当前位置:文档之家› 太阳光谱及隔热膜常识介绍

太阳光谱及隔热膜常识介绍

太阳光谱及隔热膜常识介绍

太阳光谱及隔热膜常识介绍

玻璃纤维制品知识

制品工艺 第一节玻璃纤维纺织制品概述 (一)分类定义: 玻璃纤维纺织制品的国际标准名称为Textile Glass。标准定义是“以连续玻璃纤维或定长玻璃纤维为基材制成的纺织制品的通称”。玻璃纤维制品总体分为无纺制品和纺织制品两大类。(我公司目前生产的玻纤制品属于无纺制品类) 按产品形态划分可分为纱线和织物两大类别。其中纱线类制品又分为无碱玻璃纤维无捻粗纱和无碱连续玻璃纤维纱。 (二)纱织制品分类表:

第二节细纱 (一)电子纱和工业纱 1. 定义:纤维直径小于10微米的细纱,因其工业用途不同分为电子纱和工业纱。 2. 用途:电子纱最终用于电子元件印刷线路板。 工业纱用于工业织物,如防火帘、模建筑、同步带、帘子线、编制套管等。 3.生产工艺流程(拉丝工艺起): 4.细纱主要质量控制标准: 外观质量、号数(TEX值)、含水率、可燃物含量、捻度、硬挺度、硬度、断裂强度等。 5. 细纱成品代号表示: 纱管类型4.0KG左右 Y1 ---- 浸润剂类型 0.7Z ---- 0.7捻/25mm (28捻/米) Z向 1/0 ---- 单股加捻 75 ---- 每磅纤维的百码数(7500码/磅) 单纤维直径为9微米的玻纤长丝 捻度–纱线加捻程度,公制单位:捻/100cm,英制单位:捻/英寸(1英寸=2.54cm)。 捻向--表示捻度的方向,分为S和Z两个方向。 6.细纱产品简介 (1) 电子纱 a.G75Y1/Y4系列 规格代号 TEX中心值直径(μm) G75Y1/Y4 68.7±1.7 9 b.E225系列 规格代号 TEX中心值直径(μm) E225Y3 22.5±0.7 7 c.D450系列 规格代号 TEX中心值直径(μm) D450Y5 11.2±0.5 5 (2) 工业纱 a.G37系列 规格代号 TEX中心值直径(μm) G37Y1 136±4.0 9 b.D225系列 规格代号 TEX中心值直径(μm) D225Y5 2.5±0.9 5 c.G25R/N系列

太阳光谱中的暗线

原子吸收光谱法之 任务 5 原子吸收光谱法基本原理 教学任务 p解释原子吸收光谱法的基本原理和原子吸收分光光度计的结构设计; p解释共振线、分析线、谱线轮廓、积分吸收、峰值吸收等基本概念; p说明谱线轮廓变宽的主要原因和吸光度与待测元素浓度的关系:原子吸收现象发现;原子吸 收法特点;分析流程;原子吸收产生;分析线轮廓;定量关系 教学方法 p教师讲解 教学学时 p以 40 人为学习组,需 4 学时 教学设计 p问题引入,教师讲解,学生讨论,教师总结 问题:如何测定天体的组成? 天文学研究中经常需要测定各种恒星、行星的组成、结构,然而,这些星球距离我们非常遥远 并且恒星表面具有极高的温度使我们无法接近,不可能直接取样进行测定,天文学家是如何知道天 体组成的呢? 原子吸收光谱的发现与发展 早在 1802 年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,就发现了太阳连续光谱中 出现的暗线,图 4-1。 1859 年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱 时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且根据钠发射线与暗线

在光谱中位置相同这一事实,断定太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子对太阳 光谱中的钠辐射吸收的结果。 1955 年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文”原子吸收光谱在化学分析中的应 用”奠定了原子吸收光谱法的基础。 50 年代末和 60 年代初,Hilger, Varian Techtron 及 Perkin-Elmer 公司先后推出了原子吸收 光谱商品仪器,发展了瓦尔西的设计思想。到了60 年代中期,原子吸收光谱开始进入迅速发展的时 期。 1959 年,苏联里沃夫提出了电热原子化技术。电热原子吸收光谱法的绝对灵敏度可达到 10 -12 -10 -14 g,使原子吸收光谱法向前发展了一步。 近年来,塞曼效应和自吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利地实现原子吸 收测定。 近年来,计算机、微电子、自动化、人工智能技术和化学计量等的发展,各种新材料与元器件 的出现,大大改善了仪器性能,使原子吸收分光光度计的精度和准确度及自动化程度有了极大提高, 使原子吸收光谱法成为痕量元素分析的灵敏且有效方法之一,广泛地应用于各个领域。使用连续光 源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子 吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪 器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变 化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收 联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重 要的用途,是一个很有前途的发展方向。 通过上面的介绍,请讨论原子吸收现象如何应用到分析化学领域。 (教师可以以原子吸收测定水中镁、铜为例引导学生原子吸收与浓度的关系) 原子吸收法概述 依据原子蒸气对特征谱线的吸收进行定量分析测定对象:金属元素及少数非金属元素 (利用仪器操作软件上的元素选择功能显示原子吸收测量的所有元素) 原子吸收光谱法的特点和应用范围 原子吸收光谱法是基于测量蒸气中基态原子对特征光波的吸收,测定化学元素含量的方法。 根据基态原子对特征波长光的吸收,测定试样中待测元素含量的分析方法。是上世纪 50 年代中 期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、

