当前位置:文档之家› 2301D调速器文说明书

2301D调速器文说明书

2301D调速器文说明书
2301D调速器文说明书

Installation and Operation Manual

2301D Digital Load Sharing and Speed Control for Engines

Ordinary Locations—8273-101 Hazardous Locations—8273-135, -1000

Manual 26065 (Revision H)

DEFINITIONS

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid

possible injury or death.

?

DANGER

—Indicates a hazardous situation which, if not avoided, will result in death

or serious injury.

?WARNING—Indicates a hazardous situation which, if not avoided, could result in

death or serious injury.

?CAUTION—Indicates a hazardous situation which, if not avoided, could result in

minor or moderate injury.

?NOTICE—Indicates a hazard that could result in property damage only (including

damage to the control).

?IMPORTANT—Designates an operating tip or maintenance suggestion.

The engine, turbine, or other type of prime mover should be equipped with an

overspeed shutdown device to protect against runaway or damage to the prime

mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover

control system. An overtemperature or overpressure shutdown device may also

be needed for safety, as appropriate.

Read this entire manual and all other publications pertaining to the work to be performed before

installing, operating, or servicing this equipment. Practice all plant and safety instructions and

precautions. Failure to follow instructions can cause personal injury and/or property damage.

This publication may have been revised or updated since this copy was produced. To verify that

you have the latest revision, be sure to check the Woodward website:

https://www.doczj.com/doc/367123454.html,/pubs/current.pdf

The revision level is shown at the bottom of the front cover after the publication number. The latest

version of most publications is available at:

https://www.doczj.com/doc/367123454.html,/publications

If your publication is not there, please contact your customer service representative to get the

latest copy.

Any unauthorized modifications to or use of this equipment outside its specified mechanical,

electrical, or other operating limits may cause personal injury and/or property damage, including

damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or

"negligence" within the meaning of the product warranty thereby excluding warranty coverage

for any resulting damage, and (ii) invalidate product certifications or listings.

To prevent damage to a control system that uses an alternator or battery-charging

device, make sure the charging device is turned off before disconnecting the battery

from the system.

To prevent damage to electronic components caused by improper handling, read

and observe the precautions in Woodward manual 82715, Guide for Handling and

Protection of Electronic Controls, Printed Circuit Boards, and Modules. Revisions—Text changes are indicated by a black line alongside the text.

Woodward Governor Company reserves the right to update any portion of this publication at any time. Information

provided by Woodward Governor Company is believed to be correct and reliable. However, no responsibility is assumed

by Woodward Governor Company unless otherwise expressly undertaken.

? Woodward 2000

All Rights Reserved

Manual 26065 2301D Digital Control

Woodward i Contents

R EGULATORY C OMPLIANCE ....................................................................... IV E LECTROSTATIC D ISCHARGE A WARENESS ................................................. VI C HAPTER 1. G ENERAL I NFORMATION .. (1)

Description (1)

Applications (2)

Control Options (2)

References ............................................................................................................. 3 C HAPTER 2. I NSTALLATION .. (9)

Introduction (9)

Unpacking (9)

Power Requirements (9)

Location Considerations (9)

Electrical Connections (10)

Shields and Grounding (10)

Setting Speed Range (11)

Potential Transformer Connections (11)

Current Transformer Connections (11)

Load Sharing Lines (12)

Power Supply (12)

Discrete Inputs (Terminals 28–38) (13)

Close to Run or Minimum Fuel (Terminal 31) (13)

Failed Speed Signal Override (Terminal 32) (14)

Rated Speed (Terminal 33) (14)

CB Aux/Droop Contact (Terminal 34) (14)

Raise Speed/Load Contact (Terminal 35) (15)

Lower Speed/Load Contact (Terminal 36) (16)

Load Generator (Terminal 37) (16)

Base Load (Terminal 38) (16)

Actuator Output (16)

Speed and Phase Matching (SPM) Synchronizer (17)

(Analog Input #1; Terminals 19-20) (17)

Remote Speed/Load Set Point/Auxiliary Input (17)

(Analog Input #2; Terminals 22-23) (17)

Speed Sensor (17)

Relay Driver Outputs (Terminals 41–44) (18)

Analog Output #1 (Terminals 16-17) (18)

RS-232 Communication Port (18)

Installation Check-out Procedure ......................................................................... 19 C HAPTER 3. E NTERING C ONTROL S ET P OINTS . (20)

Introduction (20)

Watch Window PC Interface (20)

Configure Menu Descriptions (22)

Service Menu Descriptions (24)

I** ANALOG INPUTS SETTINGS ** (37)

Adjust For Stable Operation (43)

Speed Setting Adjustment (43)

Dynamic Adjustment (44)

Actuator Compensation Adjustment (44)

Low Idle Speed Adjustment (44)

2301D Digital Control Manual 26065

ii Woodward

Contents

Ramp Time Adjustment (44)

Raise/Lower Time Adjustment (45)

Start Fuel Limit Adjustment (45)

Speed Sensor Check (45)

Current Transformer (CT) Phasing Check (45)

Phase Correction Procedure (46)

Load Calibration Adjustment (49)

Droop Adjustment ................................................................................................. 49 C HAPTER 4. D ESCRIPTION OF O PERATION .. (50)

Introduction (50)

Speed Control (50)

Control Dynamics (51)

Minimum Fuel Function (52)

Maximum Fuel Function (53)

Start Limit Function (53)

Speed/Load Reference and Ramps (54)

Speed Reference and Ramp Functions (54)

Speed Bias and Synchronizer Summing (55)

Load Reference and Ramp Functions (56)

Droop Function ..................................................................................................... 58 C HAPTER 5. T ROUBLESHOOTING (64)

Introduction (64)

Troubleshooting Procedure (64)

Control Start-up (64)

Control Test and Calibration ................................................................................. 65 C HAPTER 6. S ERVICE O PTIONS (72)

Product Service Options (72)

Woodward Factory Servicing Options (73)

Returning Equipment for Repair (74)

Replacement Parts (74)

Engineering Services (75)

How to Contact Woodward (75)

Technical Assistance ............................................................................................ 76 A PPENDIX . S ERVICE /C ONFIGURE C HART .................................................... 77 2301D C ONTROL S PECIFICATIONS . (82)

D ECLARATIONS .........................................................................................

83

Manual 26065 2301D Digital Control

Woodward iii Illustrations and Tables

Figure 1-1a. 2301D Outline Drawing (Ordinary Locations) (4)

Figure 1-1b. 2301D Outline Drawing (Hazardous Locations) (5)

Figure 1-2. 2301D Plant Wiring Diagram (sheet 1) (6)

Figure 1-2. 2301D Plant Wiring Diagram (sheet 2) (7)

Figure 1-2. 2301D Plant Wiring Diagram (notes) (8)

Figure 2-1. Installation of Wiring into Terminal (11)

Figure 2-2. Droop Contact and Circuit Breaker Auxiliary Contact (15)

Figure 3-1. Control Gain as a Function of Speed Error (25)

Figure 3-2. Speed Filter (26)

Figure 3-3. Typical Transient Response Curves (27)

Figure 3-4. Non-linear Valve Power Curve (30)

Figure 3-5. Sample Engine Plot (31)

Figure 3-6. Linearized Gain Plot (31)

Figure 3-7. Start Limit Function (34)

Figure 3-8. Temporary Wiring for Transformer Phase Correction (47)

Figure 3-9. Droop Adjustment (49)

Figure 4-1. Speed Control System (51)

Figure 4-2. Start Limit Function (53)

Figure 4-3. Remote Speed Reference (55)

Figure 4-4. Paralleling System (59)

Figure 4-5. Droop Mode (60)

Figure 4-6. Isochronous Mode (61)

Figure 4-7. Droop/Isochronous Load Sharing (62)

Figure 4-8. Isochronous Load Sharing (62)

Table 4-1. Description of Discrete Inputs While in Load Control (58)

2301D Digital Control Manual 26065

iv Woodward

Regulatory Compliance

European Compliance for CE Mark:

EMC Directive Declared to 89/336/EEC COUNCIL DIRECTIVE of

03 May 1989 on the approximation of the laws of the

member states relating to electromagnetic

compatibility.

