当前位置:文档之家› 共沉淀

共沉淀

共沉淀
共沉淀

共沉淀法是指在溶液中含有两种或多种阳离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。.

共沉淀法,就是在溶解有各种成份离子的电解质溶液中添加合适的沉淀剂,反应生成组成均匀的沉淀,沉淀热分解得到高纯纳米粉体材料。共沉淀法的优点在于:其一是通过溶液中的各种化学反应直接得到化学成分均一的纳米粉体材料,其二是容易制备粒度小而且分布均匀的纳米粉体材料

化学共沉淀法制备ATO粉体具有制备工艺简单、成本低、制备条件易于控制、合成周期短等优点,已成为目前研究最多的制备方法。

化学共沉淀法是把沉淀剂加入混合后的金属盐溶液中,使溶液中含有的两种或两种以上的阳离子一起沉淀下来,生成沉淀混合物或固溶体前驱体,过滤、洗涤、热分解,得到复合氧化物的方法。沉淀剂的加入可能会使局部浓度过高,产生团聚或组成不够均匀。

化学共沉淀法不仅可以使原料细化和均匀混合,且具有工艺简单、煅烧温度低和时间短、产品性能良好等优点。

产生共沉淀的原因有:①表面吸附,由于沉淀表面的离子电荷未达到平衡,它们的残余电荷吸引了溶液中带相反电荷的离子。这种吸附是有选择性的:首先,吸附晶格离子;其次,凡与晶格离子生成的盐类溶解度越小的离子,就越容易被吸附;离子的价数愈高、浓度愈大,则愈容易被吸附。吸附是一放热过程,因此,溶液温度升高,可减少吸附。②包藏,在沉淀过程中,如果沉淀剂较浓又加入过快,则沉淀颗粒表面吸附的杂质离子来不及被主沉淀的晶格离子取代,就被后来沉积上来的离子所覆盖,于是杂质离子就有可能陷入沉淀的内部,这种现象称为包藏,又叫吸留。由包藏引起的共沉淀也遵循表面吸附规律。例如,在过量氯化钡存在下沉淀硫酸钡时,沉淀表面首先吸附构晶离子Ba2+;为了保持电中性,表面上的Ba2+又吸引Cl-;如果晶体成长很慢,溶液中的硫酸钡将置换出大部分Cl-;如果晶体成长很快,

则硫酸钡来不及交换Cl-, 就引起较大量的氯化钡的包藏共沉淀。因为硝酸钡比氯化钡的溶解度小,所以钡的硝酸盐比氯化物更易被包藏。③生成混晶,如果晶形沉淀晶格中的阴、阳离子被具有相同电荷的、离子半径相近的其他离子所取代,就形成混晶。例如,当大量Ba2+和痕量Ra2+共存时,硫酸钡就可和硫酸镭形成混晶同时析出,这是由于二者有相同的晶格结构,Ra2+和Ba2+的离子大小相近的缘故。

注意事项:

初中化学常见沉淀物质和反应方程式讲解学习

》<<<<<<精品资料》》》》初中化学常见沉淀物质及反映方程式--------Fe(OH)3 红褐色絮状沉淀----------Cu(OH)2 蓝色絮状沉淀 --------------CaCO3,BaCO3,AgCl,BaSO4 白色沉淀、AgCl是不溶于HNO3的白色沉淀(其中BaSO4),Mg(OH)2. Fe(OH)2 ,CaCO3 BaCO3是溶于HNO3 的白色沉淀(无水硫)(水溶液中)----S 淡黄色沉淀 ------------Ca(OH)2,CaSO4 微溶于水 氧化反应:白色信号弹、镁在空气中燃烧:12Mg + O22MgO 1现象:()发出耀眼的白光(2)放出热量(3)生成白色粉末Fe3O4 3Fe + 2O2、铁在氧气中燃烧:2 )放出热量(3)生成一种黑色固体1现象:()剧烈燃烧,火星四射(2 注意:瓶底要放少量水或细沙,防止生成的固体物质溅落下来,炸裂瓶底。 3、铜在空气中受热:2Cu + O2现象:铜丝变黑、用来检验是否含氧气。2CuO2Al2O3 、铝在空气中燃烧:44Al + 3O2 现象:发出耀眼的白光,放热,有白色固体生成。 2H2O 、氢气中空气中燃烧:52H2 + O2 高能燃料 》》》》精品资料》<<<<<< 》》》<<<<<<精品资料》》)烧杯内壁出现水雾。31)产生淡蓝色火焰(2)放出热量(现象:(证明空气中氧气含量 6、红(白)磷在空气中燃烧:4P + 5O22P2O5 3)生成大量白烟。2现象:(1)发出白光()放出热量( SO27、硫粉在空气中燃烧:S + O2现象: A、在纯的氧气中发出明亮的蓝紫火焰,放出热量,生成一种有刺激性气味的气体。、在空气中燃烧B 3)放出热量()生成一种有刺激性气味的气体。1()发出淡蓝色火焰(2CO2 C + O28、碳在氧气中充分燃烧: 2)放出热量()澄清石灰水变浑浊31现象:()发出白光( 2CO 2C + O2、碳在氧气中不充分燃烧:9 102CO(是吸热的反应)、二氧化碳通过灼热碳层: C + CO22CO2 11、一氧化碳在氧气中燃烧:2CO + O2 现象:发出蓝色的火焰,放热,产生的气体能使澄清石灰水变浑浊。、二氧化碳和水反应(二氧化碳通入紫色石蕊试液):12 现象:石蕊试液由紫色变成红色。CO2 + H2O===H2CO3 注意:酸性氧化物+水→酸H2SO4

