当前位置:文档之家› DP接头终端电阻介绍

DP接头终端电阻介绍

DP接头终端电阻介绍
DP接头终端电阻介绍

dp通讯采用的是rs485通讯,rs485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V 表示“1”。

从图中可见,当开关拨至“ON”时,A1和B1两端和终端电阻相连,所以在DP网络的终端只能接A1和B1,否则不能连接终端电阻。当开关拨至“OFF”时,终端电阻和数据线断开,A1和A2,B1和B2相连,串起网络上的设备。

平时使用只用到了DB9(针)插头的3和8两个引脚,判断DP网络硬件连接是否正常首先要保证数据线连接牢固,而检测的最好方法就是测量3,8引脚之间的电阻。如果接线牢固,那么当开关拨至“ON”时3,8之间的电阻为220欧姆,当开关拨至“OFF”时电阻为无穷大。

我们可以在一个DB9(孔)接头的3,8引脚焊接两根电线,电线的另一端各焊接一个可以插入万用表的表笔头。使用时将两个表笔头插入万用表,使用欧姆档,将制作的DB9(孔)插头插到DP网络的一个终端接头上,所有电阻开关均拨至“OFF”,然后从这个终端开始,依次将开关拨至“ON”,观察万用表读数,如果为220欧姆,则该节点正常,然后将开关拨至“OFF”,测量下一节点。如果那个节点电阻不正常则该节点接线有误。

很多时候DP网络不通都是接线造成的,做好DP电缆后使用以上的方法测试一遍再连接DP 设备可以保证硬件连接正确,提高调试效率。

在通讯中,增加终端电阻的作用是什么?

(1)一般说法:终端电阻是为了消除在通信电缆中的信号反射。在通信过程中,有两种原因因导致信号反射:阻抗不连续和阻抗不匹配。阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一

种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。

终端电阻和偏置电阻

一个正规的RS-485网络(比如MPI,DP)应使用终端电阻和偏置电阻。在网络连接线非常短、临时或实验室测试时也可以不使用终端和偏置电阻。

终端电阻:在线型网络两端(相距最远的两个通信端口上),并联在一对通信线上的电阻。根据传输线理论,终端电阻可以吸收网络上的反射波,有效地增强信号强度。两个终端电阻并联后的值应当基本等于传输线在通信频率上的特性阻抗。

偏置电阻:偏置电阻用于在电气情况复杂时确保A、B信号的相对关系,保证“0”、“1”信号的可靠性。

西门子的PROFIBUS网络连接器已经内置了终端和偏置电阻,通过一个开关方便地接通或断开。网络终端的插头,其终端电阻开关必须放在“ON”的位置;中间站点的插头其终端电阻开关应放在“OFF”位置。

终端和偏置电阻的值完全符合西门子通信端口和PROFIBUS电缆的要求。

合上网络中网络插头的终端电阻开关,可以非常方便地切断插头后面的部分网络的信号传输。

与其他设备通信时(采用PROFIBUS电缆),对方的通信端口可能不是D-SUB9针型的,或者引脚定义完全不同。如西门子的MM4x0变频器,RS-485通信口采用端子接线形式,这种情况下需要另外连接终端电阻,西门子可以提供一个比较规整的外接电阻。对于其他设备,可以参照《S7-200系统手册》上的技术数据制作。

西门子网络插头中的终端电阻、偏置电阻的大小与西门子PROFIBUS电缆的特性阻抗相匹配,强烈建议用户配套使用西门子的PROFIBUS电缆和网络插头。可以避免许多麻烦。

PCI-9820I数据手册

PCI-9820I https://www.doczj.com/doc/3f10698333.html, ———————————————概述PCI-9820I 接口卡是一款符合工业级温度范围(-25°C ~ +85°C)、兼容PCI2.2规范的2通道PCI-CAN 通讯接口卡,每一个CAN 通道均集成独立的隔离保护电路。 PCI-9820I 符合CAN2.0A/B 规范,支持5Kbps ~ 1Mbps 之间的任意波特率,并提供多个操作系统的设备驱动、工具软件等,能真正的满足客户的各种应用需求,为工业通讯CAN 网络提供了可靠性、高效率的解决方案。 ——————————————产品特性 符合工业级温度范围(-25°C ~ +85°C) 通用PCI 接口,适用于5V 系统 支持CAN2.0A 和CAN2.0B 规范 符合ISO/DIS 11898 规范 两路电气完全隔离的CAN 通道 支持5Kbps ~ 1Mbps 之间的任意波特率 DC 2500V 电气隔离保护 内置120欧姆终端电阻,可通过跳线选择 可靠的EMI/EMC 性能 遵守工业应用规范 ——————————操作系统支持 PCI-9820I 接口卡支持Win2000、WinXP 、Win2003等操作系统,提供WDM 驱动程序、ZLGVCI 动态库、ZOPC 服务器,支持用户进行二次开发。 如果客户有特殊要求,请与广州致远电子有限公司联系。 —————————————订购信息 型号 工作温度 接口 PCI-9820I -25°C ~ +85°C DB-9 ——————————————————————————————————规格 操作系统支持 Win2000、WinXP 、Win2003 工具软件支持 通讯CAN 测试工具ZLGCANTest OPC 服务器ZOPC_Server iCAN 测试工具iCANTest 虚拟串口服务器 ZVCom 电源和环境 电源要求:5V@300 mA (Max.) 操作温度:-25°C ~ +85°C 存储温度:-40°C ~ +85°C 尺寸:130 x 90 mm (W x D) 硬件 CAN 控制器:SJA1000T CAN 收发器:PCA82C251T 接口 总线:PCI ver. 2.2 (32-bit) 性能 速率:5Kbps ~ 1Mbps 传输率:1000fps(标准帧) 配置 PCI :中断和I/O 由BIOS 分配 工作模式:正常、只听、自收发 API :VCI 函数库