Low Voltage Directive Declared to the 73/23/EEC COUNCIL DIRECTIVE of

19 February 1973 on the harmonization of the laws

of the Member States relating to electrical

equipment designed for use within certain voltage

limits.

North American Compliance:

CSA Certified for Class I, Division 2, Groups A, B, C, D,

T4 Hazardous Locations and non-hazardous

locations at 70 °C ambient . Certified for United

States and Canada.

Certificate 1150575

UL Listed for Ordinary Locations for use in the United

States and Canada.

UL File E97763

NOTE: Wiring must be in accordance with applicable electric codes with the

authority having jurisdiction.

These listings are limited only to those units bearing the CSA or UL agency

identification and the Hazardous or Ordinary Locations markings.

Marine Compliance:

Bureau Veritas BV Rules Part C, June 2000

Det Norske Veritas Standard for Certification, No. 2.4.2001

Germanischer Lloyd Additional Rules and Guidelines, Part 1,

2001

Lloyd’s Register of Shipping Type Approval System, Test Specification

Number 1, 2002

Registro Italiano Navale RINA Rules 2001 – Part C

NOTE: These certifications apply to specific models only.

The 2301D is suitable for use in Class I, Division 2, Groups A, B, C, and D per

CSA for Canada and US or non-hazardous locations only. These listings are

limited only to those units bearing the CSA agency identification and hazardous location markings.

The 2301D is suitable for use in Ordinary Locations per UL and CSA for Canada and US or non-hazardous locations only. These listings are limited only to those units bearing the UL and CSA agency identification and ordinary location

markings.

Wiring must be in accordance with North American Class I, Division 2 wiring

methods as applicable, and in accordance with the authority having jurisdiction.

Connector J1 must not be used in hazardous locations.

The 2301D must be installed in a suitable enclosure. The final combination shall be approved by a local authority having jurisdiction.

Marine certified models available.

Manual 26065 2301D Digital Control

Woodward v

EXPLOSION HAZARD—Do not remove covers or connect/disconnect

electrical connectors unless power has been switched off or the area is known

to be non-hazardous.

Substitution of components may impair suitability for Class I, Division 2.

RISQUE D’EXPLOSION—Ne pas enlever les couvercles, ni

raccorder / débrancher les prises électriques, sans vous en

assurez auparavant que le système a bien été mis hors tension;

ou que vous vous situez bien dans une zone non explosive.

La substitution de composants peut rendre ce matériel

inacceptable pour les emplacements de Classe I, Division 2.

2301D Digital Control Manual 26065

vi Woodward

Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special

precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

1. Before doing maintenance on the electronic control, discharge the static

electricity on your body to ground by touching and holding a grounded metal

object (pipes, cabinets, equipment, etc.).

2. Avoid the build-up of static electricity on your body by not wearing clothing

made of synthetic materials. Wear cotton or cotton-blend materials as much

as possible because these do not store static electric charges as much as

synthetics.

3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam

cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or

folders, plastic bottles, and plastic ash trays) away from the control, the

modules, and the work area as much as possible.

4. Do not remove the printed circuit board (PCB) from the control cabinet

unless absolutely necessary. If you must remove the PCB from the control

cabinet, follow these precautions:

? Do not touch any part of the PCB except the edges.

? Do not touch the electrical conductors, the connectors, or the

components with conductive devices or with your hands.

? When replacing a PCB, keep the new PCB in the plastic antistatic

protective bag it comes in until you are ready to install it. Immediately

after removing the old PCB from the control cabinet, place it in the

antistatic protective bag.

To prevent damage to electronic components caused by improper

handling, read and observe the precautions in Woodward manual

82715, Guide for Handling and Protection of Electronic Controls,

Printed Circuit Boards, and Modules .

Manual 26065 2301D Digital Control

Woodward 1 Chapter 1.

General Information

Description

The Woodward 2301D controls load sharing and speed of generators driven by diesel or gaseous engines. (These power sources are referred to as “prime

movers” throughout this manual.) The 2301D is a microprocessor-based digital control designed to include the functions of and be compatible with 2301A load sharing controls. The increased flexibility of software allows the 2301D to include control functions that required additional equipment in previous versions of

2301A control systems. The 2301D therefore is suitable for upgrading existing

control systems or increased functionality in new installations.

The control is housed in a sheet-metal chassis and consists of a single printed

circuit board. The 2301D is set up and configured through an external computer connected at the 9-pin connector at the front of the control. The configuration

software is supplied with each control.

The 2301D provides control in either isochronous, droop, or base load. The

2301D will allow for soft load transfer when being added to or removed from a

bus.

The isochronous mode is used for constant prime mover speed with:

? Single prime mover operation or

? Two or more prime movers controlled by Woodward load sharing control

systems on an isolated bus

The droop mode is used for speed control as a function of load with:

? Single prime mover operation on an infinite bus or

? Parallel operation of two or more prime movers

The base load mode provides constant load level operation against a bus with

the load controlled by the 2301D.

? The load setting is set by a fixed reference,

? or an external input analog input,

? or external contact control of the reference.

The 2301D Control Hardware includes:

? 1 Load Sensor

? 1 Actuator Driver

? 1 MPU Speed Sensor

? 1 Configurable Analog Output

? 2 Configurable Analog Inputs

? 8 Discrete (Switch) Inputs

? 4 Discrete (Relay Driver) Outputs

The following is an example of the typical hardware needed for a 2301D system controlling a single prime mover and generator:

? A 2301D electronic control

? An external 18 to 40 Vdc power source

? A speed-sensing device

? A proportional actuator to position the fuel-metering device and

? Current and potential transformers for measuring the load carried by the

generator

2301D Digital Control Manual 26065

2 Woodward

The engine and generator synchronous speed (50 or 60 Hz Generator

Frequency) needs to be within 300 to 3600 rpm. The frequency from the

magnetic pickup must be within the range of 100 to 20 000 Hz at rated speed.

The 2301D speed range needs to be configured using an external computer

during installation.

These 2301D controls operate with an input of 18 to 40 Vdc.

Applications

Because of the configuration software available in the 2301D hardware,

application variations can now be selected using an external computer. Changing the application to accommodate engine speed range, gear teeth, and selection of forward or reverse acting actuator is a matter of software setup rather than

changing hardware. See Chapter 3 to enter control set points.

The speed range is factory set for 900 rpm, 450 Hz. Using the wrong

speed configuration could cause an overspeed with resulting damage to equipment or personal injury or death.

The 2301D Control can be configured for forward- or reverse-acting applications. In reverse-acting systems, the actuator calls for more fuel when the actuator

voltage decreases. Complete loss of voltage to the actuator will drive the actuator to full fuel. This allows a backup mechanical ballhead governor to take control rather than shut down the prime mover as would a direct-acting system.

External wiring connections for reverse-acting controls are identical to those for direct-acting controls.

Control Options

Here is a brief summary of programmable options in addition to speed range and actuator type:

? Actuator current range 0–20 mA, 4–20 mA, 0–200 mA.

? Speed trim with external raise and lower switches. Tunable rates.

?

External setting of analog speed reference input or an external analog base

load reference.

? Multiple dynamics options—

single dynamics setting

selection of 2 sets of dynamics switched with Circuit Breaker Aux input 5 slope gain settings

error window gain ratio

? Start fuel limiter

? Analog output

? Discrete outputs

Woodward application engineers are always available to assist you in selection of the correct control for your system, or to answer questions concerning control installation, operation, or calibration. Contact any Woodward office.