共沉淀法制备BaTiO3

实验1 共沉淀法制备BaTiO3 一、实验目的 1.掌握纳米材料的共沉淀制备技术。 2.掌握利用XRD的物相和成分分析的方法。 二、实验原理 钛酸钡(BaTiO3)具有强介电、压电、铁电和正温度系数效应等优异的电学性能,是电;器件的制造。近年来,随着电子元件的高精度、高可靠性和小型化,对钛酸钡粉体也有了高纯、超细和均匀化的要求,多种制备方法的取得了很大进展,如溶胶-凝胶法、水热法、化学沉淀法和微乳液法等。化学城沉淀法因具有条件温和、分体性能优异等特点而得到广发关注。其中共沉淀法从工艺条件、经济成本、分体性能综合考虑,为制备碳酸钡的较好方法。 用共沉淀法制备纳米BaTiO3粉体的工艺是从对应水热法的工艺演变而来的。共沉淀法制备纳米BaTiO3粉体,不需要加额外压强,BaTiO3粉体可以在90℃下得到,即纳米BaTiO3粉体可以在常压低温下得到。溶液的pH值和CO2分压是两个非常重要的热力学变量。BaTiO3 的溶解性强烈依赖于pH值,90℃下,当[Ba ]=10-6 mol/L时,完全沉淀BaTiO3需要pH 值≥4;当[Ba ]=10-1 mol/L时,完全沉淀BaTiO3需要pH值≥11。温度的降低使溶解度曲线移向高pH值方向,即当温度降低时,需要更高的pH值使之沉淀完全。同时应避免CO2的存在,因为BaCO3较BaTiO3稳定。 传统的钛酸被共沉淀法采用的是草酸共沉淀法,草酸盐共沉淀法已经工业化生产,是将TiOCl2和BaCl2的混合溶液在室温下加入到草酸溶液中,并加入表面活性剂,不断搅拌,发生沉淀反应生产BaTiO(C2O4)2 4H2O沉淀,经过滤、洗涤、干燥。煅烧,制得BaTiO3粉体,但是这种方法引起的Ti/Ba波动较大,不能保证其化学组成,同时,还存在团聚。本实验选择采用改进的草酸盐共沉淀法和NaOH共沉淀法制备BaTiO3粉体。 改进的草酸盐共沉淀法的制备原理:利用在钛酸丁酯溶液中,TiO2+与H2C2O4在一定条件下形成TiO(C2O4)22-配合粒子的特点,先形成络离子,再使它与Ba2+反应生成BaTiO(C2O4)2 4H2O前驱体,然后经过滤、洗涤、干燥、煅烧得到BaTiO3超细粉体。此过程相对于传统 的草酸氧钛沉淀法,具有操作简单,操作条件的微小变化不会造成产物Ba/Ti波动大的优点。在TiO2+和BaTiO3体系中涉及反应式如表1.1。 表1.1 TiO2+和H2C2O4体系中反应及反应常数

