当前位置:文档之家› 溢流阀在液压系统中的作用

溢流阀在液压系统中的作用

溢流阀在液压系统中的作用
溢流阀在液压系统中的作用

溢流阀在液压系统中起着控制压力的作用,如果出现故障,将会影响整个系统的稳定性、可靠性、运动粘度及正常工作。因此,对溢流阀出现的故障应引起足够重视,现介绍几种常见故障及维修方法。

1 .系统压力升不高

( 1 )溢流阀主阀芯锥面密封差产生的原因有:①主阀芯锥面磨损或不圆。②阀座锥面磨损或不圆。③锥面处有脏物粘住。④主阀芯锥面与阀座锥面不同心。⑤主阀苍工作时有别劲现象,使阀芯与阀座配合不严密。⑥主阀压盖处有泄漏( 如密封垫损坏,装配不良,压盖螺钉有松动等) 。

( 2 )先导阀故障调压弹簧弯曲或太弱、太短。锥阀与阀座结台处密封差( 如锥阀与阀座磨损,锥阀接触面不圆,接触面太宽容易进^脏物或被胶质粘住) 。

( 3 )远控口电磁阀故障电磁阀常闭位置时内泄严重;阀口处阀体与滑阀磨损严重;滑阀换向未达到最终位置,造成油封长度不足;远控口管接头处有外泄漏维护方法:清洗、修配阀芯与阅座.使之密封良好,必要时更换溢流阀,消除外泄漏。

2.压力波动、不稳定、不规则的压力变化原因:油液中有微小灰尘,使主阀芯滑动不灵活,有时会使阀卡住,产生不规则的压力变化,或者主阀芯时堵时通。不顺畅。其次是主阀芯阀面与阀座锥面接触不良,磨损不均。阻尼L 径太大,阻尼作用差。先导阀调整弹簧弯曲锥阀与锥阀座接触不好、磨损不均。调节压力的螺钉由于锁紧螺母松动而使压力变动。

维护方法:无论是新旧机床的液压系统,在使用前和维修后,油箱和管路都要进行清洗,进入系统的液压油要过滤;阀类要拆卸清洗,修配或更换不合格的零件或整个阀,适当减小阻尼孔径。

3.压力完全加不上去

( 1 )主阀故障由于主阀芯阻尼孔被堵,主阀芯在开启位置卡住卡死.主阀芯复位弹簧折断或弯曲,使主阀芯不能复位一维护方法:清洗阻尼孔,使之畅通;油液过滤或更换;拆开检修,重新装配,更换折断或弯曲的弹簧;阀盖紧固螺钉拧紧力要均匀。

( 2 )先导阀的故障调压弹簧折断或未装入,锥阀或钢球未装,锥阀碎裂维护方法:更换或补装零件,使之正常工作。

( 3 )远控口电磁阀故障电磁阀未通电( 常开)或滑阀卡死。维护方法:检查线路,接通电源,检修,更换零件。

( 4 )装错进出油口装错了,要纠正过来。

( 5 )液压泵故障滑动表面问间隙过大;叶片泵的太多数叶片在转子槽内卡死;叶片和转子方向装反。维护方法:修配间隙,清洗、纠正装错方向。

4.压力突然升高

( 1 )主闽故障主阀芯工作不灵敏,在关闭状态突然卡死( 如零件加工精度低,装配质量差,油液中杂质多等) 。

( 2 )先导闻故障先导阀阀芯与阀座结合面被粘住、脱不开;调压弹簧弯曲、别劲。维护方法:清洗、修配、更换溢流阈。

5 .压力突然下降

( 1 )主闽故障主阈芯阻尼孔被堵死;主阎芯工作不灵敏、在开启状态下被卡死;主阀盖处密封垫破损

( 2 )先导阀故障先导阀芯突然破裂;调压弹簧突然拆断。

( 3 )远控口电磁阔故障电礁铁突然断电,使溢流阀卸荷;远控口管接头突然脱口或油管突然破裂。维护方法:清洗溢流阀;将油液过滤;更换、检修零件;消除电气故障。6.在二级调压回路及卸荷回路压力下降时产生较大震动和噪声原因:在某个压力值急剧下降时,在管路及执行元件中将会产生震动;这种震动将随着加压一侧的容量增大而增大。