高中地理:太阳的高度

太阳的高度专题 (一)等太阳高度线图的判读 等太阳高度线图可以看做是以太阳直射点为中心的俯视图,判读时需掌握以下方法,有助于正确解答问题: 1.图的中心为太阳直射点,太阳高度以该点为中心向四周逐渐降低;通过该点的经线即太阳直射的经线,地方时是12点;通过该点的纬线即为太阳直射的纬线,其正午太阳高度为90度。

正午太阳高度的分布规律从太阳直射的纬线向南北逐渐降低。根据太阳直射纬线推断直射点所在的半球及季节,并判断与之相关的地理现象。注意区别太阳高度和正午太阳高度分布规律的不同。 2.在太阳直射的经线上,太阳高度相差多少度,纬度就相差多少度,据此可计算该经线上某一点的纬度数值;如果太阳直射赤道,则赤道上太阳高度相差多少度,经度就相差多少度;如果太阳直射点不在赤道,则太阳高度相差多少度,经度的差值一定大于太阳高度的差值,以此推算该纬线上某一点的经度和地方时。 3.如果图中标注了太阳高度的数值,则视具体数值而判断:一是最外侧的大圆圈为0°等太阳高度线,即为晨昏线,一般是太阳直射经线以东最大的半圆为昏线,以西最大的半圆为晨线;二是图中最大的圆圈不是0°等太阳高度线,因此,也就不是晨昏线。如果没有标注太阳高度的数值,在图中最外侧的大圆圈上太阳高度为0°,即晨昏线。 4.由于太阳直射经线上太阳高度南北跨度为180度,当太阳直射赤道时,此经线最北点为北极,最南点为南极;太阳直射北半球时,北极点在最北点以南,图上没有南极点;太阳直射南半球时,相反。 (二)日影的朝向和长短变化 1、正午日影朝向和长短变化

正午日影的朝向取决于太阳直射点的位置。由于太阳直射点在南北回归线之间周年往返移动,正午日影朝向不仅随空间,而且随时间变化而变化。 在北回归线以北地区,正午日影始终朝北。北半球夏至日,北回归线及其以北地区正午太阳高度最大,正午日影最短。北半球冬至日,太阳直射在南回归线上,北半球正午太阳高度最小,日影最长。 在南回归线以南地区,正午的日影始终朝南。北半球冬至日,南回归线以南地区正午太阳高度最大,正午日影最短。北半球夏至日,南半球正午太阳高度最小,日影最长。 在南北回归线之间,一年有两次太阳直射(回归线上只有一次),日影最短(日影与物体本身重合)。 2、日出、日落时日影朝向 在北半球春秋二分日,全球各地太阳从正东面升起,正西面落下。因此日出时日影朝西,日落时日影朝东。 北半球夏半年,太阳直射北半球,北半球各地昼长于夜,全球各地(极昼区域除外)太阳从东北方升起,西北方落下。日出时日影朝向西南,日落时日影朝向东南。从春分日至夏至日,随着太阳直射点北移,太阳升起和落下方向也逐渐北移;从夏至日至秋分日,太阳直射点南移,太阳的升落方向也逐渐向南移。

北极光隔热膜介绍

北极光隔热膜的前世今生 和田玉系列 最早于2008年7月推出,当时共有四款“素玉”、“青玉”、“墨玉”、“碧玉”销路一般,当时人们很难接受高端产品。 2009年获得“《汽车杂志》推荐使用品牌”,2011年升级为“福、泰、安、康”四个型号,是第六代光学复合膜,采用磁控溅射+光粒子智能选择双重隔热,8-10年质保,价格威固、龙膜的顶级系列看齐,当然性能也非常好。 2013-14年推出:“吉、祥、温、良、恭”5款,至此和田玉系列成形,“和”系列为“吉、祥”两款,“田”系列为“福、泰、安、康”四款,“玉”系列为“温、良、恭”三款。按照内部战略,和田玉将会从北极光品牌系列中独立出来,做最高端的产品。百度百科有介绍。 中国风系列 2005年发布,产自CPFilms Inc.(美国首诺科特玻璃功能膜),就是龙膜的生产工厂,质保8年。主要投放装潢店和美容店,基本上几个型号都是多层金属磁控溅射膜,这个系列是北极光真正的成名之作,共有“欢乐家庭”、“商务精英”、“王者风范”、“炫彩世界”四个系列12个型号,是北极光隔热膜中品种最多的系列。 其中V998和V328侧后挡红外线阻隔率高达80%以上(900-1100波段)。 2005年度获得“中国十大知名防爆膜品牌”、2006年获得“最佳

消费者口碑奖”、 2006年获得“中国十大知名防爆膜品牌”、北极光隔热膜宣称的“十大知名防爆膜品牌”就是由此而来。 2008年即获得“汽车后市场竞争力50强品牌”、 2012年度最具性价比品牌, 2013年获得“金骏奖隔热膜品牌金奖”。 国粹系列 北极光中国风系列推出之后,2006年推出的新系列,主产地是韩国和印度,质保6年。主要供应4S店渠道,随着北极光隔热膜被收购后,国粹系列慢慢退出历史舞台,由PDI系列取代,国粹系列最终会完全退出市场。 晶粹系列 2013年北极光隔热膜品牌被北京康得新集团收购后,2014年推出晶粹系列,主要走网络销售,不通过实体店销售,质保5年。 在我看来,北极光管理层希望借助北极光品牌的影响力快速攻占电商渠道,又担心冲击到原有的北极光经销商,所以推出晶粹系列,但是,无论京东商城还是天猫旗舰店,都有意淡化品牌系列,对于没有接触过北极光隔热膜的消费者来说,以为晶粹就是北极光、北极光就是晶粹,这样以来会极大程度损害品牌形象,1000元以内的定价就是典型的低端膜,北极光此举将会使其堕入低端印象。10年打造