初中化学沉淀物质大汇总

初中化学沉淀物质大汇总 有色沉淀 白色沉淀:Fe〔OH〕2,CaCO3,BaSO4,Mg〔OH〕 2,Al〔OH〕3,PbSO4,AgCl 红褐色沉淀:Fe〔OH〕3 蓝色沉淀:Cu〔OH〕2 黑色沉淀:CuS,PbS 酸碱反应 1.碳酸钙CaCO3 白色沉淀溶于酸〔CaSO4也是沉淀〕 2.氯化银AgCl 白色沉淀不溶于强酸强碱 3.碳酸银AgCO3 白色沉淀溶于酸 4.碳酸钡BaCO3 白色沉淀溶于酸 5.硫酸钡BaSO4 白色沉淀不溶于强酸强碱 6.氢氧化铜Cu〔OH〕2蓝色沉淀溶于酸 7.氢氧化铝Al〔OH〕3白色沉淀溶于酸 8.氢氧化镁Mg〔OH〕2白色沉淀溶于酸 9.氢氧化铁Fe〔OH〕3红褐色沉淀溶于酸 10.氢氧化亚铁Fe〔OH〕2白色沉淀溶于酸 反应方程式 CuSO4+2NaOH=Cu〔OH〕2↓+Na2SO4蓝色沉淀生成、上部为澄清溶液质量守恒定律实验 Ca〔OH〕2+CO2=CaCO3↓+ H2O 澄清石灰水变浑浊应用CO2

检验和石灰浆粉刷墙壁 Ca〔HCO3〕2ΔCaCO3↓+H2O+CO2↑白色沉淀、产生使澄清石灰水变浑浊的气体水垢形成。钟乳石的形成 HCl+AgNO3= AgCl↓+HNO3生成白色沉淀、不溶解于稀硝酸检验Cl—的原理 Ba〔OH〕2+H2SO4=BaSO4↓+2H2O生成白色沉淀、不溶解于稀硝酸检验SO42—的原理 BaCl2+ H2SO4=BaSO4↓+2HCl生成白色沉淀、不溶解于稀硝酸检验SO42—的原理 Ba〔NO3〕2+H2SO4=BaSO4↓+2HNO3生成白色沉淀、不溶解于稀硝酸检验SO42— 的原理 FeCl3+3NaOH=Fe〔OH〕3↓+3NaCl溶液黄色褪去、有红褐色沉淀生成 AlCl3+3NaOH=Al〔OH〕3↓+3NaCl有白色沉淀生成 MgCl2+2NaOH = Mg〔OH〕2↓+2NaCl CuCl2 +2NaOH = Cu〔OH〕2↓+2NaCl溶液蓝色褪去、有蓝色沉淀生成 CaO+ H2O = Ca〔OH〕2白色块状固体变为粉末、生石灰制备石灰浆 Ca〔OH〕2+SO2=CaSO3↓+ H2O 有白色沉淀生成初中一般不用 Ca〔OH〕2+Na2CO3=CaCO3↓+2NaOH有白色沉淀生成工业制

初中化学常见沉淀物质

初中化学常见沉淀物质 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

初中化学常见沉淀物质红褐色絮状沉淀--------Fe(OH)3 浅绿色沉淀------------Fe(OH)2 蓝色絮状沉淀----------Cu(OH)2 白色沉淀--------------CaCO3, BaCO3,AgCl,BaSO4,(其中BaSO4、AgCl是不溶于 HNO3的白色沉淀,CaCO3 BaCO 3是溶于HNO3 的白色沉淀),Mg(OH)2. 淡黄色沉淀(水溶液中)----S 微溶于水------------C a(O H)2,C a S O4氧化反应: 1、镁在空气中燃烧:2Mg + O22MgO 白色信号弹 现象:(1)发出耀眼的白光(2)放出热量(3)生成白色粉末 2、铁在氧气中燃烧:3Fe + 2O2Fe3O4 现象:(1)剧烈燃烧,火星四射(2)放出热量(3)生成一种黑色固体 注意:瓶底要放少量水或细沙,防止生成的固体物质溅落下来,炸裂瓶底。 3、铜在空气中受热:2Cu + O22CuO现象:铜丝变黑、用来检验是否含氧气。 4、铝在空气中燃烧:4Al + 3O22Al2O3 现象:发出耀眼的白光,放热,有白色固体生成。 5、氢气中空气中燃烧:2H2 + O22H2O 高能燃料 现象:(1)产生淡蓝色火焰(2)放出热量(3)烧杯内壁出现水雾。

