高频线用得最广泛的化学发泡料。 控制绝缘主要有以下几项: A.外径要控制在工艺要求偏差±0.02mm之内; B.发泡要均匀致密,电容要控制在工艺要求偏差±1.0PF之内; C.绝缘外结皮厚度控制在0.05mm以内; D.色母配比不能过大,越少越好,在1.5%左右;

如何计算阻抗

如何计算阻抗(上) 原创声明:本文由一博科技原创,大家可下载阅读学习;如转载请保留出处。 关于阻抗的话题已经说了这么多,想必大家对于阻抗控制在pcb layout中的重要性已经有了一定的了解。俗话说的好,工欲善其事,必先利其器。要想板子利索的跑起来,传输线的阻抗计算肯定不能等闲而视之。 在高速设计流程里,叠层设计和阻抗计算就是万里长征的第一步。阻抗计算方法很成熟,所以不同的软件计算的差别很小,本文采用Si9000来举例。 阻抗的计算是相对比较繁琐的,但我们可以总结一些经验值帮助提高计算效率。对于常用的FR4,50ohm的微带线,线宽一般等于介质厚度的2倍;50ohm 的带状线,线宽等于两平面间介质总厚度的二分之一,这可以帮我们快速锁定线宽范围,注意一般计算出来的线宽比该值小些。 除了提升计算效率,我们还要提高计算精度。大家是不是经常遇到自己算的阻抗和板厂算的不一致呢?有人会说这有什么关系,直接让板厂调啊。但会不会有板厂调不了,让你放松阻抗管控的情况呢?要做好产品还是一切尽在自己的掌握比较好。 以下提出几点设计叠层算阻抗时的注意事项供大家参考: 1,线宽宁愿宽,不要细。这是什么意思呢?因为我们知道制程里存在细的极限,宽是没有极限的。如果到时候为了调阻抗把线宽调细而碰到极限时那就麻烦了,要么增加成本,要么放松阻抗管控。所以在计算时相对宽就意味着目标阻抗稍微偏低,比如单线阻抗50ohm,我们算到49ohm就可以了,尽量不要算到51ohm。 2,整体呈现一个趋势。我们的设计中可能有多个阻抗管控目标,那么就整体偏大或偏小,不要100ohm的偏大,90ohm的偏小。 3,考虑残铜率和流胶量。当半固化片一边或两边是蚀刻线路时,压合过程中胶会去填补蚀刻的空隙处,这样两层间的胶厚度时间会减小,残铜率越小,填的越

阻抗模型讲解及阻抗计算

阻抗模型讲解及阻抗计算 阻抗计算(以一个八层板为例) 下面以如图1所示的八层板为例来介绍下相关阻抗的计算方法 图1 1.微带线阻抗计算 (1)表层(Top/Bot层)参考第二层,单端阻抗选用CoatedMicrostrip1B模型,单端50欧姆阻抗计算方法如图2所示,最后得到表层50欧姆单端线宽为6mil。

图2表层(Top/Bot层)单端阻抗计算 (2)表层差分阻抗选用Edge-CoupledCoated Microstrip1B模型,差分100欧姆阻抗计算如图3所示,最后得到的表层100欧姆差分线宽线距为4.7/8mil。 图3表层(Top/Bot层)差分阻抗计算 (3)表层(Top/Bot层)射频信号50欧姆阻抗的计算:

因为射频信号要有足够宽的线宽,在阻抗不变的情况下,加大线宽就必须增加阻抗线到参考层的距离,所以50欧姆射频信号要做隔层参考也就是参考第三层,阻抗模型选用CoatedMicrostrip2B阻抗计算方法如图4所示,最后得到表层50欧姆射频信号的线宽为15.7mil。 图4表层50欧姆射频信号阻抗计算 (4)微带线阻抗计算参数说明: 1.H1是表层到参考层的介质厚度,不包括参考层的铜厚; 2.C1,C2,C3是绿油的厚度,一般绿油厚度在0.5mil~1mil左右,所以保持默认就好,其厚度对阻抗的影响不是很大; 3.T1的厚度一般为表层基铜铜厚加电镀的厚度,1.8mil为0.5OZ(基铜厚度)+Plating的结果;

4.一般W1是板上走线的宽度,由于加工后的线为梯形,所以W2 2.带状线阻抗计算 (1)带状线(Art03和Art06层)内层单端阻抗选用Offeset Stripline1B1A模型,50欧姆阻抗计算方法如图5所示,计算出来的内层50欧姆单端线宽为5mil。 图5内层50欧姆单端阻抗计算 (2)带状线(Art03和Art06层)内层差分阻抗选用Edge-Coupled Offeset Stripline模型1B1A,100差分欧姆阻抗计算方法如图6所示,计算出来的内层100欧姆差分线宽线距为4.3/9mil。

电路电阻计算公式

矩公式为T=9550x功率P/转速n,要是多级传动的话每级的扭矩要乘以减速比,速度越低扭矩越大 功率的计算公式: p=w/t p=UI P=I^2 *R P=Fv P=U^2 /R 功的计算公式: W=Fs W=UIt W=I^2 *Rt W=U^2 *t /R 1,两相家用电器功率的计算方法是: P=电流*电压*功率因素 如5A电流*220V交流电压*0.9功率因素=990W 1度电=1000W 2,对称三相交流家用电器功率的计算方法是: 有功功率(W)P=跟号3*电流*交流电压*功率因素(COS) 无功功率(VAR)Q=跟号3*电流*交流电压*功率因素(SIN) 视在功率(VA)S=跟号3*电流*交流电压 P表示功率,单位是“瓦特”,简称“瓦”,符号是“w”.W表示功,单位是“焦耳”,简称“焦”,符号是“J”.t 表示时间,单位是“秒”,符号是“s”.因为W=F(f 力)*s(s 距离)(功的定义式),所以求功率的公式也可推导出P=F·V(F为力,V为速度). 功率越大转速越高,汽车的最高速度也越高,常用最大功率来描述汽车的动力性能.最大功率一般用马力(PS)或千瓦(kw)来表示,1马力等于0.735千瓦. 1w=1J/s P=W/t=FV=FL/t 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或 . 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒). 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量. 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】

相关主题
文本预览
相关文档 最新文档