维护方法

(1 )要防止这种震动声音的产,必须使压力下降时问( 即变化时问)不小于o .1 s 可以在溢流阀的远程控制口处接入固定节流阀,如图1所示,此时卸荷压力及最低调整压力将变高。

( 2)如图2所图2示,在远控口的管路里使用防止震动阀,并且具有自动调节节流口的机能,卸荷压力及晟低调整压力不会变高,也不能产生震动和噪声。

对溢流阀的基本理解

1、溢流阀工作时阀芯是否打开? 定压溢流作用:在定量泵节流调节系统中,定量泵提供的是恒定流量。当系统压力增大时,会使流量需求减小。此时溢流阀开启,使多余流量溢回油箱,保证溢流阀进口压力,即泵出口压力恒定(阀口常随压力波动开启)。 首先要了解溢流阀有不同的用途,再来说他是常开还是常闭 其用途如下: 1、调压 2、安全阀 3、背压阀 一、当溢流阀作调压用时,其阀口实际上是常开的,只不过阀口开度很小,并接近于一开一合的状态,起到了调压、稳压的作用,联想一下高压锅上的一跳一跳的安全帽 二、当作安全阀用时,他的阀口的关闭的,只有系统压力达到了设定值,阀口才会打开,避免造成事故 三、当溢流阀作背压阀用时,阀口是常开的,相当于给执行机构的回油制造了阻力,从而让动作更平稳。 以上均是指工作状态下,对于一个单个的溢流阀产品而言,其阀口又是常闭的,请继续联想高压锅上的安全帽,没有使用时,他是不是封闭的贴合在喷管上??? 1)起安全阀作用(防止液压系统过载)溢流阀起安全阀作用时,是为了限制液压系统的最高压力,以保证系统的安全。在系统正常工作情况下,阀关闭不溢流,系统的工作压力决定于外载荷。当系统压力达到阀的调定压力时,阀开启溢流,此时系统压力就决定于溢流阀的调定压力。 2)起溢流阀作用(维持液压系统压力恒定)在节流调速系统中,溢流阀在正常工作时为常开,通过溢流将多余油液排回油箱而维持液压系统压力基本恒定。 3)使液压系统卸荷先导式溢流阀的远程控制口通油箱,就可以利用溢流阀使系统卸荷。DBW型先导式电磁溢流阀利用本身的电磁换向阀就可实现系统卸荷,而其他的先导式溢流阀要实现系统卸荷,就要在远程控制口上添加换向阀。 4)远程调压在先导式溢流阀的远程控制口上接远程调压阀,能实现远程调压。此外,溢流阀还可做背压阀使用,能使系统工作平稳;溢流阀与换向阀配合,起安全阀作用常闭,起溢流阀作用(维持液压系统压力恒定)常开。 2、外控式溢流阀的结构 3、溢流阀有常开的吗?符号 溢流阀不工作时肯定是常闭的,但是在工作时有常开常闭之分。 4、泵的出口压力和额定压力,溢流阀的安全压力为什么要高于系统的工作压力? 如果不考虑调定误差(因为有超调量,所以实际通常比调定的高),系统压力只能低于调定压力而不能高于调定压力。在低于调定时,泵的出口压力由负载而定。 系统压力只能低于溢流阀调定压力而不能高于调定压力,如果高了压力油就溢流回油箱了。