大学物理实验双臂电桥测低电阻

双臂电桥测低电阻 实验简介 电阻按照阻值大小可分为高电阻(100KΩ以上)、中电阻(1Ω ~100KΩ)和低电阻(1Ω 以下)三种。一般说导线本身以及和接点处引起的电路中附加电阻约为>0.1Ω,这样在测低电阻时就不能把它忽略掉。对惠斯通电桥加以改进而成的双臂电桥(又称开尔文电桥)消除了附加电阻的影响,适用于10-5~102 Ω电阻的测量。本实验要求在掌握双臂电桥工作原理的基础上,用双臂电桥测金属材料的电阻率。 实验原理 我们考察接线电阻和接触电阻是怎样对低值电阻测量结果产生影响的。例如用安培表和毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图 1 所示, 考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2 所示。 由于毫伏表内阻Rg远大于接触电阻R i3和R i4,因此他们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻是(Rx+ R i1+ R i2)。当待测电阻Rx小于1Ω时,就不能忽略接触电阻R i1和R i2对测量的影响了。 因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图3方式,将低电阻Rx以四端接法方式连接,等效电路如图4 。此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I 即可准测计算出Rx。接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、C)是各自分开的,许多低电阻的标准电阻都做成四端钮方式。

根据这个结论,就发展成双臂电桥,线路图和等效电路图 5和图 6所示。 标准电阻Rn电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。 由图 5 和图 6 ,当电桥平衡时,通过检流计G的电流I G = 0, C和D两点电位相等,根据基尔

can网络距离多远需要加终端电阻

can网络距离多远需要加终端电阻 本文主要是关于CAN总线的相关介绍,并着重对CAN总线网络距离和终端电阻距离进行了详尽的阐述。 CAN总线CAN是控制器局域网络(Controller Area Network,CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO 11898),是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。 CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。 CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。 优势 CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之许多RS-485基于R线构建的分布式控制系统而言,基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 网络各节点之间的数据通信实时性强 首先,CAN控制器工作于多种方式,网络中的各节点都可根据总线访问优先权(取决于

接地电阻测量仪使用方法

接地电阻测量仪使用方法 (1)准备工作 1)熟读接地电阻测量仪的使用说明书,应全面了解仪器的结构、性能及使用方法。 2)备齐测量时所必须的工具及全部仪器附件,并将仪器和接地探针擦拭干净,特别是接地探针,一定要将其表面影响导电能力的污垢及锈渍清理干净。 3)将接地干线与接地体的连接点或接地干线上所有接地支线的连接点断开,使接地体脱离任何连接关系成为独立体。 (2)测量步骤 1)将两个接地探针沿接地体辐射方向分别插入距接地体20m、40m的地下,插人深度为400mm,如图a所示。 图接地电阻测量仪操作示意

a)实际操作 b)等效原理 2)将接地电阻测量仪平放于接地体附近,并进行接线,接线方法如下: ①用最短的专用导线将接地体与接地测量仪的接线端“E1”(三端钮的测量仪)或与C2、”短接后的公共端(四端钮的测量仪)相连。 ②用最长的专用导线将距接地体40m的测量探针(电流探针)与测量仪的接线钮“C1”相连。 ③用余下的长度居中的专用导线将距接地体⒛m的测量探针(电位探针)与测量仪的接线端“P1”相连。 3)将测量仪水平放置后,检查检流计的指针是否指向中心线,否则调节“零位调整器”使测量仪指针指向中心线。 4)将“倍率标度”(或称粗调旋钮)置于最大倍数,并慢慢地转动发电机转柄(指针开始偏移),同时旋动“测量标度盘”(或称细调旋钮)使检流计指针指向中心线。 5)当检流计的指针接近于平衡时(指针近于中心线)加快摇动转柄,使其转速达到120r/min以上,同时调整“测量标度盘”,使指针指向中心线。 6)若“测量标度盘”的读数过小(小于1)不易读准确时,说明倍率标度倍数过大。此时应将“倍率标度”置于较小的倍数,重新调整“测量标度盘”使指针指向中心线上并读出准确读数。 7)计算测量结果,即R地=“倍率标度”渎数ד测量标度盘”读数。

