当前位置:文档之家› 托勒密定理简单应用

托勒密定理简单应用

托勒密定理简单应用
托勒密定理简单应用

托勒密定理的简单应用

摘要:着重介绍了该定理在正弦的和角、差角、倍角和半角的推导过程中的应用,同时还给出了该定理在其他方面的一些简单的应用,以加深对托勒密定理的理解。

关键词:托勒密定理;应用;圆;不等式;根式方程

托勒密定理是中学数学中一条熟知的平面几何定理。我们知道,圆和直线的结合能组合成具有丰富性质的图形,托勒密定理描述的是圆内接四边形的性质,利用它可以解决与圆有关的几何题,也可以构造圆解决代数问题。

托勒密(ptolemy)定理

在圆内接四边形中两对角线乘积等于两组对边乘积之和。

托勒密定理的一些简单应用

下面我们以例题的形式展开:

1.如图1,p是正△abc外接圆的劣弧bc上任一点(不与b,c重合),求证:pa=pb+pc.

分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.

证明:借助托勒密定理论证,则有pa·bc=pb·ac+pc·ab,

因为ab=bc=ac.

所以pa=pb+pc.

2.如图2,已知a,b,c是△abc的三边,且a2=b(b+c),

求证:∠a=2∠b.

各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理、梅涅劳斯定理、圆幂定理和四点共圆)

托勒密定理 定理图 定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组 对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式, 托勒密定理实质上是关于共圆性的基本性质. 定理的提出 一般几何教科书中的托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的 书中摘出。 证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意四边形ABCD 中,作△ ABE使/ BAE= / CAD / ABE= / ACD 因为△ ABE ACD 所以BE/CD=AB/AC, 即BE-AC=AB CD (1) 而/ BAC= / DAE ,,/ ACB= / ADE 所以△ ABC AED 相似. BC/ED=AC/AD 即ED- AC=BC AD (2) ⑴+⑵,得 AC(BE+ED)=AB CD+AD BC 又因为BE+EI> BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即托勒密定理”) 所以命题得证 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、 BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a -b)(c - d) + (a - d)(b - c) = (a - c)(b - d),两边取模,运用三角不等式得。等 号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。 二、设ABCD是圆内接四边形。在弦BC上,圆周角/ BAC = / BDC,而在AB上, / ADB = / ACB。在AC 上取一点K,使得/ ABK = / CBD ; 因为/ ABK + / CBK = / ABC = / CBD + / ABD,

2013高中数学奥数培训资料之托勒密定理试题

《托勒密定理及其应用》 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC . 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴? =??=∴??∴∠=∠=?=??=∴??∠=∠∠=∠)(

二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.

四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 五、巧变形妙引线借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,

动能定理及其应用

动能定理及其应用 1.动能定理 (1)三种表述 ①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=12m v 2-12 m v 02或W 合=E k -E k0; ③图象表述:如图6所示,E k -l 图象中的斜率表示合外力. 图6 (2)适用范围 ①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功; ③力可以是各种性质的力,既可同时作用,也可分阶段作用. 2.解题的基本思路 (1)选取研究对象,明确它的运动过程; (2)分析受力情况和各力的做功情况; (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 例1 我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m /s 2 匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m ,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,取g =10 m/s 2. 图1 (1)求运动员在AB 段下滑时受到阻力F f 的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大. 答案 (1)144 N (2)12.5 m 解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax ① 由牛顿第二定律有mg H x -F f =ma ② 联立①②式,代入数据解得F f =144 N ③ (2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得 mgh +W =12m v C 2-12m v B 2 ④ 设运动员在C 点所受的支持力为F N ,由牛顿第二定律有 F N -mg =m v 2 C R ⑤ 由题意和牛顿第三定律知F N =6mg ⑥ 联立④⑤⑥式,代入数据解得R =12.5 m.