Manual 26065 2301D Digital Control

References

The following publications contain additional product or installation information on Load Sharing and Speed Controls, and related components. They can be

ordered from any Woodward office.

Manual Title

25070 Electric Governor Installation Guide

25195 Governing Fundamentals

82384 SPM-A Synchronizer

82510 Magnetic Pickups and Proximity Switches for Electric Governors

82715 Guide for Handling and Protection of Electronic Controls, Printed

Circuit Boards, and Modules

26007 Woodward Watch Window Software Getting Started

Product

Spec Title

03204 2301D Digital 2301 Control

82383 SPM-A Synchronizer

82516 EG3P/3PC Actuator

82575 EGB1P/2P Governor/Actuator

Woodward 3

Figure 1-1a. 2301D Outline Drawing (Ordinary Locations)

4 Woodward

Figure 1-1b. 2301D Outline Drawing (Hazardous Locations) Woodward 5

Figure 1-2. 2301D Plant Wiring Diagram (sheet 1)

6 Woodward

Figure 1-2. 2301D Plant Wiring Diagram (sheet 2)

Woodward 7

Figure 1-2. 2301D Plant Wiring Diagram (notes)

8 Woodward

Manual 26065 2301D Digital Control

Woodward 9 Chapter 2.

Installation

Introduction

This chapter contains general installation instructions for the 2301D control.

Power requirements, environmental precautions, and location considerations are included to determine the best location for the control. Additional information

includes unpacking instructions, electrical connections, and an installation check-out procedure.

Unpacking

Before handling the control, read page iv, “Electrostatic Discharge Awareness”. Be careful when unpacking the electronic control. Check the control for signs of damage such as bent or dented panels, scratches, and loose or broken parts. If any damage is found, immediately notify the shipper.

Power Requirements

The 2301D control requires a voltage source of 18 to 40 Vdc, with a current

capacity of at least 900 mA for operating power. If a battery is used for operating power, an alternator or other battery charging device is necessary to maintain a stable supply voltage.

To prevent damage to the control, make sure that the alternator or

other battery-charging device is turned off or disconnected before

disconnecting the battery from the control.

Location Considerations

This product is intended for installation in a “closed electrical operating

area” or in an enclosed industrial control cabinet. Consider these

requirements when selecting the mounting location:

? Adequate ventilation for cooling

? Space for servicing and repair

? Protection from direct exposure to water or to a condensation-prone

environment

? Protection from high-voltage or high-current devices, or devices which

produce electromagnetic interference

? Avoidance of vibration

? Selection of a location that will provide an operating temperature range of

–40 to +70 °C (–40 to +158 °F)

? The control must NOT be mounted on the engine.

2301D Digital Control Manual 26065

10 Woodward

Electrical Connections

All inputs and outputs are made through screwless spring-actuated terminal

blocks. For EMI reasons, it is recommend that all low-current wires be separated from all high-current wire.

The spring clamp can be actuated by using a standard 2.5 mm or 3/32 inch flat bladed screwdriver. The terminal blocks accept wires from 0.08–4 mm2 (27–12 AWG). Two 18 AWG or three 20 AWG wires can be easily installed in each

terminal. Wires for the fixed mounted power terminals should be stripped 5–6

mm (0.22 inch) long.

Do not tin (solder) the wires that terminate at the terminal blocks. The

spring-loaded terminal blocks are designed to flatten stranded wire,

and if those strands are tinned together, the connection loses

surface area and is degraded.

Shields and Grounding

An individual shield termination is provided at the terminal block for each of the signals requiring shielding. All of these inputs should be wired using shielded,

twisted-pair wiring. The exposed wire length beyond the shield should be limited to one 25 mm (1 inch). Relay outputs, contact inputs, and power supply wiring do not normally require shielding, but can be shielded if desired.

The 2301D is designed for shield termination to earth ground at the control. If

intervening terminal blocks are used in routing a signal, the shield should be

continued through the terminal block. If shield grounding is desired at the

terminal block, it should be ac coupled to earth. All other shield terminations

except at the control should be ac coupled to earth through a capacitor. A 1000 pF, 500 V capacitor is sufficient. The intent is to provide a low impedance path to earth for the shield at frequencies of 150 kHz and up. Multiple direct connections of a shield to earth risk high levels of current to flow within the shield (exception, see note below on cabinet installations).

Shields can be grounded at both ends (2301D and load) if the cable length is

sufficiently short (i.e. within a cabinet) to prevent ground loop current in the

shield.

Cabinet Installations: If the 2301D is installed in a cabinet, shielded

I/O can be terminated directly to the cabinet (earth ground) at the

entry to the cabinet, as well as at the control.

For EMC reasons, it is recommend that all low-current wires be

separated from all high-current wires. Input Power ground terminal

should also be wired to earth ground.

Manual 26065 2301D Digital Control

Woodward 11

Figure 2-1. Installation of Wiring into Terminal

Setting Speed Range

The Microprocessor inside the 2301D calculates the speed range to be used by entering the engine/generator synchronous speed and number of gear teeth.

This configured speed sets the hardware-to-software scaling. The rated speed

setting is set in service as the speed reference selected when the Rated switch is closed..

The number of gear teeth is used by the control to convert pulses

from the speed sensing device to engine rpm. To prevent possible serious injury from an overspeeding engine, make sure the control is

properly programmed to convert the gear-tooth count into engine

rpm. Improper conversion could cause engine overspeed.

The speed range is factory set for 450 Hz, 900 rpm (30 teeth). Refer to

Chapter 3 to change speed range and prevent possible overspeed.

Using the wrong speed range could cause an overspeed with

resulting damage to equipment or personal injury or death.

Potential Transformer Connections

Connect the potential transformer secondary leads to the following terminals:

Phase A to terminal 1

Phase B to terminal 2

Phase C to terminal 3

The potential transformer secondary line-to-line voltage must produce 90 to 120 Vac or 200 to 240 Vac. Refer to the plant wiring diagram, Figure 1-2.

Current Transformer Connections

The standard method of connecting the current transformers is shown in the

plant wiring diagram, Figure 1-2. An alternate method is the open delta

connection shown in the insert in the plant wiring diagram.

2301D Digital Control Manual 26065

12 Woodward

Load Sharing Lines

The Load Sharing Lines provide an analog communication path between

compatible controls. The 2301D provides an internal relay for connecting the

Load Sharing Signal to the internal circuitry at the appropriate times. When the internal relay is closed, a green LED will illuminate between terminals 9 and 10. Because the load-sharing-line relay is contained in the control, no relay is

required between the control and the load-sharing-line bus. Use shielded cable and connect the load-sharing lines directly to terminals 10(+) and 11(–). Connect the shield to terminal 12. When all controls in the system are of the 2301D or

2301A types, the shields may be connected continuously between controls.

When load sharing with different controls, do not connect the shields at the point where connections are made to the load-sharing-line bus. The droop contact for selecting droop or isochronous operation is wired in series with the circuit-

breaker auxiliary contact between terminal 34 and terminal 28 (see CB

Aux/Droop contact).

When running a single unit on an infinite bus with an external load control device, terminals 34 and 37 must be connected to terminal 28 to connect the Load

Matching Circuit to the load-sharing lines. The load-sharing lines must be wired to the external load control device. The circuit-breaker auxiliary contact will then be connected to this device and not to the 2301D.

Power Supply

Run the power leads directly from the power source to the control, connecting the negative lead to terminal 46, and the positive lead to terminal 45.

When power is applied, the 2301D begins performing internal memory tests to

‘boot-up’ the processor, which takes approximately 30 seconds to complete. The CPU Status LED between terminals 27 and 28 remains on during this boot-up. The control will remain in I/O lock and will not control the prime mover until the

boot-up is complete. For systems requiring fast start functions, it will be

necessary to continuously power the 2301D.

DO NOT attempt to start the prime mover while the CPU Status LED is ON.