485通信终端电阻的使用

RS485总线终端电阻 1.一般情况下不需要增加终端电阻,只有在485通信距离超过300米的情况下,要在485通讯的开始端和结束端增加终端电阻。 2.终端电阻是为了消除在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。 阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。 引起信号反射的另一原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射, 主要表现在通讯线路处在空闲方式时,整个网络数据混乱。 要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中, 对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。 3. 补充说明: 1)RS-485需要2个终接电阻,接在传输总线的两端,其阻值要求等于传输电缆的特性阻抗。在短距离传输时不需终接电阻,即一般在100米以下不需终接电阻。 2)为了抑制干扰,RS485总线常在最后一台设备之后接入一个120欧的电阻(即为上面所述)。 3)RS-485与RS-422的共模输出电压是不同的。RS-485共模输出电压在-7V至+12V之间,RS-422 在-7V至+7V之间,RS-485接收器最小输入阻抗为12KΩ;RS-422是4kΩ;RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。 4.终端匹配电阻的正确接法是在每个485总线的首尾两端上各接一个120欧姆的终端电阻。 下列建议希望会有所帮助: 1.采用阻抗匹配、低衰减的RS485专用电缆更有利于保证通信。 一般推荐如下: 普通双绞屏蔽型电缆STP-120Ω(for RS485 & CAN)one pair 20 AWG ,电缆外径7.7mm左右。适用于室内、管道及一般工业环境。使用时,屏蔽层一端接地! 普通双绞屏蔽型电缆STP-120Ω(for RS485 & CAN)one pair 18 AWG ,电缆外径8.2mm左右。适用于室内、管道及一般工业环境。使用时,屏蔽层一端接地!

接地电阻检验方法(带图)

For personal use only in study and research; not for commercial use 接地电阻测试方法(带图) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。

ZC-8型接地电阻测试仪 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 常用工器具 五、仪表好坏检查: 1、外观检查。 先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。

三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P)短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向; 四端钮的接地摇表:将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。 3、短路检查。不管是三端钮的仪表还是四端钮的仪表,均将所有端钮连接起来,然后轻摇摇表,摇表的指针偏往“0”的方向。

CAN总线两端加终端电阻

在RS485组网过程中另一个需要主意的问题是终端负载电阻问题,在设备少距离短的情况下不加终端负载电阻整个网络能很好的工作但随着距离的增加性能将降低。理论上,在每个接收数据信号的中点进行采样时,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。但这在实际上难以掌握,美国MAXIM公司有篇文章提到一条经验性的原则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配:当信号的转换时间(上升或下降时间)超过电信号沿总线单向传输所需时间的3倍以上时就可以不加匹配。 一般终端匹配采用终端电阻方法,RS-485应在总线电缆的开始和末端都并接终端电阻。终接电阻在RS-485网络中取120Ω。相当于电缆特性阻抗的电阻,因为大多数双绞线电缆特性阻抗大约在100~120Ω。这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大功率,对于功耗限制比较严格的系统不太适合。另外一种比较省电的匹配方式是RC匹配。利用一只电容C隔断直流成分可以节省大部分功率。但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。还有一种采用二极管的匹配方法,这种方案虽未实现真正的“匹配”,但它利用二极管的钳位作用能迅速削弱反射信号,达到改善信号质量的目的,节能效果显著。 抗干扰~~ 一般在总线两端接终端电阻即可,但也有例外,例如有临时加上的总线诊断设备,形成支线。 在不接终端电阻的情况下,除了EMC性能下降,其他影响也是有的,例如若CAN总线断开一根,与接终端电阻是不一样的,没接的居然还能收,单线通讯??不过EMC大大的下降,一半左右。 关于阻值计算,好像跟收发器驱动特性,电缆特性有关。而总线长度主要取决于位定时参数,位速率允许情况下,才能达到一定的总线长度。 总的来说,终端电阻主要用于增强EMC性能,然而EMC性能在汽车级的应用中当然十分重要,一般在两端加入120欧姆的电阻即可。 本人初学,抛砖引玉。关注~~~ 另外可推荐一本书:《现场总线CAN原理与应用技术》,北京航空航天大学出版社。上面论述较为详细~~ CAN是多主传输,为了消除短路现象,其CANH和CANL电平的性质是不一样的,如CANH的两种逻辑状态为高电平和高阻状态,CANL的两种逻辑状态为低电平和高阻,高阻状态其实电平是不确的,因此在差分传输的CAN总线中,匹配电阻不仅作为匹配用还起降低CANH与CANL回路中阻抗的作用,使CANH和CANL具有确定的电平,所以在调CAN时,即使线再短也需要加在CANH与CANL之间加一个电阻的原因,此时这个电阻并不起匹配作用。 基于CAN总线的RS-232串口设备远程通信 工业设备通信通常涉及到很多硬件和软件产品以及用于连通标准计算机平台(个人计算机或工作站)和工业自动化应用设备的协议,而且所使用设备和协议的种类繁多。因此,大部分自动化应用设备都希望执行简单的串行命令,并希望这些命令同个人计算机或者附加的串行端口板上的标准串行端口兼容。RS-232是目前PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。由于RS-232的发送端与接收端之间有公共信号地,所以它不能使用双端信号,否则,共模噪声会耦合到信号系统中。RS-232标准规定,其最大距离仅为15m,信号传输速率最高为20kbit/s。 CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一