Simson定理

几何表示 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线, 则三垂足共线. □ 一阶描述 基本定义: 选定 A,B,C 三点 □ 取外接圆上任意一点 P □ 得到三个垂足 D,E,F □ 基本描述: : A,B,C 三点不共线 西姆松定理 它们的坐标分别为 这三点构成的三角形的外接圆心及半径分别为 P 点的坐标为 . 全部 (x 1,y 1),(x 2,y 2),(x 3,y 3).l 1=AB,l 2=BC,l 3=CA.(u,v),r.(a,b)D(a 1,b 1),E(a 2,b 2),F(a 3,b 3). 91

□ ● : P 在三角形 ABC 的外接圆上 □ ● : P 不同于 A,B,C □ ● : D 是 P 到 BC 的垂足 □ ● : E 是 P 到 CA 的垂足 □ l 1l 2l 3(l 21=(x 1-x 2)2+(y 1-y 2 )2 [l 22=(x 2-x 3)2+(y 2-y 3)2 [l 23=(x 3-x 1)2+(y 3-y 1 )2[l 1+l 2>l 3[l 2+l 3>l 1[l 3+l 1> l 2)92^uvr ((x 1-u)2 +(y 1-v)2=r 2 [ (x 2-u)2+(y 2-v)2=r 2[(x 3-u)2 +(y 3-v)2 =r 2 [(u-a)2+(v-b)2=r 2) 93\(a=x 1[b=y 1)[\(a=x 2[b=y 2)[\(a=x 3[b=y 3) 94(a 1-x 2)(b 1-y 3)-(a 1-x 3)(b 1-y 2)=0[(a 1-a)(x 2-x 3)+(b 2-b)(y 2-y 3)=0 95^

托勒密定理

托勒密定理Last revision on 21 December 2020

托 勒密定理 【定理内容】 圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆, 则有BD AC BC AD CD AB ?=?+?. [评]等价叙述:四边形的两组对边之积的和 等于两对角线 之积的充要条件是四顶点共圆。 【证法欣赏】 证明:如图,过C 作CP 交BD 于P ,使21∠=∠, ∵43∠=∠,∴ACD ?∽BCP ?, ∴ BP AD BC AC = ,即AD BC BP AC ?=? ① 又DCP ACB ∠=∠,65∠=∠,∴ACB ?∽DCP ?, ∴ DP AB DC AC = ,即DC AB DP AC ?=? ② ∴①+②得:DC AB AD BC DP BP AC ?+?=+?)( 即BD AC BC AD CD AB ?=?+? 【定理推广】 托勒密定理的推广: 在四边形ABCD 中,有BD AC BC AD CD AB ?≥?+?;当且仅当四边形ABCD 内接于圆时,等式成立。 [证] 在四边形ABCD 内取点E ,使CAD BAE ∠=∠,ACD ABE ∠=∠ 则ABE ?∽ACD ? ∴ AD AE CD BE AC AB ==, ∴BE AC CD AB ?=?; ∵ AD AE AC AB =,且EAD BAC ∠=∠ C D A B E B C D

∴ABC ?∽AED ? ∴ AD ED AC BC = ,即ED AC BC AD ?=?; ∴)(ED BE AC BC AD CD AB +?=?+? ∴BD AC BC AD CD AB ?≥?+? 当且仅当E 在BD 上时“=”成立, 即四点共圆时成立;、、、当且仅当D C B A 【定理推广】 托勒密定理的推论: 等腰梯形一条对角线的平方等于一腰的平方加上两底之积. 即:若四边形ABCD 是等腰梯形,且BC AD //, 则BC AD AB AC ?+=22. 分析:因为等腰梯形必内接于圆,符合托勒密定理的条件,其对角线相等,两腰相等,结论显然成立。 【定理应用】 【例1】 如图,P 是正ABC ?外接圆的劣弧BC 上任一点(不与B 、C 重合), 求证:PC PB PA +=. 证明:由托勒密定理得: ∵CA BC AB == ∴PC PB PA +=. [注]此例证法甚多,如“截长”、“补短”等,详情参看《初中 数学一 题多解欣赏》. 【定理应用】 【例2】 证明“勾股定理”: 已知:在ABC Rt ?中,?=∠90B , 求证:222BC AB AC +=。 证明:如图,以ABC Rt ?的斜边AC 为对角 B C

抽屉原理及其应用论文草案

目录 1.抽屉原理1 1.1抽屉原理的简单形式 1 1.2抽屉原理的加强形式 2 2.抽屉原理的应用4 2.1抽屉的构造4 2.1.1等分区间制造抽屉 4 2.1.2分割图形构造抽屉 5 2.1.3利用“对称性”构造抽屉 6 2.1.4用整数性质制造抽屉7 2.1.5利用染色制造抽屉8 2.1.6根据问题的需要制造抽屉9 2.2 抽屉原理在数学解题中的应用10 2.2.1解决代数问题10 2.2.2解决数论问题11 2.2.3解决几何问题12 2.2.4多次顺向运用抽屉原理12 2.2.5逆向运用抽屉原理13