液压阀的选择

液压阀的选择 一个完整的液压系统是由以下四个部分组成:动力元件、执行元件、控制元件和辅助元件。其中的液压控制元件即液压控制阀(简称液压阀),是控制液压系统中油液的流动方向、调节系统的压力和流量的。将不同的液压阀经过适当的组合,可以达到控制液压系统的执行元件(液压缸与液压马达)的输出力和转矩、速度与运动方向等目的。任何一个液压系统,不论其如何简单,都缺少不了液压阀。液压阀性能的优劣,工作是否可靠,以及能否正确选用将对整个液压系统能否正常工作产生直接影响,它是液压系统分析、设计的关键部分之一,要引起足够重视液压阀的种类较多,根据不同的分类方法有以下几种类型。 1。根据用途分类 液压阀可分为三大类:方向控制阀(如单向阀、换向阀等)、压力控制阀(如溢流阀、顺序阀、减压阀等)以及流量控制阀(如节流阀、调速阀等)。 1)方向控制阀是液压系统中占数量比重较大的控制元件,它是利用阀芯与阀体间相对位置的改变来实现油路的接通或断开,以满足系统对油流方向的要求。 2)压力控制阀是利用作用于阀芯上的液压力与弹簧力相平衡的原理进行工作的,它是控制和调节液压系统油液压力或利用液压力作为控制信号控制其他元件动作的阀类。 3)流量控制阀是液压系统中控制液流流量的元件,它是依靠改变阀13通流面积的大小或通流通道的长短来改变液阻(压力降、压力损失),从而控制通过阀的流量,达到调节执行元件的运行速度的目的。这三类阀还可根据需要互相组合成为组合阀,以减少管路连接,使其结构更为紧凑,连接简单,并提高效率。最常用的是由单向阀和其他阀类组成的组合阀,如单向减压阀、单向顺序阀和单向节流阀等。 2。按操纵方式分类 液压阀可分为:手动阀、机动阀、电动阀、液动阀和电液动阀等。 3.按控制方式分类 (1)定值或开关控制阀这种阀借助干手轮、电磁铁、有压气体或液体等来控制液体的通路,定值地控制液体的流动方向、压力或流量。包括普通控制阀、插装阀和叠加阀。其中的插装阀是近几十年来发展起来的一种新型液压阀,由于它具有通流能力大(可达IO00L/min),密封性好,阀芯动作灵敏,抗污染能力强,结构简单,适用性好以及易于实现标准化等优点,在液压装置中得到了越来越多的应用。 (2)伺服控制阀它是一种根据输入信号(如电、机械和气动等信号)及反馈量,成比例地连续控制液压系统中的液流方向、压力和流量的阀类。包括机液伺服阀、电液伺服阀和气液伺服阀。 (3)比例控制阀(简称比例阀) 它是介于上述两类阀之间的一种阀。它可根据输入信号的大小,成比例地连续控制液压系统中的液流方向、压力和流量。是一种既具备一定的伺服性能,结构又较简单的控制阀。由于电液比例阀具有形式多样,容易组成使用电气及计算机控制的各种电液系统,控制精度高,安装使用灵活以及抗污染能力强等多方面优点,因此得到越来越多的应用。 4.按安装方式分类 (1)螺纹连接它是液压阀的各进出油口直接靠螺纹管接头与系统管道或其他阀的进出油1;1相连,又称管式连接。

各种液压阀在液压系统中的作用

1.液压阀——方向控制阀 按用途分为单向阀和换向阀。单向阀:只允许流体在管道中单向接通,反向即切断。换向阀:改变不同管路间的通﹑断关系﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。图2为三位四通换向阀的工作原理。P 为供油口,O 为回油口,A ﹑B 是通向执行元件的输出口。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与A 通,B 与O 通;当阀芯移到左位时,P 与B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 60年代后期,在上述几种液压控制阀的基础上又研制出电液比例控制阀。它的输出量(压力﹑流量)能随输入的电信号连续变化。电液比例控制阀按作用不同,相应地分为电液比例压力控制阀﹑电液比例流量控制阀和电液比例方向控制阀等。 2.液压阀——流量控制阀 利用调节阀芯和阀体间的节流口面积和它所产生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为5种。 (1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,

从而使执行元件的运动速度稳定。(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。(5)分流集流阀:兼具分流阀和集流阀两种功能 3.液压阀——压力控制阀 按用途分为溢流阀﹑减压阀和顺序阀。(1)溢流阀:能控制液压系统在达到调定压力时保持恒定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力升高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。(2)减压阀:能控制分支回路得到比主回路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恒定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵产生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力升高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上升使进油口与出油口相通,使液压缸2运动。 4.液压阀的作用和简介 用于降低并稳定系统中某一支路的油液压力,常用于夹紧、控制、润滑等油路。有直动型、先导型、叠加型之分。