DO NOT apply power to the control at this time. Applying power before a control is completely connected may damage the control.

The 18–40 Vdc input power must be supplied from a power

supply/battery charger certified to IEC standard with SELV (Safety

Extra Low Voltage) classified output. The installer should properly

size wiring and fusing for the input power and PT/CT circuits.

水轮机的选型设计说明

水轮机的选型设计 水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。 水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一:水轮机选型的内容,要求和所需资料 1:水轮机选择的内容 (1)确定单机容量及机组台数。 (2)确定机型和装置型式。 (3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。(4)绘制水轮机的运转综合特性曲线。 (5)估算水轮机的外形尺寸,重量及价格。 wertyp9 ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。 2.水轮机选择的基本要求 水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。 (1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。 (2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。 (3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。 (4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。 (5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。 (6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。 3.水轮机选型所需要的原始技术材料 水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料: (1)枢纽资料:包括河流的水能总体规划,流域的水文地质,水能开发方式,水库的调节性能,水利枢纽布置,电站类型及厂房条件,上下游综合利用的要求,工程的施工方式和规划等情况。还应包括严格分析与核准的水能基本参数,诸如电站的最大水头Hmax、最小水头Hmin,加权平均水头Ha,设计水头Hr,各种特征流量Qmin、Qmax、Qa,典型年(设计水平年,丰水年,枯水年)的水头、流量过程。此外还应有电站的总装机容量,保证出力以及水电站下游水位流量关系曲线。 (2)电力系统资料:包括电力系统负荷组成,设计水平年负荷图,典型日负荷

水电站水轮机进水阀门液压系统的设计说明书

目录 前言 (1) 第1 章概述 (2) 第2 章液压缸的设计 (3) 第2.1 节工况分析 (3) 第2.2 节液压缸主要几何尺寸的计算 (5) 第2.3 节液压缸结构参数的计算 (6) 第2.4节液压缸主要零件的结构、材料及技术要求 (11) 第3章液压系统图的拟订和工作原理的确定 (13) 第3.2节制定基本方案 (13) 第3.2节绘制液压系统图 (14) 第3.3节系统工作原理的确定 第4章液压元件的选择 (17) 第4.1节液压泵的选择 (17) 第4.2节电动机的选择 (18) 第4.3节其他元件的选择 (18) 第5章液压系统的性能验算 (22) 第5.1节管路系统压力损失的验算 (22) 第5.2节液压系统的发热与温升计算 (24) 第5.3节油箱的尺寸设计 (26) 第6章液压装置的设计 (27) 第6.1节液压装置总体布局 (28)

第6.2节液压阀的配置形式 (28) 第6.3节集成块设计 (29) 第7章液压系统安装及调试 (27) 第7.1节液压系统安装 (29) 第7.2节调试前准备工作 (29) 第7.3节调试运行 (29) 第7.4节液压系统的用液及对污染的控制 (30) 第7.5节调试运行中应注意的问题 (29) 第8章液压系统的维护及注意事项 (27) 参考文献 (27) 总结 (28) 致谢 (29) 前言 毕业设计和毕业论文是本科生培养方案中的重要环节。学生通过毕业论文,综合性地运用几年内所学知识去分析、解决一个问题,在作毕业论文的过程中,所学知识得到疏理和运用,它既是一次检阅,又是一次锻炼。通过这次检验,不但可以提高学生的综合训练设计能力、科研能力(包括实际动手能力、查阅文献能力,撰写论文能力)、还是一次十分难得的提高创新能力的机会,并从下个方面得到训练: (1)学会进行方案的比较和可行性的论证; (2)了解设计的一般步骤; (3)正确使用各种工具书和查阅各种资料; (4)培养发现和解决实际问题的能力。 利用所学的液压方面的知识,我选择这个课题为我的毕业设计,进行大胆的 尝试。设计中主要以课本和各种参考资料作为依据,从简单入手,循序渐进,逐 步掌握设计的一般方法,把所学的知识形成一个整体,以适应以后的工作需要。 当然,初次设计,知识有限,经验不足,一些问题考虑不周,也可能存在有某些

谈水电站水轮机调速器的调试与维护

谈水电站水轮机调速器的调试与维护 发表时间:2019-11-29T14:37:29.340Z 来源:《云南电业》2019年6期作者:邓贤江[导读] 调速器是水轮发电机的重要控制及调节机构,一旦出现问题将直接影响水轮发电机的正常运行,严重情况下还会导致水电站整个系统瘫痪。 邓贤江 (国网四川省电力公司富顺县供电分公司四川省自贡市 643200)摘要:调速器是水轮发电机的重要控制及调节机构,一旦出现问题将直接影响水轮发电机的正常运行,严重情况下还会导致水电站整个系统瘫痪。因此,水轮机调速器的调试与维护一直是水电站工作中的重中之重,各水电站必须积极采取有效措施来做好水轮机的维护与调试保养。作为维护人员,更是要积极地做好水轮机调速器的调试与维护工作,真正确保水电站整个系统的良性运行。 关键词:水电站;水轮机;调速器;调试;维护 一、水电站水轮机调速器的概述 1.1水轮机调速器概念简析 水轮机调速器是水轮机的重要控制及调节机构,主要起调节水轮机的各个传动部件及其控制的作用。近年来,水轮机调速器不仅肩负着水轮机的调速工作,同时其也是水电站自动化运行中的重要部分,因此水轮机调速器的运行情况不仅关系着水轮机的使用,同时也左右着水电站自动化的水平。水轮机调速器一般而言具有相对较长的使用寿命,因此其需要进行定期的维护与检修,以保障其可以正常的运行。 1.2水电站水轮机调速器的功能 水轮机调速器作为水轮机的重要构成部分,也是实现对水轮机进行调节的关键部分。为保证水轮机的正常运转,并据此保障水电站的正常、稳定运行,水轮机调速器一般具备开停机功能及并网自调节功能。 其中,并网功能是实现对水轮机运转状态进行自动调整的重要条件。在水轮机正常运转过程中,工作人员通过电脑向水轮机下达运转状态调整指令,随后水轮机调速器具备的并网功能可依据相关指令,对水轮机的运转状态进行自动调整,有利于保障水轮机的稳定运转。调节功能作为水轮机调速器的主要功能,也是体现水轮机调速器价值的功能,其作用是对水轮机运转速度、水流量、功率等进行调节。即在水轮机运转过程中,工作人员可依据需求,利用调速器所具备的调节功能,将水轮机的转速、功率、水流量等调节至恰当的数值,以此保证水轮机运转的安全性和稳定性,进而为水电站的安全、稳定运行提供保障。 1.3水电站水轮机调速器的特点 水轮机调速器在使用的过程中具有着一定的特点,水电站工作人员对这些特点进行有效的掌握将有利于其今后工作的展开,具体来讲水轮机调速器具有如下几个方面的特点: ①具有很强操作力度。调速器是发电站水轮机重要的控制机构,在运行中需要对水轮机各个转动部件和导水机构进行控制调节,以达到水轮发电机稳定运行的目的,因此水轮机调速器在行中具很强操控力。 ②运行复杂,涉及面广。水轮机调速器是一个复杂的部件,其内部机构复杂而繁琐,其在运行的过程中需要经过多个步骤才能实现正常运转,其运行的过程相对复杂,任何一个环节出现问题都将影响水轮机调速器的工作。水轮机调速器在工作的过程中经常会受到周边各种因素的影响,这主要是因为其在运行的过程中涉及面较广,其不仅要控制水流还要掌握发电机运行,维持机械正常运转等。 ③功能多样。水轮机调速器在功能上具有着多样性,这主要是由于其在运行的过程中肩负的任务较多,因此其要通过多种功能的运用以保障整个水轮机的正常运行。 二、调速器的常见故障原因分析 2.1调速器导叶、桨叶故障 水电站调速器电器柜断电后再次上电时,其导叶以及浆叶等始终处于故障状态,将导叶以及浆叶调整到手动运行状态,对电源模块没有输出的电压进行测量,可发现信号反馈存在异常。究其原因,主要是因为导叶反馈越限,造成导叶转变为手动控制状态。导叶反馈属于电流型信号,电流信号最小为4mA,最大为30mA.如果导叶反馈的具体数值不处于该范围内就会出现故障。另外,导叶以及桨叶故障也有可能是因为叶反馈回路方面的问题引发。 2.2过水压力系统水压不稳定 水轮机过水压力系统包括蜗壳、压力管道、尾水管等,一旦发生水压波动,势必影响机组的运行,表现为接力器开度及机组出力呈周期性摆动。为了判明水压波动是否是引起不稳定的主要原因,可将机组切换成手动运行,手动状态下仍发生摆动,则是水压波动造成的不稳定运行的特征。 2.3信号源引起的故障 目前来说,确实有不少水电站用与发电机同轴的永磁机作调速器频率信号源。如果永磁机与发电机轴的同心度不符合要求,实质不同心,会使永磁机电压、频率周期性变化。由永磁机故障引起的摆动,往往幅值不大但频率较高。另外,采用发电机PT作频率信号源的电站,有时会出现PT本身质量问题或信号线没用屏蔽线,或者屏蔽层没接地等,也会引起调整系统不稳定。这些故障具体表现为:空载时接力器大幅度波动且没有规律,并网时负荷波动。而排除这些故障的方法则是将调速器切为手动,观察机组是否波动即可。 2.4发电机运行不正常 发电机若运行不正常,如三相负载不平衡,励磁装置工作不稳定,也会造成机组运行不稳定,这种不稳定现象常随负载增加而加重。在开机过程中,如果达到额定转速,不励磁时接力器能稳定,一旦励磁,升电压就不稳定,则明显是发电机及励磁装置方面的问题。 三、水电站水轮机调速器的调试和维护策略 3.1水轮机调速器的调试方法