2.3抽屉原理在生活中的应用13 2.3.1月黑穿袜子13 2.3.2手指纹和头发14 2.3.3电脑算命14 3.总结15 参考文献16 致谢17 1.抽屉原理 抽屉原理又叫做鸽巢原理,指的是一件简单明了的事实:为数众多的鸽子飞进为数不多的巢穴里,则至少有一个巢穴飞进了两只或者更多的鸽子,其实有关于抽屉原理(鸽巢原理)的阐释,粗略的说就是如果有许多物体放进不足够多的盒子内,那么至少有一个盒子被两个或多个盒子占据。我将在下面的论文当中给出更加精确的叙述。 1.1抽屉原理的简单形式 抽屉原理的最简单的形式如下. n 个物体放进n个盒子,那么至少有一个盒子包含定理1.1.1[1]如果1 两个或更多的物体. 证明:(用反证法)如果n个盒子中每个盒子至多放一个物体,则放入n个

盒子中的物体总数至多为n 个.这与假设有1n +个物体矛盾.从而定理得证. 注意,无论是抽屉原理还是它的证明,对于找出含有两个或更多物体的盒子都没有任何帮助.我们只是简单断言,如果人们检查每一个盒子,那么他们会发现有的盒子,里面放有多于一个的物体.抽屉原理只是保证这样的盒子存在.因此,无论何时抽屉原理被用来证明一个排列或某种现象的存在性,除了考察所有的可能性外,它都不能对任何构造排列或寻找现象的例证给出任何指示. 还要注意,抽屉原理的结论不能被推广到只存在n 个(或更少)物体的情形.这是应为我们可以把不同的物体放到n 个盒子的每一个中去.当然,在这些盒子中可以这样分发物体:一个盒子放入两个物体,但对任意分发这是没有保证的.抽屉原理只是断言,在n 个盒子中去论如何分发1n +个物体,总不能避免把两个物体放进同一个盒子中去. 还存在一些与抽屉原理相关的其它原理,有必要正式叙述如下. (1) 如果将n 个物体放入n 个盒子并且没有一个盒子是空的,那么每个盒子恰好包含一个物体. (2) 如果将n 个物体放入n 个盒子并且没有盒子被放入多于一个的物体,那么每个盒子里有一个物体. 现在把所阐明的这三个原理更抽象的表述为: 令X 和Y 是两个有限集,并令:f X Y →是一个从X 到Y 得函数. (1)如果X 的元素多于Y 的元素,那么f 就不是一对一的. (2)如果X 和Y 含有相同个数的元素,并且f 是映上的,那么f 就是一对一的. (3)如果X 和Y 含有相同个数的元素,并且f 是一对一的,那么f 就是映上的. 1.2抽屉原理的加强形式 下列定理包含定理1.1.1作为它的特殊情形. 定理1.2.1[1] 设12,,,n q q q ?为正整数.如果将121n q q q n ++?+-+个

山西省太原市初中数学奥林匹克中的几何问题 第3章 托勒密定理及应用(含答案)

第三章 托勒密定理及应用 【基础知识】 托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积. 证明 如图3-1,四边形ABCD 内接于O ,在BD 上取点P ,使P A B C A D =∠∠,则△ABP ∽△ACD , 于是 A 图3-1 AB BP AB CD AC BP AC CD =??=?. 又ABC △∽△APD ,有BC AD AC PD ?=?. 上述两乘积式相加,得 AB CD BC AD AC BP PD AC BD ?+?=+=?(). ① 注 此定理有多种证法,例如也可这样证:作AE BD ∥交o 于E ,连EB ,ED ,则知BDAE 为等腰梯形,有EB AD =,ED AB =,ABD BDE θ==∠∠,且180E B C E D C +=?∠∠,令BAC ?=∠,AC 与 BD 交于G ,则 111 sin sin()sin 222 ABCD S AC BD AGD AC BD AC BD EDC θ?=??=??+=??∠∠, 11 sin sin 22 EBCD EBC ECD S S S EB BC EBC ED DC EDC =+=??+??△△∠∠ ()()11 sin sin 22 EB BC ED DC EDC AD BC AB DC EDC =?+??=?+??∠∠. 易知 A B C D E B C S S =,从而有AB DC BC AD AC BD ?+?=?. 推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则 sin sin sin AC BAD AB CAD AD CAB ?=?+?∠∠∠. ② 事实上,由①式,应用正弦定理将BD ,DC ,BC 换掉即得②式. 推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin ADC BAD ABD BDC ?=?∠∠∠∠ sin sin ADB DBC +?∠∠. ③ 事实上,由①式,应用正弦定理将六条线段都换掉即得③式. 直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排列的四点,则AB CD BC AD AC BD ?+?=?. 注 由直线上的托勒密定理有如下推论:若A ,B ,C ,D 是一条直线上顺次四点,点P 是直线AD 外一点,则 sin sin sin sin sin sin APB CPD APD BPC APC BPD ?+?=?∠∠∠∠∠∠. 事实上,如图3-2,设点P 到直线AD 的距离为h ,