对太阳光谱中神秘图谱的解释

光学 波动说 托马斯·杨出生在英国索默塞特郡(Somersetshire)的米尔弗顿(Milverton),我们要感谢他,因为他复兴了被忽略了一个世纪之久的光的波动说。这位伟大的科学家有一个非凡的幼年时代。在他两岁时他就能很流畅地读书,当他4岁时,他已通读了两遍圣经;当他6岁时,他能整篇地背诵“哥德斯密思的荒村”( Goldsndth′s Deserted Village)。他一目数行,贪婪地阅读各种书籍,无论是古典的、文学的或是科学上的著作;说出奇怪,在他的发育成长中,他的体力和智力并没有减退。在他约16岁时,由于他反对贩卖奴隶,他戒用食糖。在他19岁时,他开始先在伦敦、而后在爱丁堡、哥丁根、最后在剑桥学医。1800年他开始在伦敦行医。第二年他接受了皇家研究院自然哲学教授的职务,这个研究院是由伦福德伯爵在这之前一年建立的京城科学院。他担任这个职务有两年之久。从1802年的1月到5月,他作了一系列讲演。这些讲演和后来的一系列讲演以《关于自然哲学和机械工艺的讲演》(Lectures on Natural Philosophy and the Mechanical Arts)为题在 1807年出版,这本论丛今天还值得一读。1802年他被委任为皇家研究院的外事 秘书。他担任这个职务直到他生命的最后一刻为止。 杨的最早研究是关于眼睛的构造和光学特性。而后,1801—1804年是他光学发现的第一个时期。他的学说受到嘲笑,于是他着手其他的研究工作。连续有12个年头,他花费在医疗职业和语言学的研究上,特别是辨读象形文字的著作。然而,当法国菲涅耳开始光学实验并且特别突出杨的理论时,杨才重新恢复他早期的研究,进人了他的光学研究的第二个时期。 1801年,杨在皇家学会宣读了关于薄片颜色的论文,他在这里表示他自己强烈地倾向光的波动说。干涉原理的引人是这篇文章跨出的重大一步。“两个在方向上或者是完全一致或者是很接近的不同光源的波动,它们的联合效应是每一种光的运动的合成。”这个原理的不完全的暗示曾出现在胡克的《显微术》(Mcrogrophia)中,但杨直到他独自取得新见解之后才知道这些暗示。杨第一次彻底地用干涉原理解释了声和光。他以这个原理解释了薄片的色彩和刻条纹的表面或“条纹面”的衍射颜色。杨的观察是以极大的精密度作的,但是,他说明这些观测事实的方式,正如他的大部分论文一样,是简洁而有点模糊不清的。他的包含有重要的干涉原理的论文成为自牛顿的时代以来发行的最重要的物理光学出版物。但它们并未在科学界留有印象。布鲁厄姆在《爱丁堡评论》(Edinburgh Review)第Ⅱ期和第Ⅳ期上对这些论文发起了猛烈的攻

太阳光谱的连续偏振

太阳光谱的连续偏振(加主页资料扣扣免财富值) 摘要:我们提出一个由可见太阳光谱中的辐射散射引起的连续偏振的理论研究。比较了来自九个不同的太阳模型大气的结果。断定了中心—边缘变化(CLV)以及依赖于连续偏振的波长,并且确定了模型大气依赖的来源。关键的物理量是散射系数和偏振形成层的温度梯度。 这里发展了可见光每个波长的接近理论连续偏振CLV的一个简单解析函数。假设产生偏振的散射层光学性地稀薄,并位于连续强度的形成层,然后建立在第一近似值上。解析函数的应用范围从偏振规模有用的零电平测定到使用经验性的中心—边缘曲线来约束太阳模型大气的诊断工作。 1.简介 最近的观察显示了太阳结构丰富的偏振,被称为“第二个太阳光谱”,因为它与普通未极化的强度谱没有丝毫相似之处,因此包含至少部分互补信息。这个结构是由于来自连续介质和线条同样重要的混合影响。连续谱通过辐射散射获得线性极化,主要是来自中性氢的瑞利散射和自由电子的汤森散射在。谱线的极化是由于原子束缚跃迁的相干散射引起的,并且由普遍存在的磁场而发生改变。 为了充分理解涉及到的不同的物理过程,我们需要解决它们。在本文中我们从连续谱开始。除了更好地理解物理学,这样一个研究在限制太阳模型大气和决策观测的极化规模零水平上很有用处。 利用太阳模型大气,输入通过数值解决偏振辐射的传输方程来获得的连续介质极化。不同的模型大气给出了不同程度的极化。因此和实验数据的比较可以使我们在几个太阳大气模型中进行选择。这种从4500?到8000?对于连续介质窗口的具有10-5的偏振灵敏度的观测在计划中但尚未提供。 对于具有汉勒效应的湍流磁场的诊断,需要精确知道真正的极化规模的零水平。汉勒效应,一个发生在当前磁场中的相干散射的相干现象在,导致了谱线核心的去极化。由于谱线和连续介质的极化通常是同一个数量级的,因此不能使用连续水平作为线性极化的参考。真正的极化零水平必须作为参考。由于仪器影响,真正的极化规模的零水平不具备足够的精度。然而,从理论思考中了解连续介质的极化程度,观察中的零水平可以确定。 在第二节中我们将描述相关的物理理论,数值技术和太阳模型大气的使用。在第三节中给出了两个计算机代码的测试。在第四节中我们通过阐述吸收,散射系数和温度梯度的角色,加强了对有关数量物理性的深刻理解。这是特别重要的是要知道连续介质极化形成层,因为它通常被假定位于连续介质强度形成层的上面。我们将说明这两层实际上是重叠的。最后,在第五节中,用以描述整个可见光谱范围连续介质极化的中心—边缘变化(CLV)的一个简单解析表达式被推导出并与理论数据作了拟合,提供整套计算极化值的一个便捷的近似算法表示。 2.理论方法 2.1.相关物理过程 为了定量描述辐射传输,物理过程必须被理解。传统上的区别是由纯吸收和散射之间产生的。这里我们关注导致连续谱的流程。 辐射场能量的纯吸收部分转换成气体的动能,从而被热化。作为第一次被Wildt 提出的,氢阴离子H?主宰了太阳光球中的连续介质吸收,也就是可见的连续介质