6、红(白)磷在空气中燃烧:4P + 5O22P2O5 证明空气中氧气含量现象:(1)发出白光(2)放出热量(3)生成大量白烟。 7、硫粉在空气中燃烧: S + O2SO2现象: A、在纯的氧气中 发出明亮的蓝紫火焰,放出热量,生成一种有刺激性气味的气体。 B、在空气中燃烧 (1)发出淡蓝色火焰(2)放出热量(3)生成一种有刺激性气味的气体。 8、碳在氧气中充分燃烧:C + O2CO2 现象:(1)发出白光(2)放出热量(3)澄清石灰水变浑浊 9、碳在氧气中不充分燃烧:2C + O22CO 10、二氧化碳通过灼热碳层: C + CO22CO(是吸热的反应) 11、一氧化碳在氧气中燃烧:2CO + O22CO2 现象:发出蓝色的火焰,放热,产生的气体能使澄清石灰水变浑浊。 12、二氧化碳和水反应(二氧化碳通入紫色石蕊试液): CO2 + H2O===H2CO3 现象:石蕊试液由紫色变成红色。 注意:酸性氧化物+水→酸 如:SO2 + H2O=== H2SO3 SO3 + H2O H2SO4 13、生石灰溶于水:CaO + H2O=== Ca(OH)2(此反应放出大量的热) 注意:碱性氧化物+水→碱

共沉淀法,浸渍法

共沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加入适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。 共沉淀法是指在溶液中含有两种或多种阳离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。 浸渍法 制造固体催化剂的方法之一,即将一种或几种活性组分通过浸渍载体负载在载体上的方法。通常是用载体与金属盐类的水溶液接触,使金属盐类溶液吸附或贮存在载体毛细管中,除去过剩的溶液,再经干燥、煅烧和活化制得催化剂。浸渍方式有过量溶液浸泡与等体积吸附等。有时加入竞争吸附剂使活性组分均匀吸附在整个载体上。 过量浸渍法 也就是浸渍溶液(浓度x%)的体积大于载体。该实验过程是活性组分在载体上的负载达到吸附平衡后,再滤掉(而不是蒸发掉)多余的溶液,此时活性组分的负载量需要重新测定。该方法的优点是活性组分分散比较均匀,并且吸附量能达到最大值(相对于浓度为x%时),当然这也是它到缺点:不能控制活性组分的负载量。且很多时候并不是负载量越大活性越好,且负载量过多离子也容易聚集。还有一种所谓的过量浸渍法:也是溶液过量,但此时是边搅拌边蒸发,等溶液变成粘稠状后,再放到烘箱烘干。这实际上并不是真正意义上的浸渍法,而只能算是一种modified的浸渍法。在升温蒸发过程中活性相在孔中的负载量会随温度的变化而变化,而水分蒸干后,活性相的分布也很不均匀。且还要考虑升温后活性相或者载体是否有水解过程,它会对之后煅烧过程中的催化剂有很大的影响。根据我在试验中的结果,此方法效果并不是很好。 等体积浸渍 就是载体的体积(一般情况下是指孔体积)和浸渍液的体积一致,浸渍液刚好能完全进入到孔里面。该方法的特点与过量浸渍法相反:活性组分的分散度很差,有的地方颗粒小,有的地方颗粒则很大(毕竟,在实际实验中,载体倒入时有一个前后顺序,先与溶液接触的载体会吸附更多的活性相);但是它能比较方便地控制活性组分地负载量,并且负载量能很容易算出。对颗粒大小要求不是很严的催化剂,该方法效果还比较好。 问题:上次做的那个等体积浸渍,用的1.2ml/g,是一般是这个比列?还是不同的材料有不同的比列呢?

共沉淀法测tl208

共沉淀法分离208Tl(ThC”)及其半衰期的测定1.原始数据的记录: 讨论:由于在实验时上清液未能全部倾倒出,在转移时延误了测量时间,造成放射性计数初始时不太高,还没达到25min的测量时间时,总计数已经接近本底值,故测量结束。 2.数据处理: 用衰变曲线法作图如下:

对数 log t/s Fig1:衰变曲线法,测ThC"的半衰期 23.55% %1001861868.229%100 186min 1.38.22910016.32 ln 2ln 10016.34343.000131.04343.0l lg 04149.300131.0y 2 1 2 1 2 12 13 -2 13-0t =?-= ?-= ===?==?== -=+-=s s s T T T s T s T t gA A t 理论值理论值实验值相对偏差理论值;则半衰期所以衰变常数,故对应衰变公式直线方程为:半衰期的计算: ηλλλ ()()()()()()[]()()[]() []()[]10008 2 389644897232470424782 48972 18006.214247815006.21t s 6.21s 1500180042478 489722 2 1 1 2 1b 1-1212b =-+-=-+-= =?==?=?==--=--= ∞b b b b t b t b A A A A A A A A t I A t t A A I ;而在下表已算出。,故的本底累积计数为: 任意时刻; )(计算本底计数率: t t A A A -=∞‘ 而剩余的计算公式为:

对数log t/s Fig2:积分曲线法,测ThC"的半衰期 18.26% %1001861860.152%100186min 1.30.15210560.42 ln 2ln 10560.44343.000198.04343.0l lg 02505.400198.0y 2 1 2 1 2 12 13 -2 13-0t -=?-= ?-= ===?==?== -=+-=s s s T T T s T s T t gA A t 理论值理论值实验值相对偏差理论值;则半衰期所以衰变常数,故对应衰变公式直线方程为:半衰期的计算: ηλλλ

化学溶解性表

化学溶解性表 图例 溶:该物质可溶于水 难:难溶于水(溶解度小于0.01g,几乎可以看成不溶,但实际溶解了极少量,绝对不溶于水的物质几乎没有) 微:微溶于水 挥:易挥发或易分解 —:该物质不存在或遇水发生水解

常见沉淀 白色:BaSO4 BaCO3 CaCO3 AgCl Ag2CO3 Mg(OH)2 Fe(OH)2 Al(OH)3 CuCO3 ZnCO3 MnCO3 Zn(OH)2 蓝色:Cu(OH)2 浅黄色:AgBr 红褐色:Fe(OH)3 溶解性口诀 溶解性口诀一 钾钠铵盐溶水快,① 硫酸盐除去钡银铅钙。② 氯化物不溶氯化银, 硝酸盐溶液都透明。③ 氢氧根多溶一个钡④ 口诀中未有皆下沉。⑤ 注:①钾钠铵盐都溶于水; ②硫酸盐中只有硫酸钡、硫酸铅不溶(硫酸钙硫酸银微溶也是沉淀); ③硝酸盐都溶于水; ④碱性物质中除了钾离子钠离子铵离子锂离子还有钡离子也可溶 ⑤口诀中没有涉及的盐类都不溶于水; 溶解性口诀二 钾、钠、铵盐、硝酸盐; 氯化物除银、亚汞; 硫酸盐除钡和铅; 碳酸、磷酸盐,只溶钾、钠、铵。 说明,以上四句歌谣概括了8类相加在水中溶解与不溶的情况。 溶解性口诀三 钾钠铵硝皆可溶、盐酸盐不溶银亚汞; 硫酸盐不溶钡和铅、碳磷酸盐多不溶。 多数酸溶碱少溶、只有钾钠铵钡溶 溶解性口诀四 钾、钠、硝酸溶,(钾盐、钠盐和硝酸盐都溶于水。) 盐酸除银(亚)汞,(盐酸盐里除氯化银和氯化亚汞外都溶。) 再说硫酸盐,不容有钡、铅,(硫酸盐中不溶的是硫酸钡和硫酸铅。) 其余几类盐,(碳酸盐、亚硫酸盐、磷酸盐、硅酸盐和硫化物) 只溶钾、钠、铵,(只有相应的钾盐、钠盐和铵盐可溶) 最后说碱类,钾、钠、铵和钡。(氢氧化钾、氢氧化钠、氢氧化钡和氨水可溶) 另有几种微溶物,可单独记住。 溶解性口诀五(适合初中化学课本后面的附录) 钾钠铵盐硝酸盐① 氢氧根多钡离子② 硫酸盐除钡钙银③ 碳酸溶氢钾钠铵④ 生成沉淀氯化银⑤ 溶解性口诀六(初学记忆) 不是沉淀物……我们初中的口诀是 钾【化合物】、钠【化合物】、铵【铵根】、硝【硝酸盐】都可溶 氯化物里银不溶 硫酸盐里钡不溶 注:①钾盐、钠盐、铵盐、硝酸盐都溶于水 ②除了以上四种,氢氧根和钡离子结合时也溶于水 ③硫酸根除了和钡离子、钙离子、银离子结合时不溶于水,其他都溶 ④碳酸根除了和氢离子、钾离子、钠离子和铵离子结合时溶于水,其他都不溶 ⑤氯离子只有和银离子结合时不溶于水