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

动画演示溢流阀的作用

动画演示溢流阀的作用 080202232 曹宇08机电一体行政2班 摘要: ◆溢流阀的结构原理 ◆DBD型直动式溢流阀结构原理。 ◆动画演示。 ◆溢流阀的应用。 ◆用动画演示溢流阀。 关键词: ?液压系统, ?溢流阀 ●机电一体化。 1)结构原理 1)DBD型直动式溢流阀图1是DBD型直动式溢流阀的结构原理图。进油口的压力油通过阻尼活塞作用在其底部,形成了一个与弹簧力相抗衡的液压力。当此液压力小于调压弹簧的弹簧力时,锥阀关闭,此阀不起调压作用。随着进油口压力的不断提高。当液压力大于弹簧力时,锥阀开启,多余的油液溢回油箱,使进油口压力稳定在调定值上。 DBD型直动式溢流阀结构原理图 a)至40MPa阀的结构;b)至63MPa阀的结构 1—调节螺杆;2—阀体;3—调压弹簧;4—偏流盘;5—锥阀;6—阻尼活塞阻尼活塞的作用:一是在锥阀开启或闭合时起阻尼作用,用来提高阀的调压稳定性;二是对锥阀起导向作用,以提高阀的密封性能。 偏流盘的作用:偏流盘上开有环形槽,用以改变锥阀出油口的液流方向。于是偏流盘受到了一个液动力,此液动力与弹簧力的作用方向相反,并随溢流量的增加而加大。当溢流 量增加时,由于、阀锥开口增大,引起弹簧力增加。但由于液动力也同时增加,结构抵消了弹簧力的增量。因此这种阀的进口压力不受流量变化的影响,其p-Q

特性曲线比较理想,启闭特性好,有利于提高阀的额定流量。 (2)应用 1)起安全阀作用(防止液压系统过载)溢流阀起安全阀作用时,是为了限制液压系统的最高压力,以保证系统的安全。在系统正常工作情况下,阀关闭不溢流,系统的工作压力决定于外载荷。当系统压力达到阀的调定压力时,阀开启溢流,此时系统压力就决定于溢流阀的调定压力。 2)起溢流阀作用(维持液压系统压力恒定)在节流调速系统中,溢流阀在正常工作时为常开,通过溢流将多余油液排回油箱而维持液压系统压力基本恒定。 3)使液压系统卸荷先导式溢流阀的远程控制口通油箱,就可以利用溢流阀使系统卸荷。DBW型先导式电磁溢流阀利用本身的电磁换向阀就可实现系统卸荷,而其他的先导式溢流阀要实现系统卸荷,就要在远程控制口上添加换向阀。 4)远程调压在先导式溢流阀的远程控制口上接远程调压阀,能实现远程调压。 此外,溢流阀还可做背压阀使用,能使系统工作平稳;溢流阀与换向阀配合,可实现系统的多级压力控制;在制动回路中,用溢流阀可实现制动作用;在液压试验台系统中,溢流阀可用作加载阀等。

液压系统基本结构及工作原理

液压系统基本结构与工作原理 一、概述 液路系统主要包括主油泵,液压油箱,滤清器,减压阀,溢流阀,起升液缸,伸缩液缸,吊钳液缸,支腿液缸,液压马达,及各种液压操作阀等部件。设备出厂前溢流阀、减压阀及各种压力阀的压力已调定,确保液压系统安全运行,用户在使用中不得轻率更改。 液压系统包括主液压系统和转向液压系统,两个系统共用一液压油箱。 1、主液压系统 主液压系统为钻机车在设备调整和钻修作业时提供液压动力,配置有各种阀件,控制操作各液压机具正确安全运行。 2、转向液压系统 转向液压系统为车辆前部车桥的液压助力转向提供液压动力,配置有各种阀件,控制液压系统压力、流向和稳定最高流量,确保车辆转向轻便灵活,安全可靠。 二、结构特点 液压系统由以下组成: ?主液压系统 ?转向液压系统 1、主液压系统 由以下部件组成: 1)液压油箱:存储、冷却、沉淀和过滤液压油。油箱安装有: ●人孔盖,安装在油箱顶部,设置有两个,其中在油箱回油区的人孔盖上安 装液压空气滤清器; ●液压空气滤清器,过滤油箱流通空气,油箱加油时过滤油液; ●液位计,2个,安装在油箱的前侧面,设置有高低两个液位计,高位液位 计,显示井架降落后的油面;低位液位计,显示井架竖起后油面; ●油温表,安装在油箱的前侧面,测量油箱内油温,正常工作油温在30~ 70℃;主回油口,2个,设置在油箱的底板上,配置单向阀,分别连接主