YWT调速器说明书

YWT数字阀微机调速控制器说明书 V1.0版 重庆水轮机厂水电控制设备分公司 2010年11月

目录 1 产品简介 2 调速器主要技术指标 3 调节性能指标 4 控制原理 5 机械部分 6 出厂试验 7 技术服务

1产品简介 YWT型微机调速器是混流式水轮发电机组配套设计的,其控制部分以FX2N-32MT可编程控制器为调节控制核心,采用机械液压控制回路控制导叶接力器。接力器的行程由位移变送器反馈至微机调节器,该调速器取消了传统的机械协联柜、凸轮和复杂的机械连杆,不仅大幅度简化了系统结构,而且有效地克服了机械系统死区,彻底地改善了系统的调节性能。该调速器在性能及结构上都突破了传统混流式调速器的模式,从根本上克服了常规混流式调速器存在的缺陷,代表了新一代调速器的发展方向。 该调速器反应灵敏,具有较高的调节精度,动态品质优良;微机控制可使导叶具有很高的同步精度;可任意设置和修改导叶的运行方式,采用数字阀直接控制接力器,使控制精度和可靠性大幅提高;整个机械液压系统采用模块式结构,机械柜内无明管和杠杆,结构简单、美观。 实践表明,采用数字逻辑阀做为电液转换器件的混流式专用调速器性能较好,系统结构相当简单,而且没有机械回复装置、静态控制精度高、静态无油耗。因此我们建议采用数字逻辑阀做为电液转换器件的混流式专用调速器。 1.1 交直流并馈供电 该控制器采用交流220V及直流220V(110V)并馈方式供电,同时保证两电源间的无扰动切换,为控制器提供高可靠的电源。 1.2 软件测频 机组频率及电网频率经简单整形后直接输入可编程控制器,通过软件实现机频及网频两大重要参量的采集,大大克服了硬件测频元器件多、质量不稳定、抗干扰能力差等缺点。 1.3 汉化显示 该控制器采用大屏幕触摸屏作为人机介面,对机组运行状态、各种参量、故障信号等均采用汉化显示,观察直观、操作方便。 1.4 自动故障检测 该控制器通过软件对多种故障点进行实时监测,一旦发现问题,将及时发出故障信号并显示故障点,保证机组安全可靠运行,方便维护人员检修。 1.5 各运行方式无扰动切换 该控制器通过软件实现各种运行方式(自动、电手动、纯手动)间的相互跟踪,并随时可进行各运行方式间的无扰动切换。 1.6 高可靠的数字式逻辑阀机械液压系统

水轮机的结构和原理(+笔记)

水轮机 水轮机+ 发电机:水轮发电机组 功能:发电 水泵+ 电动机:水泵抽水机组 功能:输水 水泵+ 水轮机:抽水蓄能机组。 功能:抽水蓄能 水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。 第一节水轮机的工作参数 水轮发电机组装置原理图 定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。 由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。 一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。142米 1. 毛水头(nominal productive head) H M=E U-E D=Z U - Z D 2. 反击式水轮机的工作水头

毛水头 - 水头损失=净水头 H G =E A - E B =H M - h I -A 3. 冲击式水轮机的水头 H G =Z U - Z Z - h I-A 其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。 4. 特征水头(characteristic head) 表示水轮机的运行范围和运行工况的几个典型水头。 最大工作水头: H max =Z 正-Z 下min -h I-A 最小工作水头: H min =Z 死-Z 下max -h I-A 设计水头(计算水头) H r :水轮机发额定出力时的最小水头。 平均水头: H av =Z 上av -Z 下av 二、流量(m 3/s)(flow quantity):单位时间内通过水轮机的水量Q 。单机12.2m 3/s Q 随H 、N 的变化:H 、N 一定时, Q 也一定; 当H =H r 、N =N 额时,Q 为最大。 在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r 三、出力 (output and):水轮机主轴输出的机械效率。N(KW): 指水轮机轴传给发电机轴的功率。 水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。其公式为:QH QH N w 8.9==γ γ指水体容重(即单位容积水所具有的重力,比重): 水的比重=1000kg/m 3、G=9.8N/Kg γ=9800N/m 3 )(8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==?=??=γ 水轮机的输出功率:ηηQH N N w 8.9== 四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水轮机的机械效率、能量转换效率。η

无刷电机电子调速器使用说明书

__________________________________________________________________________________ 感谢您购买了EASYCO无刷电机电子调速器。这款产品是专为遥控航模所设计的。因为大功率输出的遥控模型的危险性,我们强力建议您在使用这款产品前一定仔细的阅读产品说明。 安全建议! 1.所有的EASYCO遥控模型产品仅适于成年人使用。 2.在您连接电池线之前,确保其它的连接线正确连接。 3.EASYCO TECHNOLOGY不承担任何由使用本产品而引起的直接或间接的损害、伤害的赔偿责 任。 4.当模型和动力系统相连时必须和操控者及其它人保持足够的安全距离。 5.在远离人群的地方飞行。 6.了解当地对于遥控模型飞行的相关法律条例。 产品特点: 1.进角自动调整,无需设置。 2.极其轻微的启动过程。最低到3%的动力输出就可以平滑启动。平滑启动并保持足够的扭矩。 3.最好的油门曲线和最大的油门行程范围。 4.周全细致的保护功能:包括低电压保护\过热保护\油门信号丢失保护\安全上电保护\缺相保护\堵 转保护。 ●启动快慢完全由油门控制。在运转过程中只有堵转、缺相才会立即保护停机。停机后,油 门需回位才可重起。 ●较好的低电压保护模式。逐步降低动力输出以尽量维持电压在保护设定值之上。当降到30% 功率时,将停机。 ●当温度超过保护值时,降低功率,降低速率由温升速率决定。 ●信号丢失在3秒内降到20%功率后停机。 ●安全上电保护。接通电源时无乱遥控杆在何位置皆可保证电机不会启动,确保安全。 5.较为简单的参数设定。 产品规格: 型号持续电流输入电压BEC形式BEC输出重量(g)尺寸(mm) 4568X30X10.5 FS-7070A2-6LiPo开关5V、6V可 调/3A FS-6060A2-6LiPo开关5V、6V可 4168X30X10.5 调/3A 3764X30X10.5 FS-4545A2-6LiPo开关5V、6V可 调/3A FS_3560A2-6LiPo开关5V、6V可 3159X30X10.5 调/3A 3352X29X9 F-4545A2-4LiPo线性5V、6V可 调/3A F-3535A2-4LiPo线性5V、6V可 3252X29X9 调/2A F-3030A2-4LiPo线性5V/2A2548X25X11注意:电调自带BEC不支持四节和四节以上锂电(或其他相当电压的电池)