低饱和共沉淀法

低饱和共沉淀法 低饱和共沉淀法,按照一定的比例,将金属硝酸盐溶液配成一定浓度的混合盐溶液(SolS),将NaOH和Na2CO3按照一定比例的配成混合碱溶液(SolB),在大烧杯中预先装入一定量的蒸馏水,加热至一定的温度,将SolS和SolB按一定的滴速同时滴入大烧杯中,维持反应体系的pH为一恒定值,剧烈搅拌。滴定完毕后,继续搅拌陈化,最后经过滤、洗涤、烘干,得产物。此合成方法是水滑石合成中的一种常用方法。其中镁盐和铝盐可以采用硝酸盐、硫酸盐、氯化物等,碱可以采用氢氧化钠、氢氧化钾、氨水等,碳酸盐可以采用碳酸钠、碳酸钾等,也可以采用尿素代替碱和碳酸盐。 高过饱和共沉淀法 高过饱和共沉淀法,即将SolS和SolB各自预先加热至反应温度,快速将两种溶液同时倒入装有预先加热到和该溶液具有相同温度的二次蒸馏水的大烧杯中,剧烈搅拌 水热合成法 水热合成法,是先将SolS和SolB缓慢滴加在一起活着快速混合,然后将得到的浆状液立即转移至高压釜中,在一定的温度下(通常是100 °C)陈化较长时间,最后经过过滤、洗涤、干燥、研磨得产品。此法特点是使水滑石的成核和晶化过程隔离开,并通过提高陈化温度和压力来促进晶化过程。水热合成法由于反应发生在密闭的系统中,因而没有其他杂质被引入。制备所得纳米金属氧化物具有粉末细(纳米级)、纯度高、分散性好、颗粒均匀、晶粒发育完整、形状可控等优异特性。另外水热法还能够避免高温下反应物的挥发、应力诱导缺陷、物相相互反应等缺点,更重要的是水热法通过调整反应条件可控制生成物的形貌、大小、粘度分布等。 离子交换法 当金属离子在碱性介质中不稳定,或当阴离子An-没有可溶性的M2+和M3+盐类,共沉淀法无法进行时,可采用离子交换法。该法是从给定的水滑石出发,通过溶液中某种阴离子对原有阴离子的交换作用,形成新的相。然而在层状双金属氢氧化物材料上,直接用大体积无机阴离子通过离子交换法制备很困难,一般先用大体积有机阴离子把层间撑开,然后用无机阴离子交换制得样品。 尿素分解—均匀共沉淀法 该法利用尿素在低温下呈中性,可与金属离子形成均一溶液,而溶液温度超过90 °C时尿素分解使溶液pH值均匀逐步地升高这一特点,用尿素代替混合碱溶液,该罚的优点是溶液内部的pH值始终是一致的,因而可以合成出高结晶度的Mg-Al、Zn-Al、Ni-Al类水滑石,而难以合成Co-Al、Mn-Al、Co-Cr类水滑石。另一方面以尿素为沉淀剂,反应过程中在层间形成NH2COO-插层,经水热处理即转化为CO32-,而溶液内形成的[Ni(NH3)6]2+水热条件下则释放出NH3,所以尿素可以取代强碱混合液来制备碳酸型水滑石并且可以制备得到结晶较好、粒径均匀的水滑石样品。

高中化学常见有色反应及沉淀

黄色:AgI、溴水(黄--橙)、FeS2、某些蛋白质加硝酸。淡黄色:S、Na2O2、TNT(三硝基甲苯)、AgBr 棕黄色:FeCL3溶液、碘水(深黄--褐) 黑色:CuS、Ag2S、Cu 2S、FeS、FeO、Fe 3 O 4 、MnO 2 、CuO、Ag 2 O、I 2 (紫黑)、Si(灰黑)、C、Ag、KMnO 4 (紫黑) 绿色:CuCl 2溶液、Cu 2 (OH) 2 CO 3 、FeSO 4 ?7H 2 O(浅绿)、F 2 (浅黄 绿)、Cl 2 (黄绿)、氯水(浅黄绿) 红色:CuO、Cu、Fe(SCN)+2、甲基橙在酸性环境中、紫色石蕊试液在酸 性环境中、酚酞在碱性环境中、品红试液、红磷(暗红)、Br 2 (深红棕)、 Br 2在CCl 4 溶液中(紫红)、苯酚被空气氧化(粉红) 棕色:固体FeCl 3、固体CuCl 2 NO 2 (红棕)、Fe 2 O 3 (红棕) 紫色:KMnO 4溶液、I 2 在CCl 4 溶液中 褐色:Fe(OH) 3 (红褐) 蓝色:CuSO 4?5H 2 O、Cu(OH) 2 、淀粉遇碘、紫色石蕊试液在碱性环境 中,Cu+2的稀溶液 有色反应 产生的沉淀有颜色 红褐色絮状沉淀:Fe(OH) 3 浅绿色沉淀:Fe(OH) 2 蓝色絮状沉淀:Cu(OH) 2 白色沉淀:CaCO 3,BaCO 3 ,AgCl,BaSO 4 ,(其中BaSO 4 、AgCl是不溶于 HNO 3的白色沉淀,CaCO 3 BaCO 3 是溶于HNO 3 的白色沉淀),Mg(OH) 2 . 淡黄色沉淀(水溶液中)----S 微溶于水------------Ca(OH) 2,CaSO 4 , 生成的溶液或气体有颜色 1、水溶液中含有Fe+3的为黄色. 如:Fe 2(SO 4 ) 3 、FeCl 3 、Fe(NO 3 ) 3 溶液 2、水溶液中含有Cu+2为蓝色,如:CuCl 2、 Cu(NO 3 ) 2 、 CuSO 4 溶液;但是, CuSO 4?5H 2 O是蓝色,无水CuSO 4 是白色