双臂电桥测低电阻实验报告

《基础物理》实验报告 学院: 国际软件学院专业: 数字媒体技术2011 年 6 月3日 实验名称双臂电桥测低电阻 姓名陈鲁飞年级/班级10级原软工四班学号25 一、实验目的四、实验内容及原始数据 二、实验原理五、实验数据处理及结果(数据表格、现象等) 三、实验设备及工具六、实验结果分析(实验现象分析、实验中存在问题的讨论) 一、实验目的 1、了解测量低电阻的特殊性。 2、掌握双臂电桥的工作原理。 3、用双臂电桥测金属材料(铝、铜)的电阻率。 二、实验原理 我们考察接线电阻与接触电阻就是怎样对低值电阻测量结果产生影响的。例如用安培表与毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图 1 所示, 考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2所示。 由于毫伏表内阻Rg远大于接触电阻R i3与R i4,因此她们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻就是(Rx+ R i1+ R i2)。当待测电阻Rx小于1时,就不 能忽略接触电阻R i1与R i2对测量的影响了。 因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图 3方式,将低电阻Rx以四端接法方式连接,等效电路如图 4 。此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I即可准测计算出Rx。接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、C)就是各自分开的,许多低电阻的标准电阻都做成四端钮方式。

根据这个结论,就发展成双臂电桥,线路图与等效电路图5与图6所示。标准电阻Rn 电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。 由图5与图6,当电桥平衡时,通过检流计G的电流I G= 0, C与D两点电位相等,根据基尔霍夫定律,可得方程组(1)

为什么RS485总线要接终端电阻

[资源分享]为什么RS485总线要接终端电阻 终端电阻是为了消除在通信电缆中的信号反射。 在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。 补充说明: 1.RS-485需要2个终接电阻,接在传输总线的两端,其阻值要求等于传输电缆的特性阻抗。在短距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。 2.为了抑制干扰,RS485总线常在最后一台设备之后接入一个120欧的电阻(即为上面所述)。 3.RS-485与RS-422的共模输出电压是不同的。RS-485共模输出电压

在-7V至+12V之间,RS-422在-7V至+7V之间,RS-485接收器最小输入阻抗为12KΩ;RS-422是4kΩ;RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。 RS485为什么长距离通信时要加一个终端电阻? 485的通信方式就是一个正极D+和一个负极D-,两线间的电压为0和1的信号,为什么长距离的时候要加一个终端电阻?在后面并个电阻的作用是什么?个人感觉并不并联这个电阻从电气原理上好像没有太多的意义? 这个电阻为什么能识别是整个网络节点中的最后一个设备? 最佳答案 恩,作为网络传输路径,其中一个重要的指标就是信号反射。 如果没有终端电阻来消除信号反射的话,那么发射信号的设备,在传输路径的终端后,反射信号到发射端,这样使得网络上的信号产生叠加,网络信号就紊乱了。 所以终端电阻是必要的,同时也是与网络的传输阻抗有关。 终端电阻本身应该处于网络中,但是位置建议放在最末端,这样不会衰减正常的信号,它本身是无法识别 级2012-08-21 08:02:42 其他答案 主要是避免信号传递过程中的错误,加上终端电阻后,可以有效地抑制干扰! 回答者:YHKingKong - 高级工程师第11级 2012-08-21 08:26:25 你好! PROFIBUS是485网络,以差分电压信号来代表数据0和1。如果没有终端电阻,或者拨了终端电阻但终端没有电压,会造成阻抗不匹配,导致信号反射,从而电压波形畸变。但只要波形还能被正确识别,通信就还正常,但造成的影响是存在的。因此正常来讲必须在终端拨上终端电阻并保持供电。 置评专家:西门子自动化技术支持 2011-07-08 17:04:25 RS485接口、电缆、布网、终端电阻RS485接口RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。在

PROFIBUS接线方式

?收藏 ?评论(0) 分享到 微博 QQ 微信 LinkedIn Profibus-DP电缆接法 PROFIBUS 电缆很简单的,就只有两根线在里面,一根红的 一根绿的,然后外面有屏蔽层。接线的时候,要把屏蔽层接 好,不能和里面的电线接触到。要分清楚进去的和出去的线 分别是哪个,假如是一串的,就是一根总线下去,中间不断 地接入分站,这个是很常用的方法。在总线的两头的两个接 头,线都要接在进去的那个孔里,不能是出的那个孔,然后 这两个两头的接头,要把它们的开关置为ON状态,这时候 就只有进去的那个接线是通的,而出去的那个接线是断的。 其余中间的接头,都置为OFF,它们的进出两个接线都是通 的(记忆方法:ON表示接入终端电阻,所以两端的接头拨 至ON;OFF表示断开终端电阻,所以中间的接头要拨至 OFF)。 Profibus-DP电缆的测量 接好了线以后呢,还要用万用表量一量,看这个线是不是通 的。假如你这根线上只有一个接头,你量它的收发两个针上