贯流式水轮机安装说明书

0000101AZ 水轮机安装说明书1/16 目录 1、安装前的准备工作 (2) 2、安装前厂房建筑应具备的主要条件 (2) 3、部件组装 (3) 3.1 尾水管组装 (3) 3.2 座环组装 (4) 3.3 转轮室预装 (4) 3.4 导水机构组装 (5) 3.5 转轮解体组装 (6) 3.6 预装主轴轴承 (7) 3.7 检测受油器 (7) 4、水轮机安装 (7) 4.1 安装尾水管 (7) 4.2 安装座环(整体吊装方案) (8) 4.3 安装座环(土办法安装) (9) 4.4 安装流道盖板基础 (13) 4.5 安装接力器 (13) 4.6 安装导水机构 (13) 4.7 安装主轴-轴承 (14) 4.8 安装转轮室下半部分 (15) 4.9 安装转轮 (15) 4.10 安装主轴密封和组合轴承密封 (15) 4.11 安装受油器 (15) 4.12 安装油、水、气管路及仪表管路 (16) 4.13 安装转轮室上半部分 (16) 4.14 安装地板扶梯及其它 (16)

0000101AZ 水轮机安装说明书2/16此文件仅对XX水轮机安装过程中的主要特点及特殊技术要求作简要说明, 其目的是提醒安装单位在安装水轮机的过程中应注意的事项,不包括为确保质量 所必须执行的全部内容,水轮机的安装还应满足GB8564?88《水轮发电机组安装 技术规范》和DL/T5038?94《灯泡贯流式水轮发电机安装工艺导则》要求。 1安 装 前 的 准 备 工 作 1.1 安装前安装人员应熟悉下列文件及规程: a.《水轮发电机组安装技术规范》GB8564?88及《灯泡贯流式水轮发电机安装工艺导 则》DL/T5038?94; b.本安装说明书; c.随机供给的图纸及图中规定的技术要求; d.水轮机其它技术文件; e.制造厂提供的试验及检查记录。 1.2 安装现场应清洁干净 ; 1.3 认真检查各大件的重量和起重设备能力,预先考虑大 件的起吊搬运方法; 1.4 按各部套的安装工具图纸,检查、熟悉制造厂提供的专用工具。 1.5 检查零部件的X、Y线、标记、编号。 2安装前厂房建筑应具备的主要条件 2.1一期混凝土工程已经完成并符合设计要求。 2.2预埋管件、地脚螺钉孔、各支墩尺寸、标高均符合设计要求。 2.3进水流道及尾水管混凝土应符合设计要求 。 3部件组装 3.1尾水管组装 尾水管分三节,即进口节(小节)、中间节和出口节(大节),每节分 三瓣,三节尾水管正立放置拼装焊接,整体翻身吊装就位。 3.1.1按照图纸制作并埋设一期埋件,包括基础板、锚钩等埋件。 3.1.2尾水管拼装平台制做: ?平台应该水平并且有足够大的面积; ?平台基础支撑应该用型钢; ?平台应该有很好的接地措施。 3.1.3在拼装平台上按照尾水管各节大口的图纸直径尺寸划线。 3.1.4吊装一瓣瓦片,大口朝下,沿着划的线就位,临时固定后,用千斤顶或楔子板调整瓦

水电厂调速器选型方法

131 型的措施,必须采集和在线监视各种参数指标。 (1)脱硫用电单耗的计算公式为:脱硫用电单耗=脱硫6kV两段用电量的和/烟气流量×(烟气进口SO 2含量-烟气出口SO 2含量)(kWh/kg) (2)脱硫用粉的单耗的计算公式为:脱硫用粉的单耗=石灰石加入量/烟气流量×(烟气进口SO 2含量-烟气出口SO 2含量)(kWh/kg) (3)脱硫用水单耗的计算公式为:脱硫用水单耗=工艺水泵的出口流量/烟气流量×(烟气进口SO 2含量-烟气出口SO 2含量)(kWh/kg) 机组脱硫系统的优化运行及节能改造必须通过实施一定的优化措施,操作人员可以根据脱硫装置运行的实际情况和各种参数指标进行经济性分析,稳定工况,降低耗电量,以提高脱硫装置的运行效率。 5 结语 近年随着电网调峰深度的加大以及600MW的大量投产,实现机组功能的优化及其经济运行的方式 面临着更大的现实挑战,及时了解并分析机组设备的构成以及可能出现的问题,同时采取相应的措施对机组改进优化,应用到实际工作中,保证电厂6OOMW机组长周期安全稳定运行的生产目标,实现机组的经济运行。 参考文献 [1] 黄红艳,陈华东.超临界直流锅炉控制系统的特点及控 制方案[J].电力建设,2006. [2] 孔亮,韩建朋,等.关于600MW 脱硫机组运行方式的优 化[J].科技信息,2007. [3] 李千军.国产600MW 汽轮机组定滑压运行方式测试方 法研究[J].汽轮机技术,2009. [4] 李千军.沙角A 电厂300MW 机组调峰负荷下滑压运行 经济性分析[J].广东电力,2004. [5] 李明.大型汽轮机组运行方式优化试验研究及经济性分 析[J].湖南电力,2008. [6] 苏烨,张鹏,卓鲁锋.AGC 模式下超临界机组协调控制 策略的完善及应用[J].浙江电力,2011. (责任编辑:秦逊玉) 在改建或者新建水电厂时总会遇见关于调速器选型等问题。当选型不适当时往往会带来种种预想不到的后果,以至于威胁到电机组稳定安全的运行,因此对于水电厂的建设来说正确地选择合适的调速器显得格外重要。本文介绍了调速器的构成和分类,并详细阐述了调速器选型的各种方法和原则,以帮助正确选择水电厂的调速器。1 水轮机调速器的构成和分类 我国目前对调速关于执行部分的具体分类并无统一成文标准,通常由生产厂家依据各自特点自己命名,常用的方法与特点如下: (1)缩写汉语拼音与操作功率相组合,如GYT-1000——操作功率是1000kW的高油压型水轮机组调速器的缩写形式。 水电厂调速器选型方法 朱 凯 (广西桂冠开投电力有限责任公司,广西 南宁 530028) 摘要: 文章阐述了调速器的构成和分类,并介绍了调速器的选型原则,以此为基础从机组特点、系统结构、性能指标、功能设置要求以及素质和质量五方面阐述调速器的选型法则,为水电厂机组选择适合的调速器提供了借鉴。关键词: 调速器;选型方法;水轮机组;产品模件;自动控制设备;励磁调节器中图分类号: TV664 文献标识码:A 文章编号:1009-2374(2012)33-0131-03 2012年第33/36期(总第240/243期)NO.33/36.2012 (CumulativetyNO.240/243)