回油管和溢流阀回油口;单向阀在维修液压管路时自动关闭,防止油箱中 的油液流失; ●排泄油口,设置在油箱的底板上,用堵头封堵;打开堵头可排放油箱液压 油; ●主油泵吸油口,设置在油箱的前侧面,安装主吸油滤清器; ●转向油泵吸油口,设置在油箱的前侧面,安装转向吸油滤清器; ●转向系统回油口,设置在油箱的底板上,配置单向阀,单向阀在维修液压 管路时自动关闭,防止油箱中的油液流失; 2)液压油泵:单联齿轮结构,2台,分别安装在两台液力变速箱取力箱上, 由变矩器泵轮驱动,发动机转动,取力箱就可驱动油泵。取力箱配置有液压离合器,当需要液压动作时,可操作司钻控制箱“液泵离合”手柄,置“油泵I合”位,油泵I结合,输出工作压力油液;手柄置“油泵II合” 位,油泵II结合,输出工作压力油液;。手柄置中位,两油泵均脱离停转。 3)溢流阀:先导式结构,2台,分别安装在主液压油泵的出油口端。调定系 统压力,防止系统过载,保护系统及元件安全。 溢流阀的结构原理:由先导阀和主滑阀组成,先导阀部分包括阀体,滑阀,调压弹簧等零件。主阀滑阀上开有一个小孔a,使进口压力油能进入滑阀上腔B,当作用在锥阀上的液压力小于弹簧的预紧力时,先导阀锥阀在弹簧力的作用下关闭,因为阀体内没有油液流动,滑阀上下两端油腔液压力相等。因此,滑阀在上端弹簧的作用下处于下端的极限位置。溢流阀的进出油口被滑阀切断,溢流阀不溢流;当作用在锥阀上的液压力因溢流阀进口压力的升高而增大到等于弹簧力时,锥阀被顶开,滑阀上腔B的油液经回油口b和滑阀中心通孔流入阀的出油口,然后溢流回油箱,这时溢流阀进油口的压力油从小孔a,向上补充到B腔,因为油液经小孔a时存在压力损失,因此B腔的压力低于进油口压力,滑阀上下两端出现压力差。 于是,在上下两端压力差的作用下滑阀克服弹簧力,滑阀自重以及摩擦力向上移动,打开溢流阀的进回油口,油液流回油箱,滑阀开启后,受液动力的影响,进口的压力P还要继续上升,滑阀继续上移,到某一位置滑阀受力平衡时,溢流阀进口压力稳定在一定值,该值称为溢流阀的调定压力。