面的电阻值,如果是220欧姆,那么就是对的,假如你这根线已经做好了,连了一串的接口,你就要从一端开始逐个检查了。第一个单独接线的接口,是ON状态,然后你把邻近的第一个接口的开关也置为ON,那么这个接口以后的部分就断了。现在测最边上,就是单线接的那个接口,之后的测量也一直都是测这个接口,测它的收发两个针,和刚才一样,假如电阻是110欧姆(被并联了),那么这段线路就是通的,然后把中间刚才那个改动为ON的接口改回到OFF,然后是下一个接口改为ON…….就这么测下去,如果哪个的电阻不是110欧姆了,就是那一段的线路出问题了。 Profibus-DP常见故障 (1)终端DP头接线错误,或终端电阻设置错误。 (2)DP头接线不牢,最好接完线用上面的方法测试一遍。(3)硬件配置和从站号设置问题

四端钮接法测低值电阻

学校:凯里学院 分院:物理与电子工程学院班级:二零一零级物理一班学号:2010405274 姓名:罗锋利

四端钮接法测低电阻 中文摘要:导线电阻及接触电阻带来的方法误差对测量低电阻的影响很大,将低电阻接成四端钮接法,采用检流计充当电压表测量电压,并需先测出检流计的内阻,最后运用电流比较法来进行测量低电阻。 关键词:电磁学、四端钮接法、电流比较法、检流计、低电阻 引言:电阻是所有的电子电路中使用最多的原件,它是一种耗能元件,在电路中用于控制电压、电流的大小,所以电阻的测量,一直是电学实验中的热点[1]。 电阻通常分为3大类,包括低值电阻,中值电阻和高值电阻。其测量方法有伏安法、半偏法、等效替代法、比较法等,其中伏安法是最基本最常用的方法。 在伏安法测电阻中,通常采用内接法和外接法来测量电阻,但是无论采用哪种方法,由于电流表的分压和电压表的分流作用的影响,使得测量结果均存在一定的误差[2]。使其测量结果总是偏大或偏小。所以,为了克服接触电阻和导线电阻对测量结果的影响,本实验采用了四端钮接法来连接电路并采用与电流比较法来综合进行测低电阻[3-4]。在测量过程中采用灵敏检流计来充当电压表的思想来测量电压,但需首先测量出灵敏检流计的内阻阻值,则可间接测量电压[5]。测量灵敏检流计的内阻的方法采用了电流比较法来测量,这是因为其内阻阻值比较 大,易测量出。 1、实验原理 1.1用电流比较法测灵敏检流计内阻 图1 电流式比较法测电表内阻原理图 如图1,保持干路上的电阻箱2R 的阻值一直不变,当开关打到灵敏检流计一端时,此时电流表电流记为1I ;再把开关打到电阻箱1R 一端,此时电流表电流记为2I ,那么很容易得到以下关系 2 11 gr I R R I 然后调节电阻箱1R 的阻值使得此时电流表的读数也为1I ,则此时1R 的读数就为灵

终端电阻

有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定: 另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

图2 终端电阻RT和线路阻抗的变动终端电阻的效果 (2009-07-08 01:33:30) 转载▼ 标签:终端电阻 阻抗匹配 波形 it 分类:电子技术

终端电阻的作用: 1:阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2:减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及 后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 无论是RS485、CAN总线、USB。都是需要加终端电阻进行阻抗匹配的,许多工程师对终端电阻的理解不是很清楚,甚至因为程序上能正常通讯,所以就索性省去了终端电阻。这样带来很大的隐患,通讯时好时坏,通常是去检查时没有问题,而回到家一睡觉,现场就出问题了,呵呵。所以终端电阻还是很有作用的,可是如果讲理论,又是长篇大论,这里就用波形来说明问题。 1.未加终端电阻的波形(还是可以通讯的) 2.加上终端电阻的波形(通讯稳定性增强)