航空基础知识

飞机的分类 由于飞机构造的复杂性,飞机的分类依据也是五花八门,我们可以按飞机的速度来划分,也可以按结构和外形来划分,还可以按照飞机的性能年代来划分,但最为常用的分类法为以下两种: 按飞机的用途分类: 飞机按用途可以分为军用机和民用机两大类。军用机是指用于各个军事领域的飞机,而民用机则是泛指一切非军事用途的飞机(如旅客机、货机、农业机、运动机、救护机以及试验研究机等)。军用机的传统分类大致如下: 歼击机:又称战斗机,第二次世界大战以前称驱逐机。其主要用途是与敌方歼击机进行空战,夺取制空权,还可以拦截敌方的轰炸机、强击机和巡航导弹。 强击机:又称攻击机,其主要用途是从低空和超低空对地面(水面)目标(如防御工事、地面雷达、炮兵阵地、坦克舰船等)进行攻击,直接支援地面部队作战。 轰炸机:是指从空中对敌方前线阵地、海上目标以及敌后的战略目标进行轰炸的军用飞机。按其任务可分为战术轰炸机和战略轰炸机两种。 侦察机:是专门进行空中侦察,搜集敌方军事情报的军用飞机。按任务也可以分为战术侦察机和战略侦察机。 运输机:是指专门执行运输任务的军用飞机。 预警机:是指专门用于空中预警的飞机。 其它军用飞机:包括电子干扰机、反潜机、教练机、空中加油机、舰载飞机等等。 当然,随着航空技术的不断发展和飞机性能的不断完善,军用飞机的用途分类界限越来越模糊,一种飞机完全可能同时执行两种以上的军事任务,如美国的F-117战斗轰炸机,既可以实施对地攻击,又可以进行轰炸,还有一定的空中格斗能力。 按飞机的构造分类: 由于飞机构造复杂,因此按构造的分类就显得种类繁多。比如我们可以按机翼的数量可以将飞机分为单翼机、双翼机和多翼机;也可以按机翼的形状分为平直翼飞机、后掠翼飞机和三角翼飞机;我们还可以按飞机的发动机类别分为螺旋桨式和喷气式两种。

太阳光谱介绍

太阳光谱介绍(描述分类AM0, AM1.5) 太阳表面温度接近6000K,因此其放射光谱几乎等同于该温度下的黑体辐射,并且光谱照射是并无方向性的,地球与太阳相距约一亿5千万公里远,而能到达地球表面的光子,几乎只有正向入射至地球表面的光谱所贡献,到达地球大气圈表面的光谱辐射能量定义为太阳常数(solar constant),其数值大约1.353 kW/m2,因此大气圈外的太阳光谱定义为AM0,其中大气质量(air mass)用来估量因为大气层吸收后,所导致影响太阳光谱表现与总体能量值,而这些能量值亦是地球表面应用的太阳电池组件所能运用的。图二说明大气质量的计算方法,大气质量数值常是使用Air Mass =1/cos θ来计算的,其中θ=0所代表的是太阳光线从头顶上方直射下来,而由上述的计算市中可知,地球表面用以衡量太阳光谱的大气质量值是大于等于1,目前被惯以使用的太阳光谱AM1.5,即是太阳光入射角偏离头顶46.8度,当太阳光照射到地球表面时,由于大气层与地表景物的散射与折射的因素,会多增加百分之二十的太阳光入射量,抵达地表上所使用的太阳电池表面,其中这些能量称之为扩散部份(diffusion component),因此针对地表上的太阳光谱能量有AM1.5G (global)与AM1.5D(direct)之分,其中 AM1.5G即是有包含扩散部分的太阳光能量,而AM1.5D则没有。图三所表示的即是大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱。 图二、大气质量的计算方法示意图 图三、大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱

太空用的太阳电池组件电性量测所使用的标准光谱是以AM0,而地面上应用的太阳电池组件电性量测所使用的标准光谱,依其应用性之不同,可采用AM1.5G 或是AM1.5D,其中AM1.5G光谱的总照度为963.75W/m2,而AM1.5D光谱的总照度为768.31W/m2,在量测计算应用上方便,常会将此二值做归一化(normalize)至1000 W/m2。 太阳光源仿真器 太阳电池组件的电性量测,是可分别于户外(outdoor)或是室内(indoor)来进行的,而太阳电池组件会有容易受到温度、照度影响与地利位置等因素的影响,所以在户外进行量测所得到的数据不易有再现性与可比较性,虽不利于太阳电池的研究开发之用,但对于已完成的太阳电池模块的实际发电效率监控却是有莫大的帮助,基于前述理由,目前主要的太阳电池组件量测工作,大多数都于室内来进行测试,组件电性量测过程所需的太阳光线,是利用太阳光仿真器(solar simulator)来提供近似太阳光谱的光源,同时因为太阳电池组件的电力输出,与太阳光频谱有着密不可分的关系。因此太阳光仿真器的优劣,即会大大影响组件的测试结果,因此有美国标准量测规范ASTM E927、IEC 60904-9 与JIS C8912 等标准来规范太阳光仿真器的等级区分,综合光源的照射强度均匀性(No uniformity of total irradiance)、照射不稳定性(Temporal instability of irradiance)、光谱合致度(spectral match),将太阳光仿真器等级分为A、B、C三个等级,如表一所示。目前常用的单一光源太阳光仿真器有卤素灯泡(tungsten–halogen lamp, ELH) 与Xe灯泡(Xenon lamp)为主,卤素灯泡搭配dichroic filter所组成的太阳光仿真器属于C级,主要是因为其在波长0.7~0.8μm范围能量过高,在0.4~0.5μm范围能量却不足,而使用Xe灯与合适AM1.5G filter所组成的太阳光仿真器,其光谱波长短于0.8μm范围可达A级,而在0.8~1.2μm波长范围有着强烈的原子放射波段(atomic line),虽无法达到完全近似太阳光谱,但对于传统的单一接面(single junction)太阳电池组件电性量测来说是足够的。 表一、太阳光仿真器分级标准 太阳电池光谱响应量测 太阳电池组件的光谱响应特性,直接影响着组件能量转换效率表现,而太阳电池光谱响应量测(spectrum response measurement)的物理意义是测试太阳电池所产生光电流对应吸收光谱波段范围,因此对于研究开发太阳电池而言,了解组件对太阳光谱的响应特性是相当重要的,不仅是可用于太阳电池组件的电性量测输出特性的修正,亦是做为多接面太阳电池(multi-junction solar cell)组件设计重要

高中地理期末复习:太阳活动对地球的影响

高中地理期末复习:太阳活动对地球的影响 太阳活动是太阳大气层里一切活动现象的总称。由太阳大气中的电磁过程引起。时烈时弱,平均以11、22年为周期。处于活动剧烈期的太阳(称为“扰动太阳”)辐射出大量紫外线、x射线、粒子流和强射电波,因而往往引起地球上极光、磁暴和电离层扰动等现象。 太阳活动简介 太阳活动是太阳大气中局部区域各种不同活动现象的总称。包括: 太阳黑子是太阳活动的基本标志 光斑:太阳光球边缘出现的明亮组织,向外延伸到色球就是谱斑。光斑一般环绕着黑子,与黑子有密切的关系。 谱斑:太阳光球层上比周围更明亮的斑状组织。 太阳风:太阳风形成的带电粒子流造成了地球上的极光耀斑:发出的强大的短波辐射,会造成地球电离层的急剧变化。对人类的影响很大。造成短波通讯中断。 日珥:在日全食时,太阳的周围镶着一个红色的环圈,上面跳动着鲜红的火舌,这种火舌状物体就叫做日珥。 影响:太阳活动对于地震、火山爆发、旱灾、水灾、人类心脏和神经系统的疾病,甚至交通事故都有关系。因此也形成了太阳活动预报这门学问。 太阳黑子是在太阳的光球层上发生的一种太阳活动,是太

阳活动中最基本、最明显的现象。它实际上是太阳表面一种炽热气体的巨大漩涡,像是一个浅盘,中间下凹,温度比光球层表面的温度低1000℃到2000℃,所以看起来比较“黑”。 太阳活动对地球的影响一 1、晨昏线的概念 由于地球是一个不发光、不透明的球体,所以同一时间里,太阳只能照亮地球的一半。向着太阳的半球是白天(昼半球),背着太阳的半球是黑夜(夜半球)。昼半球和夜半球的分界线(圈)叫晨昏线(圈)。它是由晨线和昏线组成。 2.晨昏线的判读在日照图上,晨线和昏线的判断方法 一是根据地球自转方向判断:顺着地球自转方向,由昼半球过渡到夜半球的分界线是昏线,由夜半球过渡到昼半球的分界线是晨线。 二是根据昼夜半球判断:位于昼半球西部边缘与夜半球的分界线为晨线,位于昼半球东部边缘与夜半球的分界线为昏线。赤道上地方时为6时的是晨线,18时是昏线。 3.晨昏线的特点 (1)如果把地球看作一个正球体,同时不考虑大气对太阳光线的散射作用,那么,地球上昼半球与夜半球的面积应相等,即晨昏圈是一个过球心的大圆,且平分地球。 (2)晨昏线平面与太阳光垂直。晨昏线上的各点太阳高度

飞行力学知识点

1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。 2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度 3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。 4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度 5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。 6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。 7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。 8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。 9.定常运动:运动参数不随时间而改变的运动。 10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力 11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩 12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间 13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量 14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量 15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。 16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点 17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动 18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系 19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线 20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。 (书上版:是固联于飞机并随飞机运动的一种动坐标系。它的原点O位于飞机的质心;Oxt 轴与翼弦或机身轴线平行,指向机头为正;Oyt轴位于飞机对称面内,垂直于Oxt轴,指向上方为正;Ozt轴垂直飞机对称面,指向右翼为正。) 21.翼载荷:飞机重力与及面积的比值 22.纵向静稳定力矩:由迎角引起的那部分俯仰力矩称之为纵向静稳定力矩 23.航向静稳定性:飞行器在平衡状态下受到外界非对称干扰而产生侧滑时,在驾驶员不加操纵的条件下,飞行器具有减小侧滑角的趋势 1.作用在飞机上的外力主要有飞机重力G、空气动力R、发动机推力P 2.飞机的过载分为切向过载n x、法向过载n y组成 3.飞机的着陆过程可分为:下滑、拉平、平飞减速、飘落、地面滑跑。