托勒密定理

托勒密定理 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 证明 一、(以下是推论的证明,托勒密定理是其中一种特殊情况) 在任意凸四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ACD,连接DE. 则△ABE∽△ACD 所以BE/CD=AB/AC,即BE·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, 所以△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 二.复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a? b)(c? d) + (a? d)(b? c) = (a? c)(b? d) ,两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。

1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、 托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD 广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m,n,则有: m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(A+C) 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD

(答案)奥赛经典-奥林匹克数学中的几何问题---第六章西姆松定理及应用答

第六章西姆松定理及应用 习题A 1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有() sin sin sin B C B C PL PM PN ∠+∠∠∠= + ,即 sin sin sin mn A ln B lm C ?∠=?∠+?∠再应用正弦定理,得mn a ln b lm c ?=?+?. 2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=?,90BFP CFP ∠=∠=?,90CEP AEP ∠=∠=?,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线. 又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线. 3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的 内心.由12CAI BAC ∠=∠,而()11 909022 CKI CIK B C BAC ∠=?-∠=?-∠+∠=∠,从而A ,I ,C , K 四点共圆. 又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线. 4.设正ABC △外接圆弧?AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为 D , E , F ,正三角形边长为a .由面积等式可得a b c h h h +-= .此式两边平方,得 ()2222324 a b c a b b c a c h h h h h h h h h a +++--=. 由 sin sin b a h h PAC PBD PA PB =∠=∠=,有a b h PA h PB ?=?. 同理,a c h PA h PC ?=?,故a b h PA h PB k PC ?=?=?. 又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠, 得PFD PAC △△≌,故c h PA a DF = ?,同理,a h PB a DE =?,b h PC a EF =?,即 a c b a c b h h h h h h k EF DE EF ???===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ? ---=--=?, 故222234 a b c h h h a ++=. 5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A e 与B e 另交于D ,A e 与C e 另交于E ,B e 与C e 另交于F . 注意到A e 与B e 中,公共弦MD ⊥连心线AB ;A e 与C e 中,公共弦ME ⊥连心线AC ;B e 与C e 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线. 习题B 1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z 三点共线,故U ,V ,W 三点共线.

梅涅劳斯定理及应用

梅涅劳斯定理 梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。 展开 定理的证明 证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时, (AD/DB)*(BE/EC )*(CF/FA)=1 逆定理证明: 证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 证明一 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG 三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1 证明二 过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1 证明三 连结BF。 (AD:DB)·(BE:EC)·(CF:FA) =(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF) =(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF) =1 证明四 过三顶点作直线DEF的垂线,AA‘,BB',CC' 有AD:DB=AA’:BB' 另外两个类似,三式相乘得1 得证。如百科名片中图。 充分性证明: △ABC中,BC,CA,AB上的分点分别为D,E,F。 连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1

动能定理及其应用专题

《动能定理及其应用》专题复习一.基础知识归纳: (一)动能: 1.定义:物体由于______而具有的能. 2.表达式:E k=_________. 3.物理意义:动能是状态量,是_____.(填“矢量”或“标量”) 4.单位:动能的单位是_____. (二)动能定理: 1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中的___________. 2.表达式:W=_____________. 3.物理意义:_____________的功是物体动能变化的量度. 4.适用条件: (1)动能定理既适用于直线运动,也适用于______________. (2)既适用于恒力做功,也适用于_________. (3)力可以是各种性质的力,既可以同时作用,也可以_______________. 二.分类例析: (一)动能定理及其应用: 1.若过程有多个分过程,既可以分段考虑,也可以整个过程考虑.但求功时,必须据不同的情况分别对待求出总功,把各力的功连同正负号一同代入公式. 2.应用动能定理解题的基本思路: (1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W合=E k2-E k1及其他必要的解题方程,进行求解. 例1.小孩玩冰壶游戏,如图所示,将静止于O点的冰壶(视为质点)沿直线OB用水平恒力推到A点放手,此后冰壶沿直线滑行,最后停在B点.已知冰面与冰壶的动摩擦因数为μ,冰壶质量为m,OA=x,AB=L.重力加速度为g.求: (1)冰壶在A点的速率v A;(2)冰壶从O点运动到A点的过程中受到小孩施加的水平推力F. 吴涂兵