]LVDS,CML,LVPECL,VML之间接口电平转换

1概要 随着通讯速度的提升,出现了很多差分传输接口,以提升性能,降低电源功耗和成本。早期的技术,诸如emitter-coupled logic(ECL),使用不变的负电源供电,在当时用以提升噪声抑制。随着正电压供电技术发展,诸如TTL和CMOS技术,原先的技术优点开始消失,因为他们需要一些-5.2V或-4.5V的电平。在这种背景下,ECL转变为positive/pseduo emitter-coupled logic (PECL),简化了板级布线,摒弃了负电平供电。PECL要求提供800mV的电压摆幅,并且使用5V对地的电压。LVPECL类似于PECL也就是3.3V供电,其在电源功耗上有着优点。 当越来越多的设计采用以CMOS为基础的技术,新的高速驱动电路开始不断涌现,诸如current mode lo gic(CML),votage mode logic(VML),low-voltage differential signaling(LVDS)。这些不同的接口要求不同的电压摆幅,在一个系统中他们之间的连接也需要不同的电路。 本应用手册主要内容为:TI的不同的SERDES器件,输入输出结构,多种高速驱动器,以及偏置和终端电路。 在不同的接口之间,往往采用交流耦合的方式(ac-coupling),从而可以独立的对驱动器和接收器进行处理。 1. 不同接口之间的转换 2. 不同信号电平的转换 3. 不同地之间的转换 2各信号电平 第一步首先是理解各个接口点逻辑电平,主要讨论LVPECL,CML,VML,以及LVDS。 表一为这些接口的输出电平。 项目LVPECL CML VML LVDS VOH 2.4V 1.9V 1.65V 1.4V VOL 1.6V 1.1V 0.85V 1V 输出电压(单 800mV 800mV 800mV 400mV 端) 1.25V 1.2V 共模电压2V 1.5V (VCC-0.2V)1 表一,各接口电平规范 图一 3输入输出结构 在上文中提到了关于LVPECL,CML,VML以及LVDS驱动器,这些都是基于CMOS技术的。这个部分介绍各个种类的输入输出结果。 3.1 LVPECL接口

接地电阻测试方法(带图)

接地电阻测试方法(带图) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 ZC-8型接地电阻测试仪 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台

2、辅助接地棒二根 3、导线5m、20m、40m各一根 常用工器具 五、仪表好坏检查: 1、外观检查。 先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。 三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P)短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向; 四端钮的接地摇表:将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。

3、短路检查。不管是三端钮的仪表还是四端钮的仪表,均将所有端钮连接起来,然后轻摇摇表,摇表的指针偏往“0”的方向。 通过上述三个步骤的检查后,基本上可以确定仪表是完好的。 六、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、

如何正确使用Profibus插头以及终端电阻

如何正确使用Profibus插头以及终端电阻 插头与终端电阻在Profibus通讯中有着非常重要的作用,它们使用起来非常简单,没有很多复杂的设置;但是正是由于使用简单,使得很多工程师在使用当中忽略了一些细节,导致很多通讯问题。 1 Profibus插头的结构与简单用法 图1Profibus插头结构 这是常见的Profibus插头,如果我们有A、B两个站点要做Profibus通讯,应该如何连接插头呢?因为总线上只有两个站,显然终端电阻都要打到ON位置。那么插头上的接线是否要一进一出呢。

图2 两个DP站点的连接 正确的做法是两个插头都连接进线端。因为终端电阻与插头的出线端是2选1的。终端电阻打ON,进线端连接终端电阻,断开与出线端的连接;终端电阻打OFF,进线端断开与终端电阻的连接,连接出线端。 2常见的Profibus总线连接

图3 主站在总线一端点 图3所示的是一般的Profibus总线连接方法,主站位于总线的一端,终端电阻打ON。 然后依次连接后面的站点,中间的站点终端电阻打OFF,最后面的站点终端电阻打ON。 图4 主站在总线中间 有时候由于现场设备分布的原因,主站也可以安装在Profibus总线的中间,具体做法如图4所示。 终端电阻打ON的设备不能断电,如图5所示Profibus插头上除了220欧的终端电阻以外还有两个390欧的偏置电阻,并且偏置电阻上必须连接电源。

图5 终端电阻和偏置电阻 如果终端设备需要经常断电维护,或者终端设备只有接线端子而没有9针D型插座,就需要使用有源终端模块作为Profibus总线的终端(6ES7 972-0DA00-0AA0)。 图6 Profibus有源终端模块 如果Profibus电缆不够长,需要把两根电缆接起来,不能简单的把两根铜芯拧起来,因为这样会破坏电缆的特征阻抗,可能会导致通讯问题。最好使用图7中的接头来连接两根需要接起来的电缆。