汽车贴膜知识

13辨别真假 没有经验的车主给车购买前,可向商家索取车膜质保卡,质保年限通常为8-到15年。如果没有,那要小心了。而且,正规品牌车膜都有防伪水印,您应注意查看。如果条件允许,还可以取一小块车膜,撕开透明层,闻一闻气味,假膜通常有刺激性气味,真膜不会有。将这些小点子归纳起来就是“一看二闻”:看质保卡和水印,闻气味。 这两招是应对假冒产品最基本的方法。选购车贴膜时,由于车主不是这方面专家,购买现场也不可能做专业测试。所以,我们重点介绍三招操作简单,却很有效的防假方法。 ⒈车贴膜透明度及颜色 透明度是指,透过车窗从车内看车外的透明度。优质的车贴膜透明度一定高!接近于全透明。而假冒车膜透明度通常不达标,贴上去后从里往外看雾蒙蒙黑乎乎的一片。奸商也可能会这么忽悠你:是这样的!不黑怎么能防晒,隔热!对此,我们只能说:车膜黑,人心更黑。贴上这样的车膜,别说隔热防晒,连开车视线模糊受阻,安全隐患极大。所以特别提醒您:优质车膜透明高!透明度差的别选。 车膜颜色误区。有的车贴膜颜色较深,为谨防受骗,您可以索要一小块车膜检验。用指甲或钥匙在撕开的车膜上来回刮划,如出现掉色就是假膜。因为真膜有防刮伤层不易掉色,而假膜没有。此外,车主大多对车膜颜色有这样误区:认为车膜的颜色越深越好。事实是否定的,车膜颜色与质量无关。不管颜色深浅,透明度高才是衡量标准。 ⒉贴膜隔热性能当场测试 好车膜有很高的辐射反射率,热量被反射掉,所以车内温度低。既然要隔热防晒,有什么简单的方法在购买现场就能知道隔热性好不好呢?有!一般汽车门店中都有一个模拟阳光照射车厢环境的灯箱,你将车贴膜置于灯箱附近,用手隔着贴膜感觉透热性即可。优质车膜能明显地阻挡热量。还有更简单的招,将车膜对着太阳或碘钨灯,用手感觉就知道隔热性能如何。 ⒊务必选择专业门店 有些车主或因为贪便宜,或图个方便,去非专业小门店贴膜。这类维修店通常在裸露的室外进行贴膜作业,其实仅从这点就可以判定他们不专业。因为贴膜的过程应尽量避免灰尘多的室外环境,通常都在较为封闭的环境中进行贴膜。所以,建议您去有专业封闭车间的维修门面贴膜。此外,在贴膜过程中,是将一整张膜进行粘贴作业的,因为当前挡风玻璃破碎时,整张的车膜能发挥其防爆性,牢牢粘住破碎玻璃,不会造成玻璃片飞溅伤人。若贴膜人员要将整张车膜裁剪开,分块贴膜作业,那说明您选择的门店不专业。

玻璃纤维基础知识

玻璃纤维小知识 1 玻璃纤维是以二氧化硅为主要原料的天然矿物,添加特定的金属氧化物矿物原料,混合均匀后,在高温下熔融,熔融玻璃液流经漏嘴流出,在高速拉引力的作用被牵伸并急速冷却固化成为极细的连续的纤维。 2 玻璃纤维的基本性质 2.1 外观特性 玻璃纤维为表面光滑的圆柱状,截面呈完整的圆形。这主要是成形时熔融玻璃液表面张力所致。有机纤维为非圆形结构的截面,且表面有较深的皱纹。 玻璃纤维圆形截面承受载荷能力强;气体和液体通过阻力小,但表面光滑使纤维的抱合力小,不利于与树脂的结合。 2.2 密度 玻璃纤维密度一般在2.50-2.70 g/cm3,主要取决于玻璃成分。所以有时工厂生产控制时也用密度的变化来考察成分的波动。 2.3 抗拉强度 玻璃纤维的抗拉强度比其他天然纤维、合成纤维要高。 玻璃纤维强度情况比较复杂,通常一些资料中给出的数据是“新生态纤维”的强度,即在漏嘴下直接取出的纤维所测的强度。缠绕在绕丝筒上后强度很快下降。通常认为绕丝筒上纤维的强度低于新生态15%-25%。 格里菲斯微裂纹缺陷理论:玻璃纤维的理论强度取决于分子之间的引力(与玻璃成分和结构有关),其理论强度很高。但由于玻璃纤维中存在着数量不等、尺寸不同的微裂纹,使实际强度大大降低。微裂纹分布在玻璃纤维的整个体积内,但以表面裂纹危害最大,在外力作用下,微裂纹处产生应力集中而发生破坏。 2.3 影响玻璃纤维强度的因素 (1)化学成分:玻璃组成不同,制成的纤维强度也不同。 (2)玻璃纤维的直径:直径越细强度越大。 (3)存放时间增加,强度下降。 (4)玻璃液的缺陷,如化学不均匀、结晶杂质、结石、气泡等影响纤维强度。研究结果认为:当玻璃中存在结晶物时会降低强度,最大降低52%:当存在微小气泡时,强度降低20%,玻璃液质量对保证纤维强度至关重要。 (5)成型温度影响:当温度从1200℃升高到1 370℃,纤维强度可提高一倍。“玻璃是一定状态下的无机物质,这种状态是该物质液态的继续,并与液态类似”,也就是说玻璃是具有液态结构的坚硬材料。由于玻璃纤维是在高速急冷条件下成形,所以具有接近于高温熔体的微观结构。通常说玻璃结构是远程无序,近程有序。近程有序的程度本身取决于熔融玻璃液的温度和从熔融玻璃液冷却为固态的速度,因此玻璃纤维的物理性质不仅受其成分的影响,还受其热历史的影响。 (6)冷却的速度:冷却速度越快,玻璃纤维的结构越接近熔融体的结构,析出的超显微晶体的数量和尺寸越少,缺陷和微裂纹也越少,强度越高。 (7)拉丝张力:拉丝作业不可避免地会产生微裂纹,在拉丝力的作用下每根纤维都受到一定的应力,这种应力作用于先硬化的纤维外壳时就产生了表面微裂纹。减少纤维成形时的张力,有利于提高纤维的强度。 2.4 弹性模量