水电站调速器电气故障与处理措施

水电站调速器电气故障与处理措施 发表时间:2018-08-13T10:41:01.673Z 来源:《基层建设》2018年第21期作者:梁海锋[导读] 摘要:调速器是水电站调整水轮发电机组输出功率,用以控制转速(频率)在额定范围的设备,也是保证供电安全、电压稳定的关键设备。 茂名市粤能电力股份有限公司 525000 摘要:调速器是水电站调整水轮发电机组输出功率,用以控制转速(频率)在额定范围的设备,也是保证供电安全、电压稳定的关键设备。调速器故障威胁水电站安全生产,因此本文对水电站调速器电气故障与处理措施进行了分析。 关键词:水电站;调速器;电气故障;故障处理调速器是水电站关键控制设备,主要任务是将发电机组转速稳定在规定转速范围内,以保证机组安全、经济地运行[1]。水电站调速器一般由电气调节装置、机械调节装置和机械液压系统三部分组成。目前,由于采用可靠性高的可编程控制器作为调速器的调节器,并配置了合理的外围电路,电气故障率不高,但仍会因多种原因引起故障。因此,本文对水电站调速器电气故障与处理措施进行了分析。 1 水电站调速器电气部分组成与控制模式 1.1 电气部分组成 水电站调速器经历了模拟电液调速器和微机调速器两个阶段。以微机控制器(中央处理器)分类,微机调速器分为IPC、PLC、PCC 等类型,现以PLC型调速器为例,它的组成包括电源、PLC、测频环节等部分。调速器一般采用交流220V、直流220V并列供电的冗余电源系统,以提高供电可靠性。PLC是调速器的控制核心,根据采集到的信号特征与来自监控系统指令信号进行比较判断,实现调速器的控制功能[2]。测频采用残压和齿盘两种方式。 1.2 控制模式 按照优先级由大到小,微机调速器一般有现地机械手动、现地电手动、现地自动和远方自动几种控制模式。这些控制模式之间可以无扰动切换,如果电气部分发生故障,可将控制模式自动切换到现地机械手动模式。 2 水电站调速器常见电气故障及处理措施 2.1 开停机不正常 在自动模式下,发电机组未能按照开停机指示来完成全部流程或达到预定要求,例如开机时没有打开开限,或打开开限,但机组转速达不到额定值;停机时有未完成的信号。开限拒动可能是二次接线、开关量板卡、D/A转换器、CPU等出了问题,通过检查二次接线及更换板卡、CPU等可解决此类问题。开限正常,但开不了机,可能是机组或电网频率测量出了问题,可检查频率测量环节有无问题。如果是机组转速上不来,那也可能是水头低,但设定空载开度过小,此时调大空载开度一般能解决问题。不能自动停机,可以转手动模式试一试。总之,造成开停机不正常的原因很多,除上述原因以外,还有系统未接到开停机指令、电源故障、电液转换部件故障、引导阀主配压阀发卡、传感器故障等。 2.2 空载运行过速 发电机组空载运行时,发电机转速超过额定转速,甚至引起过速保护动作和紧急停机。这种情况有几种原因,一是导叶反馈断线,那么就会造成导叶反馈无显示或者显示的数字没有变化,然而接力器实际上已经全开,发电机就会超速了;二是导叶反馈传感器不准确,没有正确指示导叶实际开度,显示值偏小,当然会造成发电机超速;三是D/A转换器故障,以致不能正确传递导叶开度信息。遇到空载过速问题时,可以根据上述原因进行排查,导叶反馈断线可以重新接好线,导叶反馈传感器问题可以调整传感器位置,D/A转换器故障可以更换板卡试试。 2.3 调速器抽动 调速器抽动分两种情况:一种是周期性的抽动,表现在平衡表周期性的摆动,导叶主配压阀快速抽动,伴有液压油流动的声音,同时接力器有小幅摆动;另一种是非周期性的抽动,表现在平衡表摆动,导叶主配压阀有油流过,接力器来回摆动。造成周期性抽动的原因是调节参数设置问题,由于随动系统增益过大或回环特性过于灵敏,以致超过稳定极限;也可能是主配压阀中位传感器采集错误或误差较大,造成电气复中失败。处理方法是先将调速器切换到手动模式,然后用笔记本电脑连接PLC,观察主配压阀采样信号设定是否正确,正确说明不是传感器问题,可调整回环系数,再将调速器工作模式切回自动,观察调速器抽动情况是否改善;如果是传感器问题,可以更换传感器试试。引起非周期性抽动的原因是电源电压不稳定、反馈回路接触不良、反馈元器件性能劣化、调节器受到严重干扰、油质劣化导致阀塞卡阻等[3]。处理方法是将调速器切换手动模式,然后排查原因,找准原因后解决问题。 2.4 调负荷异常 现象包括调负荷迟滞、调负荷不动、溜负荷、自行增负荷。调负荷迟滞是指增减负荷时反应缓慢,主要原因是参数整定有问题。影响负荷调节的三个参数是缓冲时间参数()、暂态转差系数()和比例增益系数()。如果和调得太大,又太小,就会造成调负荷迟滞现象。可在调节系统有稳定裕量的情况下,适当减小、或增大改善迟滞问题。调负荷不动是指给定功率但接力器拒动,调负荷不成功。产生这种现象的原因是电液伺服阀卡紧或接线断开,也可能是功率给定单元故障。可检查电液伺服阀及接线、功率给定单元,然后针对具体原因处理。溜负荷是指没有给出调负荷指令,但机组负荷自行减少;自行增负荷与溜负荷正好相反,没有调负荷指令,自行增加负荷。溜负荷或自行增负荷的原因包括电液伺服阀发卡、电液伺服阀工作线圈断线、D/A转换器故障、干扰信号串入调相令节点、调速器CPU故障、调速器电源接地故障、机组运行点异常等。电液伺服阀发卡,如果卡在关机侧就会溜负荷,而卡在开机侧则会自行增负荷。电液伺服阀工作线圈断线后调节信号为零,如果电液伺服阀平衡位置在关机一侧就会溜负荷;反之,平衡位置在开机一侧就会自行增负荷。D/A转换器故障造成输出减小或为零,机组将溜负荷。干扰信号串入调相令节点会导致溜负荷。CPU故障会造成数据错乱,并引起溜负荷。调速器电源接地,会造成油泵电动机启动和调速器显示变化,引起接力器抽动。机组运行点异常是指运行点处于发电机最大出力点附近,并且功角接近90°,此时如果频率下降,水轮机就要增加出力,但发电机难以突变,这就会造成机组加速,但已到达极限功率点,由于机组惯性因素,加上励磁系统强励特性不够好,就会导致溜负荷现象。因此,对于调负荷异常现象,关键还是找准原因,通过排查确定原因后对“因”处理。 2.5 机频消失

调速器中文说明书(触摸屏)

WOIRD格式 操作终端说明书 (触摸屏) 武汉四创自动控制技术有限责任公司

目录 一、系统概述...........................................................................................2... 二、画面简介...........................................................................................2... 1.状态指示画面.................................................................................3... 2.操作画 面..........................................................................................4... 3.主菜单 画..........................................................................................5... 4.密码 框..............................................................................................6... 5.数值键盘画面.................................................................................7... 6.参数设 置..........................................................................................8... 7.导叶参数设置.................................................................................9... 8.浆叶参数设置(*双调机组)......................................................1..1 9.功率参数设置...............................................................................1..3. 10.大网参数、小网参数、空载参数、负载频率参数 (14) 11.水头参数设置............................................................................1..5 12.PID优化参数设置....................................................................1..6 13.过程监视......................................................................................1..7. 14.动态过程记录.............................................................................1..8. 15.空载频率扰动.............................................................................1..8. 16.空载频率摆动.............................................................................2..0.