大学物理实验报告 双臂电桥测低电压

实验报告 双臂电桥测低电压 电阻值按其大小可分为高、中和低三种阻值,100k Ω以上称为高电阻,中电阻得范围约在1Ω-100k Ω,1Ω以下的电阻称为低电阻。 不同的电阻,测量方法的不同。惠斯通电桥用来测量中值电阻时,可以忽略接触电阻及连接导线的电阻(称为附加电阻,约为 - - )带来的影响。但是,在测量1Ω以下的低电阻时就不行了,例如:测量电阻值为0.01Ω的电阻时,若接触电阻为0.01Ω左右时,其百分比误差为 ,这就无法得出测量的结果。根据惠斯通电桥原理改进的双臂电桥(又称为开尔文电桥)利用补偿法修正系统的误差,能够较高地消除附加电路带来的影响,适合于测量 - - 范围内的电阻。 关键词:电阻;惠斯通电桥;双臂电桥 一、实验目的 1.了解双臂电桥测电阻的原理和方法; 2.用双臂电桥测导体的电阻率ρ 和电阻温度系数α。 二、实验原理 如图7-5-1所示是惠斯通电桥测电阻原理的线路图,如果待测电阻R X 是低电阻,R S 也应该是低电阻,R 1和R 2可以用高电阻。虽然,连接R 1和R 2的四根导线的电阻和接触电阻相对于高电阻R 1和R 2可以忽略。但是,连接待测电阻R X 和低电阻R S 导线的电阻和接触电阻相对于低电阻R X 和低电阻R S 来说,对测量的结果的影响就不可以忽略。所以,惠斯通电桥不能测低测电阻,要测低电阻就必须改进。 为了消除上述接触电阻的影响,首先研究用伏安法测金属棒电阻R 的情况,如图7-5-2(a)所示。途中电流I 在A 处分为I 1和I 2两分支电流,考虑接线的电阻和接触电阻:I 1流经A 点处电流表和金属棒间的接触电阻r 1再流入R;I 2流经A 点处电压表和金属棒间的接触电阻r 3再流入电压表。同理可知,当I 1和I 2汇合到B 点时,必须流过r 4和r 2。因此,可以把r 1和r 2看作与R 串联。而把r 3和r 4看作与电压表串联,它们的等效电路如图7-5-2(b )所示。如此说来,电压表上的指示值包括了r 1、r 2和R 上的电压。由于R 很小,r 1、r 2和R 相比具有相同的数量级,甚 至于比R 还大,所以,用电压表上的值来计算电阻R 的值,其结 图7-5-1 惠斯通电桥线路 果必然包含很大的误差。 图7-5-2 伏安法测金属棒的电阻

小电阻之大作用“CAN终端电阻”

小电阻之大作用“CAN终端电阻” CAN总线终端电阻,顾名思义就是加在总线末端的电阻。此电阻虽小,但在CAN总线通信中却有十分重要的作用。 终端电阻的作用 CAN总线终端电阻的作用有两个: 一、提高抗干扰能力,确保总线快速进入隐性状态。 二、提高信号质量。 提高抗干扰能力 CAN总线有“显性”和“隐性”两种状态,“显性”代表“0”,“隐性”代表“1”,由CAN 收发器决定。图1是一个CAN收发器的典型内部结构图,CANH、CANL连接总线。 图1 总线显性时,收发器内部Q1、Q2导通,CANH、CANL之间产生压差;隐性时,Q1、Q2截止,CANH、CANL处于无源状态,压差为0。 总线若无负载,隐性时差分电阻阻值很大,外部的干扰只需要极小的能量即可令总线进入显性(一般的收发器显性门限最小电压仅500mV)。为提升总线隐性时的抗干扰能力,可以增加一个差分负载电阻,且阻值尽可能小,以杜绝大部分噪声能量的影响。然而,为了避免需要过大的电流总线才能进入显性,阻值也不能过小。 确保快速进入隐性状态 在显性状态期间,总线的寄生电容会被充电,而在恢复到隐性状态时,这些电容需要放

电。如果CANH、CANL之间没有放置任何阻性负载,电容只能通过收发器内部的差分电阻放电。我们在收发器的CANH、CANL之间加入一个220PF的电容进行模拟试验,位速率为500kbit/s,波形如图2、图3。 图2 图3 从图3看出,显性恢复到隐性的时间长达1.44μS,在采样点较高的情况下勉强能够通信,若通信速率更高,或寄生电容更大,则很难保证通信正常。 为了让总线寄生电容快速放电,确保总线快速进入隐性状态,需要在CANH、CANL之间放置一个负载电阻。增加一个60Ω的电阻后,波形如图4、图5。从图中看出,显性恢复到隐性的时间缩减到128nS,与显性建立时间相当。

终端电阻

终端电阻的含义 高频信号传输时,信号波长相对于传输线较短,信号在传输终端会形成反射波,干扰原信号,所以在传输末端要加终端电阻,使信号到达传输末端后不反射。对于低频信号则不用,在长线信号传输时,一般避免信号的反射和回波,也需要在接受终端接入终端电阻匹配。 终端匹配电阻取决于电缆的阻抗特性,与电缆长度无关。RS485/RS422一般采用双绞线连接(屏蔽或非屏蔽),终端电阻一般介于100-140欧姆,典型值为120欧姆,在实际配置中,在电缆的缆的两个终端节点上,起始端和最远端各接入一个终端电阻,儿处于中间的各节点,不能接入终端电阻,否则将导致通讯失误。 终端电阻的作用:一般说法:终端电阻是为了消除在电缆中的信号反射,在通信中有两种情况导致信号反射,阻抗不连续和阻抗不匹配,1.阻抗不连续,信号在传输线末端突然遇到电缆阻值很小,甚至没有,信号在这个地方就会引起反射,这种信号反射原理,与光从一种介质进入另一种介质原理相似,消除这种反射,就必须在电缆末端跨接一个与电缆的特性阻抗同样大小到的终端电阻,使电缆阻抗连续,由于信号在电缆上的传输是双向的,引起信号反射的另一原因是数据收发器与传输电缆之间的阻抗不匹配,这种原因引起的反射主要表现在通讯线路在恐闲方式时,整个网络数据混乱,要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。 RS485通讯原理,采用两根双绞线,一根A+或信号正极,一根A-或信号负极,采用差分信号,正信号在+2--+6V之间,负信号在-2---6V之间。 RS422通讯原理,采用四根线。发射+,发射-,接收+,接收-. RS232通讯原理,三根线,发射2-3,接受3-2. 5-5GND,发射和GND比较电压,接受和GND 比较电压,记录电压即可。