高一地理太阳对地球的影响知识点

高一地理太阳对地球的影响知识点 高一地理太阳对地球的影响知识点 1、晨昏线的概念 由于地球是一个不发光、不透明的球体,所以同一时间里,太阳只能照亮地球的一半。向着太阳的半球是白天(昼半球),背着太阳的半球是黑夜(夜半球)。昼半球和夜半球的分界线(圈)叫晨昏线(圈)。它是由晨线和昏线组成。 2. 晨昏线的判读:在日照图上,晨线和昏线的判断方法,一是根据地球自转方向判断:顺着地球自转方向,由昼半球过渡到夜半球的分界线是昏线,由夜半球过渡到昼半球的分界线是晨线。二是根据昼夜半球判断:位于昼半球西部边缘与夜半球的分界线为晨线,位于昼半球东部边缘与夜半球的分界线为昏线。赤道上地方时为6时的是晨线,18时是昏线。 3. 晨昏线的特点 (1)如果把地球看作一个正球体,同时不考虑大气对太阳 光线的散射作用,那么,地球上昼半球与夜半球的面积应相等,即晨昏圈是一个过球心的大圆,且平分地球。 (2)晨昏线平面与太阳光垂直。晨昏线上的各点太阳高度 为0,昼半球上的各点太阳高度大于0,夜半球上的各点太阳 高度小于0。 (3)晨昏线永远平分赤道。 (4)晨昏线只有在春、秋分时才与经线圈重合。 (5)晨昏线在夏至、冬至时与极圈相切。 (6)晨昏线自东向西移动15°/小时,与地球自转方向相反。 4. 晨昏线的移动

一般地,如果地轴的倾斜方向不变,晨昏线在如图1~3范围内移动。1、2、3分别表示冬至、春秋分、夏至日时晨昏线的'位置。即3月21日与9月23日晨昏线与经线圈重合,导致全球昼夜平分;6月22日摆动幅度最大,导致北半球昼最长,南半球夜最长;12月22日摆动幅度也最大,导致南半球昼最长,北半球夜最长。 知识点总结 1.提供能量: ●太阳的主要成分:氢和氦。 ●太阳辐射是以电磁波的形式辐射。内部的核聚变。 ●纬度差异热量差异:纬度低,太阳辐射强,生物量多;反之。 2太阳活动: ●太阳大气层从外到内分为:日冕(最外层)、色球、光球(太阳表面、最亮)。 ●太阳活动的主要标志:太阳黑子(周期11年)。 耀斑也是重要标志,它是太阳活动最强烈的显示。 ●太阳风在日冕层;太阳风暴发生于太阳表面。 ●太阳活动的三大影响: (1)太阳电磁波扰动电离层影响无线电短波通讯 (2)带电粒子流扰动地球电磁场产生磁暴 (3)带电粒子流进入大气层产生极光。 s(); 【高一地理太阳对地球的影响知识点】

飞机制造技术知识点

飞机制造特点与协调互换技术 1、飞机结构的特点:外形复杂,构造复杂;零件数目多;尺寸大,刚度小。 2、飞机制造的主要工艺方法:钣金成形、结构件机械加工、复合材料成形、部件装配与总装配 3、飞机制造的过程:毛坯制造与原料采购、零件制造、装配、试验 4、飞机制造工艺的特点:单件小批量生产、零件制造方法多样、装配工作量大、生产准备工作 量大、需要采用特殊的方法保证协调与互换 5、互换性 互换性是产品相互配合部分的结构属性,是指同名零件、部(组)件,在分别制造后进行装配时,除了按照设计规定的调整以外,在几何尺寸、形位参数和物理、机械性能各方面不需要选配和补充加工就能相互取代的一致性。 6、协调性 协调性是指两个或多个相互配合或对接的飞机结构单元之间、飞机结构单元及其工艺装备之间、成套的工艺装备之间,其几何尺寸和形位参数都能兼容而具有的一致性程度。协调性可以通过互换性方法取得,也可以通过非互换性方法(如修配)获得,即相互协调的零部件之间不一定具有互换性。 7、制造准确度 实际工件与设计图纸上所确定的理想几何尺寸和形状的近似程度。 8、协调准确度 两个相互配合的零件、组合件或段部件之间配合的实际尺寸和形状相近似程度。 9、协调路线:从飞机零部件的理论外形尺寸到相应零部件的尺寸传递体系。 10、三种协调路线:按独立制造原则进行协调、按相互联系制造原则进行协调、按相互修配原 则进行协调 11、模线 模线是使用1:1 比例,描述飞机曲面外形与零件之间的装配关系的一系列平面图线。模线分为理论模线和构造模线。 12、样板:样板是用于表示飞机零、组、部件真实形状的刚性图纸和量具。 13、样机:飞机的实物模型14、数字样机:在计算机中,使用数学模型描述的飞机模型,用以取代物理样机。 15、数字化协调方法 通过数字化工装设计、数字化制造和数字化测量系统来实现。利用数控加工、成形,制造出零件外形。在工装制造时,通过数字测量系统实时监控、测量工装或者产品上相关控制点的位置,建立产品零部件的基准坐标系,在此基础上,比较关键特征点的测量数据与数字样机中的数据,分析测量数据与理论数据的偏差,作为检验与调整的依据。