水轮机词汇(1)

A access door 检修门 accessory 附件、零件 accuracy 准确性、精密度 acting head 有效水头 action turbine 冲击式水输机 action wheel 主动轮、冲击式水轮 active power 有功功率 Adjustable and fixed-blade propeller hydraulic turbine 轴流式水轮机adjustable blade propeller turbine 轴流转浆式水轮机 adjustable bolt 调整螺栓 adjustable clearance 可调间隙 adjustable ring 控制环 adjusting nut 调整螺母 adjusting screw 校正螺丝、调整螺丝 air conduit 通风道、风管 air cooler 空气冷却器 air cooling system 气冷系统 air currant 气流 air cylinder 气缸 air draft 通风道、排气道 air inlet 进气口 air-inlet valve 进气阀门 air-release valve 放气阀门 air valve 空气阀、气阀、气门 annual energy output 年发电量applied hydraulics 实用水力学 applied mechanics 应用力学 assemble 装配 assembler 装配工 assembler drawing 装配图 assembly shop 装配车间 automatic control 自动控制 automatic control valve 自动控制阀 automatic governor 自动调速器 automatic pressure reducing valve自动减压 阀 automatic regulation (autoregulation) 自动 调节 auxiliary apparatus 辅助设备 auxiliary equipment 辅助设备 auxiliary machinery 辅助机械 auxiliary station 辅电厂、辅厂房 available capacity 有效容量 available discharge (flow) 可用流量 available head 可用水头 available hydraulic head 有效水头 available power 可用出力 available storage 有效库容 average flow 平均流量 average head 平均水头 average over-all efficiency 平均总效率 average speed 平均速率、平均转速 average velocity 平均速度 axis 轴线 axial cam 轴向凸轮 axial flow 轴流 axial flow hydraulic turbine轴流式水轮机 axial force 轴向力 axial inflow velocity 轴向流入速度 B Babbitt 巴氏合金 Back view 后视图 Ball bearing 滚珠轴承、球轴承 Banki turbine 双击式水轮、彭基式水轮机 Base 基础、基线 Base flow 基本流量 Base level 基准面 Base line(basic line) 基线、底线 Bearing 轴承 Bearing pad 钨金轴承 Bearing body 轴承体 Bearing flange 轴承法兰 Bearing ring 轴承套圈 Blade 叶片 Blade seal ring 叶片密封装 Bolt 螺栓 Bolt pin 螺栓销 Bottom cover 底盖 Bottom outlet 泄水底孔 Bottom view 底视图 Brake 制动闸、制动器 Brake horse power(B.H.P.) 制动马力 Bucket(浇混凝土的)吊桶、(冲击式水轮 机的)水斗 Bulb tubular turbine 灯泡型贯流式水轮机 Buried depth 埋设深度 Buried penstock 埋藏式压力水管 Butterfly valve 蝴蝶阀 by-pass 支流,溢流渠,旁通管 by-pass tunnel 旁通隧洞 by-pass valve 旁通阀 C Cage screen 笼形拦污栅 Cam 凸轮 Calculated flow rate 计算流量 Capacity 容量,功率 cast-iron 铸铁,生铁 cast-steel 铸钢 cavitation 汽蚀 cavitation coefficient 汽蚀系数 cement 水泥 centrifugal nozzle 离心式喷嘴 centrifuge 离心机 chamber 室 characteristic curve 特性曲线 circulate circulation 循环,环流 circulating current 环流 circulating pipe 循环水管

白水河二级水电站调速器运行规程

白水河二级水电站调速器运行规程

一、设备规范 1.冲击式水轮机微机调速器型号说明:

二、运行方式 1.调速器运行方式: 运行方式切换在现地控制柜面板上,面板上设置了交流电源、直流电源、开机、停机、停机联锁、断路器等信号批示灯,这些批示灯指示了调速器外部信号的来源以及调速器的工作状态,并且在调速器面板上还设置了选择开关和操作按钮便于工作人员在现场操作。如图: 1.1.折向器方式切换: 折向器有“电动”、“机手动”二种运行方式,现新的调速度器投入后,折向器不再跟随喷针协调动作对机组进行调节,而是在开机时开喷针前开至全开位,在停机时关喷针后关至全关位。 1.1.1.折向器电动运行方式: 在现地操作“增/减”旋钮,进行全开、全关操作。 1.1. 2.折向器机手动运行方式: 在现地控制柜上可以操作各个折向器“开/关”旋钮或手动操作各个折向器球阀,分别控制各个折向器开度。 1.2.喷针方式切换: 喷针有“自动”、“电动”、“机手动”三种运行方式,三种运行方式之间切换时,由软件编程器根据当时工况下的负荷、开度、频率进行对应转换,使切换过程无扰动。 当调速器两路电源AC220V和DC220V之间切换或均失电时,调速器自动切为“手动”运行,负荷(或喷针开度)保持不变。当电源恢复后,自动跟踪当前开度,无扰动的恢复到当前运行工况。 1.2.1.自动运行方式:

调速器将采集开度、水头、功率、机频、网频、断路器位置信号与给定量的偏差,由软件编程器按脉宽、数字量、模拟量定值特性转换进行调节,分为“功率”、“频率”、“开度”三种调节模式,调速器在三种调节模式之间切换无扰动。 调节模式在现地控制柜上触摸屏主操作画面操作切换框中,如图: 水位手/自动切换在切为“自动”调速器能按水头自动改变空载开度给定值及限制负载机组出力。 1.2.1.1.功率模式: 在功率模式运行时,投入频率死区设置,调速器根据功率给定进行调节。 1.2.1.2.频率模式: 在频率模式运行时,切除频率死区设置,系统频率波动时,调速器会根据PID 值、频差(系统频率—50Hz)做出相应的调整。此时,调速器会随系统频率频繁调节。 机组在空载状态下自动运行,调速器只能在“频率调节”模式下工作,可选择跟踪电网频率或频率给定,在现地控制柜上触摸屏主画面操作切换框中选择“跟踪网频”状态是控制机组频率跟踪电网频率,选择“跟踪频给”状态是控制机组频率跟踪频率给定,并网后“跟踪网频/跟踪频给”按钮不起作用,自动处于“不跟踪”状态。 当110kV线路跳闸后,机组出口开关未断开,根据频率的变化以及负荷或开度的调整对频率引起的变化,自动切换到频率调节模式运行。 1.2.1.3.开度模式: 在开度模式运行时,投入频率死区设置,系统频率在频率死区设置范围摆动时,调速器不参与调节,系统频率摆动值超过频率死区设置时,调速器会根据PID 值、频差(抵消频率死区值)做出相应值的调整。 1.2.2.电动运行方式: 在现地控制柜上操作“增/减”旋钮,喷针开度自动跟踪调节。 1.2.3.机手动方式: 在现地控制柜上可以操作各个喷针“开/关”旋钮或手动操作各个喷针球阀,分别控制各个喷针开度。 主要用途是在调速器电气控制部分失电、故障或各个喷针、折向器调试时投入运行,机手动运行时注意: * 调速器电气控制部分未退出运行时,严禁手动操作机械部分。 * 各个喷针的开度应与对侧的喷针开度保持同步(即#1喷针与#3喷针保持同步; #2喷针与#4喷针保持同步),不允许单喷针和三喷针方式运行。 1.3.远方/现地控制方式切换: 远方/现地控制方式切换具有互锁功能,确定远方/现地操作权限。 1.3.1.远方控制: 调速器只有在在“自动”运行方式下能够接受计算机监控系统发下达增/减负荷、开/停机命令并自动完成操作。 1.3. 2.现地控制: 调速器在现地控制时“自动”、“电动”、“机手动”运行方式都可进行增/减负荷、开/停机操作。 1.4.事故停机: 由于事故(紧急)停机保护动作、计算机监控系统发事故(紧急)停机令或操作员手动操作事故(紧急)停机按钮时,事故停机电磁阀动作时,调速器以允许的最大速率(调保计算的关机时间)关闭喷针,事故停机电磁阀动作后有位置接点输出至指示灯和上送计算机监控系统,并同时由计算机监控系统启动事故停机流程。 在找到事故原因并加以消除以前,事故停机和紧急停机回路一直保持闭锁状态,只有通过手动操作复归程序才能复归。

相关主题
文本预览
相关文档 最新文档