RS-485之信号反射与终端电阻

RS-485之信号反射与终端电阻 RS-485总线具有结构简单、成本低等优点,但各位工程师在组建RS-485总线网络时,为提升整个网络通信的可靠性,想必会经常会遇到一个问题:需不需要加终端电阻呢?本文将为你解答。 1、终端电阻的作用 对于RS-485总线,终端电阻主要是为了匹配通信线的特性阻抗,防止信号反射,提高信号质量。 在组建RS-485总线网络时,通常使用特性阻抗为120Ω的屏蔽双绞线,由于RS-485收发器输入阻抗一般较高(例如RSM485ECHT输入阻抗为96kΩ,最多可连接256个节点),在信号传输到总线末端时会由于受到的瞬时阻抗发生突变(以RSM485ECHT为例,阻抗由120Ω变为96kΩ),导致信号发生反射,影响信号的质量。RSM485ECHT在1200m,500kbps 通信速率的情况下不加终端电阻和加终端电阻的波形如图1和图2所示,终端电阻明显改善了信号的质量。 图1 RSM485ECHT 1200m 500kbps不加终端电阻 图2 RSM485ECHT 1200m 500kbps 加终端电阻 2、终端电阻带来的问题 终端电阻虽然可以提高信号质量,但还具有以下几个问题: 1)降低了驱动信号的幅值 RS-485总线上的负载越大,RS-485收发器输出差分电压幅值越低,RSM485ECHT在5m,500kbps的情况下不加终端电阻和加终端电阻的波形如图3和图4所示,可以看出驱动

信号在增加终端电阻后降低了2V左右。 图3 RSM485ECHT 5m 500kbps 不加终端 图4 RSM485ECHT 5m 500kbps 加终端 2)增大了通信线上的压降 增加终端电阻使通信线缆上的电流增大,产生了较大的压差,降低了接收端的信号幅值。RSM485ECHT在1200m,115.2kbps首端和末端的信号波形如图5和图6所示(0.75mm2通信线),末端信号与首端信号相比下降了0.7V左右。 图5 RSM485ECHT 1200m 115.2kbps 加终端电阻首端波形

CN为什么接欧姆终端电阻

1,为什么不能直接在一端用一个60Ω的电阻 2,终端电阻的作用都说是使阻抗连续,消除反射,那为什么只在物理上最远的两个节点加这个匹配电阻,而不是在所有的节点都加上匹配电阻 传输时,信号波长相对较短,信号在终端会形成,干扰原信号,所以需要在末端加,使信号到达传输线末端后不反射。对于低频信号则不用 两端必须连接才可以正常工作,应该与的相同,典型值为120欧姆.其作用是匹配总线,提高的抗干扰性及可靠行。 1. 终端电阻的作用就是吸收信号反射及回波,而产生信号反射的最大来源便是阻抗不连续以及不匹配。 2. 如果是加在单独的两根线上,相当于一个开环的状态,根据产生信号反射的来源,也就是说这种连接方式会导致单线上阻抗更加不连续,在末端突然变为0,会导致反射成倍增加。 高速CAN所加的两个120欧的电阻实际上模拟的是线束连接无穷远的时候在传输线上产生的特性阻抗(而不是实际阻抗),这是个典型经验值,具体值取决于所采用的线束类型。 以上如仍有不明之处,请简单查阅下传输线理论和信号反射相关的知识。 CAN低速之所以不加终端电阻,是因为不同的频率时,同样的连接方式所产生的信号反射和回波差异很大,频率越高,反射和回波越强烈。另外不同的频率下,传输线的特性阻抗是不同的。

3. 在ISO-11898-2:2003第4页第一段中大致有这么一句话:“当一个显性位发送到至少包含一个CAN驱动处于开启状态的网络上时,意味着有电流经过终端电阻,因此,CAN_H 和CAN_L具有了不同的电压值。”,也就是说,在显性状态时,终端电阻会稳定并增强差分电压,当去掉一个或两个终端,通过示波器可以明显看到一是信号不稳,二是差分电压会有变化,缺少终端或没有终端电阻时所测到的电压我认为是单纯由CAN驱动器所产生的,离发送端越远,电压差异越大。

相关主题
文本预览
相关文档 最新文档