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

第三讲 托勒密定理及其应用

第三讲 托勒密定理及其应用 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗. 若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形 借助托勒密定理 例2 证明“勾股定理”: 在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又 相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴?=??=∴??∴∠=∠=?= ??=∴??∠=∠∠=∠)(

证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有 AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形, ∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理, 有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1. 求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,

托勒密定理、婆氏定理——圆中基本模型专题(二)(1)

托勒密定理、婆氏定理——圆中基本模型专题(二) 【教学重难点】 1.圆中托勒密定理;对角互补模型:旋转视角、托勒密视角 2.婆罗摩笈多定理 3.例题探究 【模块一圆中托勒密定理】 古希腊最伟大的天文学家,数学家、天文学家伊巴谷(约公元前190年-公元前125年),最早提出了,圆内接四边形两对对边乘积的和等于两条对角线的乘积,后称托勒密定理.古罗马著名的天文学家、光学家克罗狄斯·托勒密(约90年-168年),从伊巴谷的书中将其摘出并完善.托勒密定理实质上是关于共圆性的基本性质,故从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式. 1.基本图形与结论:如图1,当A、B、C、D四点共圆,则AC×BD=AB×DC+AD×BC. 2.简单证明: 在线段BD上取一点E,连AE,使∠AEB=∠ADC, 易得△AEB∽△ADC, AC CD =??=?① AC BE AB CD AB BE 旋转一拖二得△ABC∽△AED, AC BC =??=?② AC DE BC AD AD DE 由①+②得:AC×(BE+DE)=AC×BD=AB×DC+AD×BC. 3.模型识别: 具体情境中出现四点共圆,且四点构成的四边形边长、对角线长信 息较多,可以尝试用托勒密定理进行计算. ※4.广义托勒密定理:对于任意凸四边形ABCD,则有AC×BD ≤AB×DC+AD×BC.证明从略···【模块二对角互补模型→旋转视角】 1.基本图形与模型识别:如图2,对角互补且一组邻边相等 ...........的四边形, 可通过旋转变换将四边形转化为等腰三角形(等腰思旋转). 2.四类常见对角互补模型: ①模型一:等边60°对120°型 条件:如图3,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120° 结论:(1)CA平分∠BCD;(2)BC+CD=AC. 证明:证明:如图,将△ACD绕点A逆时针旋转60°至△AMB,使AD, AB重合, 则△ACD≌△AMB, ∴∠ADC=∠ABM,AC=AM,CD=BM,∠ACD=∠M, ∵∠BAD=60°,∠BCD=120°, ∴∠ABC+∠ADC=180°,

平面几何-五大定理及其证明

平面几何定理及其证明 梅涅劳斯定理 1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均 证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1) AD FA 因为 CG // AB ,所以 EC ( 2) DB BE C F ,即得 A D C F EC FA DB EC FA 2.梅涅劳斯定理的逆定理及其证明 定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若 二、 塞瓦定理 3 .塞瓦定理及其证明 定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC 不是ABC 的顶点,则有 AD BE CF 1 DB EC 由(1)宁(2) DB 可得兀 AD BE CF DB EC FA 1 ,那么,D E 、F 三点共线. 证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有 AD / BE CF 丽 EC FA 因为AD Bl CF DB EC FA 1,所以有誥 段AB 上,所以点D 与D 重合.即得D 鴿.由于点D D 都在线 E 、F 三点共线. 证明: 运用面积比可得 AD DB S ADP S BDP S ADC S BDC 根据 等 比定理有 S ADP S ADC S ADC S ADP S APC S S BDP BDC S BDC S BDP S