玻璃纤维增强塑料

玻璃纤维增强塑料(FRP)基础知识一.什么是复合材料 指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。 二.什么是玻璃纤维增强塑料(FiberReinforcedPlastics)指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。简称FRP 由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。 三.FRP的基本构成 基体(树脂)+增强材料+助剂+颜料+填料 1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等

2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;氧化铝纤维;碳化硅纤维;玄武岩纤维等。 3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。 4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。多数为色浆状态。 5.填料:重钙;轻钙;滑石粉(400目以上);水泥等。PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。PPR:聚丙烯。 PUR:泡沫。 PRE:聚苯醚。 尼龙:聚酰胺纤维。 FRP的发展过程:无法确定发明人。 四.FRP材料的特点: 1.优点: (1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度

可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。 (2)耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。正在取代碳钢;不锈钢;木材;有色金属等材料。 (3)电性能好:FRP是优良的绝缘材料,用于制造绝缘体,高频下仍能保持良好的介电性,微波透过性良好,广泛应用于雷达天线罩;微波通讯等行业。 (4)热性能好:FRP导电率低,室温下为1.25~1.67KJ只有金属的1/100~1/1000是优良的绝热材料。在瞬间超高热情况下,是理想的热保护和耐烧蚀材料。 (5)可设计性好:可根据需求充分选择材料来满足产品的性能和结构等要求。 (6)工艺性能优良:可以根据产品的形状来选择成型工艺且工艺简单可以一次成型。 2.缺点:

高中地理:太阳、月球与地球的关系

高中地理新课程标准教材 地理教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 地理教案 / 高中地理 编订:XX文讯教育机构

太阳、月球与地球的关系 教材简介:本教材主要用途为通过学习地理知识,可以让学生了解更广阔的见识,可以让学生了理解到做人的道理还有生存的意义,本教学设计资料适用于高中地理科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 教学目标 一、知识目标 1.了解太阳能量的来源,理解太阳是地球的主要能量源; 2.了解太阳活动(主要是黑子和耀斑)对地球的影响; 3.理解月相变化的规律。 二、能力目标 1.能通过阅读太阳黑子与降水量的相关图分析太阳黑子变化的周期及太阳黑子对降水的影响。 2.能通过展示的图片理解太阳活动增强时会使地球无线电短波通讯受干扰及产生磁暴现象的原因。 3.能通过计算机的演示分析月相产生的原因和规律。 三、德育目标

培养学生树立正确的人地观、科学的宇宙观,和热爱科学勇于探索的精神。 关于太阳辐射的教学建议 太阳辐射这部分内容属于常识性的介绍,重点在于让学生了解太阳对地球的重要性。除了让学生看教材的两张图,了解太阳常数的概念,以及由于纬度、地形和气象条件的不同,太阳辐射在地球上分布不均外,这里介绍一个小实验可以让学生更生动的了解太阳辐射。 实验是这样的:拿两个瓶子,一个涂成白色,一个涂成黑色,在瓶口各套一个小气球,气球没有充气。注意密封性要好。放在太阳下照射,观察结果。容易看到,白色瓶子上的气球没有太大变化,而黑色瓶子的气球开始膨胀。通过实验比较清楚地看到:黑色的瓶子更容易吸收太阳辐射。从而让学生明白太阳辐射的能量巨大,对地球的影响也是深远的。 关于月相的教学建议 由于本节主要是要讲太阳、地球、月球三者之间的关系,因此,和原教材相比,新的教材将月相这部分内容作为了必讲内容。关于月相,重点有三个: 一、要说明月相的成因。 月相的形成原因主要是太阳、地球、月球三者相对位置在发生改变。地球在绕太阳公转,月球绕地球公转,如果同时考虑两者地球和月球的运动,学生很容易被弄得摸不着头脑。其实,由于空间两点是决定一条直线,地球虽绕太阳一周,而地球和太阳总是能连成一条直线。

玻璃纤维增强塑料的基础知识(doc 9页)

玻璃纤维增强塑料的基础知识(doc 9页)

玻璃纤维增强塑料(FRP)基础知识一.什么是复合材料 指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。 二.什么是玻璃纤维增强塑料(Fiber Reinforced Plastics) 指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。简称FRP 由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。 三.FRP的基本构成 基体(树脂)+ 增强材料+助剂+颜料+填料 1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等

2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;氧化铝纤维;碳化硅纤维;玄武岩纤维等。 3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。 4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。多数为色浆状态。 5. 填料:重钙;轻钙;滑石粉(400目以上);水泥等。PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。PPR:聚丙烯。 PUR:泡沫。 PRE:聚苯醚。 尼龙:聚酰胺纤维。 FRP的发展过程:无法确定发明人。 四.FRP材料的特点: 1.优点: (1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。 (2)耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。正在取代碳钢;

相关主题
文本预览
相关文档 最新文档