共沉淀法NdxLa1-xCaO3实验配方与实验步骤

实验配方与实验步骤 实验配方 ①La0.4Nd0.4Ca0.2CoO3烧制温度600℃、700℃、800℃、900℃、1000℃、1100℃ ②La0.3Nd0.3Ca0.4CoO3烧制温度600℃、700℃、800℃、900℃、1000℃、1100℃ ③La0.2Nd0.2Ca0.6CoO3烧制温度600℃、700℃、800℃、900℃、1000℃、1100℃ ④Nd0.6Ca0.4CoO3烧制温度600℃、700℃、800℃、900℃、1000℃、1100℃ ⑤Nd0.4Ca0.6CoO3烧制温度、800℃、900℃、1000℃、1100℃实验原料 硝酸钴(Co(NO3)2)溶液0.2ml/L 碳酸钠(Na2CO3)溶液1ml/L 氢氧化钠(NaOH)溶液1ml/L 硝酸钙(Ca(NO3)2)溶液0.2ml/L 硝酸钕(Nd(NO3)3)溶液0.16ml/L 硝酸镧(La(NO3)3)溶液0.2ml/L 无水乙醇 实验步骤: 1.分别取一定量的0.2ml/L的Co(NO3)2溶液、Ca(NO3)2溶液、La(NO3)3、 溶液和0.16ml/L的Nd(NO3)3溶液混合均匀 2.将混合溶液放在磁力搅拌器上,打开磁力搅拌器,将混合均匀的的

NaOH和Na2CO3的混合溶液逐滴滴加到混合金属溶液中,调节pH 至9,搅拌30min使沉淀完全沉淀. 3.过滤,用蒸馏水(蒸馏水用量比较多)将其水洗至中性,待水洗至中性后用乙醇置换其中的水分(无水乙醇过滤两次)。 4.过滤完后在烘箱中100℃下干燥3-4h,干燥后,用玛瑙研钵研磨30min ,取部分样品做差热分析。 5.,再在600℃(700℃、800℃、900℃、1000℃、1100℃)下煅烧3h.再磨30分钟,取部分样品做XRD和SEM。

最新物理气相沉淀和化学气相沉积法

液相制备纳米材料的原理、方法和形成机理 液相法实在液体状态下通过化学反应制取纳米材料方法的总称,又称为湿化学法或溶液法。现在,有各种各样的制备方法,文献中无公认一致的分类方法,相反还有些凌乱。为清晰醒目,特点明显,便于理解。这里将液相材料的纳米制备方法分为:沉淀法、溶胶-凝胶(sol-gel)法、水热法、化学还原法、化学热分解法、微乳胶法、声化学法、电化学法和水中放电法等9中。本章就沉淀法、溶胶-凝胶(sol-gel)法加以讨论。 沉淀法 沉淀法是在金属盐溶液中加入沉淀剂,进行化学反应,生成难容性的反应物,在溶液中沉淀下来,或将沉淀物加热干燥和煅烧,使之分解得到所需要的纳米材料的方法。沉淀法又主要分为共沉淀(CP),分布沉淀(SP),均匀沉淀(HP)等几种。下面对这几种沉淀法做一简要分析。 含1种或多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法。(包括:单项共沉淀发和混合共沉淀法)下图给出共沉淀法的典型工艺流程。 沉淀物为单一化合物或单相固溶体时,称为单相共沉淀,亦称化合物沉淀法。其原理为溶液中的金属离子是以具有与配比组成相等的化学计量化合物形式沉淀的,因而,当沉淀颗粒的金属元素之比就是产物化合物的金属元素之比时,沉淀物具有在原子尺度上的组成均匀性。但是,对于由二种以上金属元素组成的化