溢流阀在液压系统中的作用

溢流阀在液压系统中起着控制压力的作用,如果出现故障,将会影响整个系统的稳定性、可靠性、运动粘度及正常工作。因此,对溢流阀出现的故障应引起足够重视,现介绍几种常见故障及维修方法。 1 .系统压力升不高 ( 1 )溢流阀主阀芯锥面密封差产生的原因有:①主阀芯锥面磨损或不圆。②阀座锥面磨损或不圆。③锥面处有脏物粘住。④主阀芯锥面与阀座锥面不同心。⑤主阀苍工作时有别劲现象,使阀芯与阀座配合不严密。⑥主阀压盖处有泄漏( 如密封垫损坏,装配不良,压盖螺钉有松动等) 。 ( 2 )先导阀故障调压弹簧弯曲或太弱、太短。锥阀与阀座结台处密封差( 如锥阀与阀座磨损,锥阀接触面不圆,接触面太宽容易进^脏物或被胶质粘住) 。 ( 3 )远控口电磁阀故障电磁阀常闭位置时内泄严重;阀口处阀体与滑阀磨损严重;滑阀换向未达到最终位置,造成油封长度不足;远控口管接头处有外泄漏维护方法:清洗、修配阀芯与阅座.使之密封良好,必要时更换溢流阀,消除外泄漏。 2.压力波动、不稳定、不规则的压力变化原因:油液中有微小灰尘,使主阀芯滑动不灵活,有时会使阀卡住,产生不规则的压力变化,或者主阀芯时堵时通。不顺畅。其次是主阀芯阀面与阀座锥面接触不良,磨损不均。阻尼L 径太大,阻尼作用差。先导阀调整弹簧弯曲锥阀与锥阀座接触不好、磨损不均。调节压力的螺钉由于锁紧螺母松动而使压力变动。 维护方法:无论是新旧机床的液压系统,在使用前和维修后,油箱和管路都要进行清洗,进入系统的液压油要过滤;阀类要拆卸清洗,修配或更换不合格的零件或整个阀,适当减小阻尼孔径。 3.压力完全加不上去 ( 1 )主阀故障由于主阀芯阻尼孔被堵,主阀芯在开启位置卡住卡死.主阀芯复位弹簧折断或弯曲,使主阀芯不能复位一维护方法:清洗阻尼孔,使之畅通;油液过滤或更换;拆开检修,重新装配,更换折断或弯曲的弹簧;阀盖紧固螺钉拧紧力要均匀。 ( 2 )先导阀的故障调压弹簧折断或未装入,锥阀或钢球未装,锥阀碎裂维护方法:更换或补装零件,使之正常工作。 ( 3 )远控口电磁阀故障电磁阀未通电( 常开)或滑阀卡死。维护方法:检查线路,接通电源,检修,更换零件。 ( 4 )装错进出油口装错了,要纠正过来。 ( 5 )液压泵故障滑动表面问间隙过大;叶片泵的太多数叶片在转子槽内卡死;叶片和转子方向装反。维护方法:修配间隙,清洗、纠正装错方向。 4.压力突然升高 ( 1 )主闽故障主阀芯工作不灵敏,在关闭状态突然卡死( 如零件加工精度低,装配质量差,油液中杂质多等) 。 ( 2 )先导闻故障先导阀阀芯与阀座结合面被粘住、脱不开;调压弹簧弯曲、别劲。维护方法:清洗、修配、更换溢流阈。 5 .压力突然下降

调节阀的特性及选择(DOC)

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

液压系统基本原理

液压系统基本原理 图 YT4543型动力滑台液压系统图1—背压阀;2—顺序阀;3、6、13、15—单向阀;4、16—节流阀;5—压力继电器;7—液压缸; 8—行程阀;9—电磁阀;10—调速阀;11—先导阀;12—换向阀;14—液压泵 第一节液压传动的发展史 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在19 世纪末20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁尼斯克(GConstantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 第二节液压系统地组成

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

液压控制阀的分类及作用

液压控制阀的分类及作用 液压控制阀是液压系统中控制油液方向、压力和流量的元件。借助于这些阀,便能对执行元件的启动、停止、方向、速度、动作顺序和克服负载的能力进行控制与调节,使各类液压机械都能按要求协调地进行工作。 液压阀的分类 A【按用途分】 液压阀可分为方向控制阀(如单向阀和换向阀)、压力控制阀(如溢流阀、减压阀和顺序阀等)和流量控制阀(如节流阀和调速阀等)。这三类阀还可根据需要相互组合成为组合阀,如单向川页序阀、单向节流阀、电磁溢流阀等,使得其结构紧凑,连接简单,并提高了效率。 B【按工作原理分】 液压阀可分为开关阀(或通断阀)、伺服阀、比例阀和逻辑阀。开关阀调定后只能在调定状态下工作,本章将重点介绍这一使用最为普遍的阀类。伺服阀和比例阀能根据输入信号连续地或按比例的控制系统的数据。逻辑阀则按预先编制的逻辑程序控制执行元件的动作。 C【按安装连接形式分】 按安装连接形式,液压阀可分为: (1)螺丝式(管式)安装连接。阀的油口用螺丝管接头和管道及其他元件连接,并由此固定在管路上。这种方式适用于简单液压系统。 (2)螺旋式安装连接。阀的各油口均布置在同一安装面上,并用螺丝固定在与阀有对应油口的连接板上,再用管接头和管道与其他元件连接;或者把这几个阀用螺丝固定在一个集成块 的不同侧面上,在集成块上打孔,沟通各阀组成回路。由于拆卸阀时无需拆卸与之相连的其他元件,故这种安装连接方式应用较广。 (3)叠加式安装连接。阀的上下面为连接结合面,各油口分别在这两个面上,且同规格阀的油口连接尺寸相同。每个阀除其自身的功能外,还起油路通道的作用,阀相互叠装便成回路,无需管道连接,故结构紧凑,阻力损失很小。 (4)法兰式安装连接。和螺丝式连接相似,只是法兰式代替螺丝管接头。用于通径!32_