抽屉原理及其简单应用

抽屉原理及其简单应用 一、知识要点 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。原理2:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至少要有k个元素。其中k=m/n(当n能整除m时)或k=〔m/n〕+1(当n不能整除m时),这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。二、应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 三、应用抽屉原理解题例举: 1.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?(教科书P73 T2) 解答:这道题物体个数和抽屉都比较明显。成绩41环看作个数,5镖看作抽屉,列式为:41÷5=8……1 8+1=9 2.有9支球队进行比赛,已经赛了10场,那么总有一支球队至少赛了几场? 解答:有些题目物体的个数没有直接告诉我们。根据问题至少赛了几场,那我们要知道已经赛过的总的场次。根据已经赛了10场,每场2支球队,总场次应该是20次。这就是物体的个数。9支球队可以看作抽屉。根据今天所教的知识(原理2)我们知道20÷9=2……2,2+1=3 3.有红、黄两种颜色在下面的长方形格子中随意涂色,每个格子涂一种颜色。青青发现无论怎样涂,至少有两列涂法完全相同。请你先试一试,再说明理由。(作业本P29 T4) 解答:根据至少有两列涂法完全相同。我们要知道总的列数。这道题已经知道物体的个数是5列。但抽屉的个数却掩藏起来,我们需要根据排列知识找出抽屉的个数。已知颜色有2种,在一列的排列组合中有这么4种情况。(红红、红黄、黄黄、黄红)所以可以做成4个抽屉。用算式5÷4=1……1,1+1=2就说明问题。 4.任意写出5个非零的自然数,我能找到两个数,让这两个数的差是4的倍数。(作业本P29 T5) 解答:这题已经告诉我们物体的个数是5。但什么做为抽屉?要做几个抽屉却需要我们去构建。根据条件4的倍数,我们知道一个数除以4没有余数那就是4的倍数,在这些数中除以4的过程中会出现这四种情况(整除、余数是1、2、3)那就可以根据这四种情况做成四个

第6章 西姆松定理及应用(含答案)

第六章西姆松定理及应用 【基础知识】 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线). 证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有 β α γ βL M A P B N C 图6-1 PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠. 又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线. 注 此定理有许多证法.例如,如下证法: 如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则 PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=?,cos LC PC β=?,cos CM PC γ=?, cos MA PA α=?,cos AN PA β=?,cos NB PB γ=?.对ABC △,有 cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ ?????=??=???.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线. 西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略). 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N 及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上. 【典型例题与基本方法】 1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键 例1如图6-2,过正ABC △外接圆的AC 上点P 作PD ⊥直线AB 于D ,作P E A C ⊥于E ,作P F B C ⊥于F .求证: 111 PF PD PE += .

四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)

平面几何中的四个重要定理 梅涅劳斯(Menelaus ) 定理(梅氏线) △ ABC 的三边BC 、CA 、AB 或其延长线上有点 P 、Q 、R ,贝U P 、Q 、R 共线的充 塞瓦(Ceva )定理(塞瓦点) △ ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,贝U AP 、BQ 、CR 共点的充要条件 西姆松(Simson )定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 要条件是 BP CQ AR 1 PC QA RB 是BP 殂塑1。 PC QA RB P 圆 。

-可编辑- 圆上。 例题: 1、设AD 是厶ABC 的边BC 上的中线,直线CF 交AD 于F 。求 、 AE 2AF 证:—— ED FB AE DC BF 【分析】CEF 截厶ABD T -------------------------- 1 (梅氏定理) ED CB FA 【评注】也可以添加辅助线证明:过 A 、B 、D 之一作CF 的平 行线。 【分析】连结并延长 AG 交BC 于M ,贝U M 为BC 的中点。 BE CF GM (DB DC) = GM 2MD EA FA = AG MD 2GM MD AB 、AC 于 E 、F ,交 CB 于 D 。 求证: BE CF 1。 EA FA DEG 截厶 ABM T DGF 截厶 ACM T BE AG MD EA GM DB CF AG MD FA GM DC 1 (梅氏定理) 1 (梅氏定理) A 2、过△ ABC 的重心G 的直线分别交

5、已知△ ABC 中,/ B=2 / C 。求证: 【评注】梅氏定理 【评注】梅氏定理 CG 相交于一点。 【分析】 【评注】塞瓦定理 3、D 、E 、F 分别在△ ABC 的 BC 、 匹圧些,AD 、BE 、 DC FB EA 【分析】 4、以△ ABC 各边为底边向外作相似的等腰厶 BCE 、△ CAF 、△ ABG 。求证: AE 、BF 、

相关主题
文本预览
相关文档 最新文档