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

溢流阀知识大全

溢流阀知识大全 一、DB/DBW型先导溢流阀 1.结构和工作原理 DB型阀是先导控制式的溢流阀;DBW型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB型阀主要是由先导阀和主阀组成。DBW型阀是由电磁换向阀、先导阀和主阀组成。 DB型溢流阀: A腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B腔(控制油内排型)或通过外排口(11)流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A腔流到B腔(即卸荷)。 DBW型电磁溢流阀: 此阀工作原理与DB型阀相同,只是可通过安装在先导阀上的电磁换向阀(14)使系统在任意时刻卸荷。 DB/DBW型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X和外排口Y。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。(2)空穴产生的噪声 当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成

液压传动优点 缺点

液压传动优点缺点? 优点:(1)液压传动式利用高压油来实现能量传递,因而容易获得很大的机械力或扭矩(2)液压传动可以利用改变供油量来调整执行机构的工作速度(3)液压传动系统是由许多单个元件组合而成的,他们之间没有刚性的联系,所以他和电器传动一样布置方便,有利于实现标准化,系列化和通用化。(4)液压元件的品种较多,组合应用的灵活性大,易于实现各种复杂工艺过程的动作要求和性能要求,操作控制简便。 缺点:(1)容易漏油(2)对零件的加工质量和滤油精度要求较高,否则容易产生磨损和卡死现象,因而制造和维修较难(3)受工作环境的影响较大(4)液压传动系统的总效率较低液力传动的优缺点? 优点:(1)适应性好(2)安全性好(3)调速,缓冲好 缺点:效率较低,通常需要设置辅助装置,成本较一般机械传动高 什么是液压传动?液压系统中有哪两种能量损失形式? 以液压油为工作介质,依靠密封容积的变化,来实现能量转化和能量传递的一种传动方式。其能量损失有压力损失和容量损失 在管道中,流动液体的压力损失分为哪两种,产生原因是什么? 流动液体的压力损失份沿程压力损失和局部压力损失。沿程压力损失时液体在等径直管中,流动时因粘性摩擦而产生的压力损失。局部压力损失是由于管道的截面突然变化,液流方向的变化或其他形式的液流阻力而引起的压力损失 什么是液压冲击? 在液压系统工作过程中,由于某种原因致使系统或系统中的局部压力瞬时上升,形成压力峰值的现象 什么是背压,那些阀可以做背压阀? 所谓的背压是在液压回路的回油侧或压力作用向相反方向形成的压力。单向阀、溢流阀、节流阀、顺序阀可作为背压阀使用 什么是齿轮泵的困油现象? 为了保证齿轮传动的平稳性,吸压油腔严格的隔开,以及能均匀连续的供油,齿轮泵重叠系数必须大于1,在对两对齿轮同时啮合是,就有一部分油液困在两对齿轮啮合时所形成的的封闭油腔之内 顺序阀与溢流阀的主要区别? 溢流阀的压降很大,出油口压力等于油箱压力,而顺序阀的压降却很小,出油口通往系统中的某一压力油路,所以顺序阀接通后开口处的流速很低,其次由于顺序阀的出油口是压力油路,所以顺序阀的泄漏口不能像溢流阀那样采用内部泄油而必须单独用油管接到油箱进行外部泄油 什么是换向阀的位和通? 位——为了改变液流的方向,阀芯相对于阀体应有不同的工作位置,这个位置数叫做位。只能符号中的方格表示工作位置,三个格为三位,两个格为两位。换向阀有几个工作位置就相应的有几个格数,及位数 通——当阀芯相对于阀体运动时,可改变各油口之间的联通情况,从而改变液体的流动方向。通常把换向阀与液压系统油路相连的油口数叫做通 试比较先导型溢流阀和先导型减压阀的异同点? 答:相同点:溢流阀与减压阀同属压力控制阀,都是由液压力与弹簧力进行比较来控制阀口动作; 两阀都可以在先导阀的遥控口接远程调压阀实现远控或多级调压。 差别:

华中科技大学液压传动04压力控制阀答案

习题四 4-1在图示回路中,若溢流阀的调整压力分别为p Y1=6MPa,p Y2=4.5MPa。泵出口处的负载阻力为无限大,试问在不计算管道损失和调压偏差时: 1)换向阀下位接入回路时,泵的工作压力为多少?B点的压力为多少? 2)换向阀上位接入回路时,泵的工作压力为多少?B点的压力又是多少? 解:1)换向阀下位接入回路时,负载无限大,溢流阀p y1打开,p B=p p= 6 MPa 2)换向阀上位接入回路时,负载为0,顺序阀开启,p B=4.5 MPa,p p=4.5MPa 4-2 如图示简化回路中,缸1为进给缸,缸2为夹紧缸,已知液压缸1无杆腔的面积为A1=20×10-4m2,负载F1=6000N,溢流阀的调整压力为p y=3.5MPa,减压阀压力调整值2MPa,两缸的动作按顺序进行: (1)缸2空载接近工件; (2)缸2完成加紧工件; (3)电磁阀得电,缸1空载运行到工作位置; (4)电磁阀保持得电,缸1工作进给运动。 分析在上述4个动作过程中图中a、b、c点处的压力值各为多少?

解:(1)缸2空载接近工件时,p c = 0MPa ,p b = 0MPa ,p a =0MPa , (2)缸2完成加紧工件,负载无限大,但是由于减压阀的作用, 故p b = 2MPa ,p c = 2MPa , 而此时溢流阀工作,p a = 3.5MPa, (3)液压缸1工作时压力p 1= F 1/ A 1=3 MPa 电磁阀得电,缸1空载运行到工作位置, 故p a = 0MPa ,p b = 0MPa , 由于单向阀的作用 ,p c = 2MPa , (4)电磁阀保持得电,缸1工作进给运动, 液压缸1工作时压力p 1= F 1/ A 1=3 MPa ,则p a = 3MPa ; 减压阀工作,则p b = 2MPa, p c = 2MPa 4-3如图所示的液压系统,相同的两个液压缸的无杆腔有效面积为A 1= 10×10-3m 2,缸I 的负载F=3.5×104N ,缸Ⅱ运动时负载为零,不计摩擦阻力,惯性力和管路损失。溢流阀、顺序阀和减压阀的调整压力分别为4.0MPa ,3.0MPa 和2.0MPa 。求下列三种情况下A 、B 和C 点的压力。 1)液压泵启动后,两换向阀处于中位。 2)1YA 通电,液压缸I 活塞移动时及活塞运动到终点时。 3)1YA 断电,2YA 通电,液压缸Ⅱ活塞运动时及活塞杆碰到固定挡铁时。 1

2、控制阀流量特性解析

2、控制阀流量特性解 析 -CAL-FENGHAI.-(YICAI)-Company One1

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L),式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的

等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。 理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化

溢流阀原理及故障处理

溢流阀原理及故障处理 主编:龙游

目录 一、DB/DBW型先导溢流阀 (1) 二、DR型先导式减压阀…………………………………………………… 三、DZ型先导顺序阀……………………………………………………… 四、DA/DAW型先导控制式卸荷阀………………………………………… 五、压力继电器……………………………………………………………… 六、压力表开关……………………………………………………………… 七、单向阀、液控单向阀…………………………………………………… 八、电磁换向阀和电液换向阀……………………………………………… 九、Z2FS型叠加式单向节流阀……………………………………………… 十、行程节流阀……………………………………………………………… 十一、2FRM型调速阀………………………………………………………… 十二、分流—集流阀………………………………………………………………

一、DB/DBW 型先导溢流阀 1.结构和工作原理 DB 型阀是先导控制式的溢流阀;DBW 型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW 型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB 型阀主要是由先导阀和主阀组成。DBW 型阀是由电磁换向阀、先导阀和主阀组成。 DB 型溢流阀: A 腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B 腔(控制油内排型)或通过外排口(11) 流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A 腔流到B 腔(即卸荷)。 DBW 型电磁溢流阀: 此阀工作原理与DB 型阀相同,只是可通过安装在先导阀上的电磁换向阀 (14)使系统在任意时刻卸荷。 DB/DBW 型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X 和外排口Y 。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。 (2)空穴产生的噪声 图1 DB 型溢流阀

相关主题
文本预览
相关文档 最新文档