合物,当金属元素之比按倍比法则,是简单的整数比时,保证组成均匀性是可以的。然而当要定量的加入微量成分时,保证组成均匀性常常很困难,靠化合物沉淀法来分散微量成分,达到原子尺度上的均匀性。如果是形成固溶体的系统是有限的,固溶体沉淀物的组成与配比组成一般是不一样的,则能利用形成固溶体的情况是相当有限的。要得到产物微粒,还必须注重溶液的组成控制和沉淀组成的管理。为方便理解其原理以利用草酸盐进行化合物沉淀的合成为例。反应装置如图: 图 利用草酸盐进行化合物沉淀的合成装置 实验原理:在Ba 、Ti 的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO3(C2H4)2?4H2O 沉淀;BaTiO3(C2H4)?4H2O 沉淀由于煅烧,分解形成BaTiO3微粉。 化学方程式如下所示: (1)BaTiO 3(C 2H 4)2?4H 2O BaTiO 3(C 2H 4)2 + 4H 2O (2)BaTiO 3(C 2H 4)2 + ? O 2 BaCO 3(无定形)+TiO 2(无定形)+ CO +CO 2 (3)BaCO 3(无定形)+TiO 2(无定形) BaCO 3(结晶)+TiO 2(结晶) 如果沉淀产物为混合物时,称为混合物共沉淀。四方氧化锆或全稳定立方氧化锆的共沉淀制备就是一个很普通的例子。举例:用ZrOCl 2?8H 2O 和Y 2O 3(化学纯)为原料来制备ZrO 2- Y 2O 3的纳米粒子。反应过程:Y2O3用盐酸溶解得到YCl3, 然后将ZrOCl 2?8H 2O 和Y 2O 3配置成一定浓度的混合溶液,在其中加NH 4OH 后便有

共沉淀

共沉淀法是指在溶液中含有两种或多种阳离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。. 共沉淀法,就是在溶解有各种成份离子的电解质溶液中添加合适的沉淀剂,反应生成组成均匀的沉淀,沉淀热分解得到高纯纳米粉体材料。共沉淀法的优点在于:其一是通过溶液中的各种化学反应直接得到化学成分均一的纳米粉体材料,其二是容易制备粒度小而且分布均匀的纳米粉体材料 化学共沉淀法制备ATO粉体具有制备工艺简单、成本低、制备条件易于控制、合成周期短等优点,已成为目前研究最多的制备方法。 化学共沉淀法是把沉淀剂加入混合后的金属盐溶液中,使溶液中含有的两种或两种以上的阳离子一起沉淀下来,生成沉淀混合物或固溶体前驱体,过滤、洗涤、热分解,得到复合氧化物的方法。沉淀剂的加入可能会使局部浓度过高,产生团聚或组成不够均匀。 化学共沉淀法不仅可以使原料细化和均匀混合,且具有工艺简单、煅烧温度低和时间短、产品性能良好等优点。 产生共沉淀的原因有:①表面吸附,由于沉淀表面的离子电荷未达到平衡,它们的残余电荷吸引了溶液中带相反电荷的离子。这种吸附是有选择性的:首先,吸附晶格离子;其次,凡与晶格离子生成的盐类溶解度越小的离子,就越容易被吸附;离子的价数愈高、浓度愈大,则愈容易被吸附。吸附是一放热过程,因此,溶液温度升高,可减少吸附。②包藏,在沉淀过程中,如果沉淀剂较浓又加入过快,则沉淀颗粒表面吸附的杂质离子来不及被主沉淀的晶格离子取代,就被后来沉积上来的离子所覆盖,于是杂质离子就有可能陷入沉淀的内部,这种现象称为包藏,又叫吸留。由包藏引起的共沉淀也遵循表面吸附规律。例如,在过量氯化钡存在下沉淀硫酸钡时,沉淀表面首先吸附构晶离子Ba2+;为了保持电中性,表面上的Ba2+又吸引Cl-;如果晶体成长很慢,溶液中的硫酸钡将置换出大部分Cl-;如果晶体成长很快, 则硫酸钡来不及交换Cl-, 就引起较大量的氯化钡的包藏共沉淀。因为硝酸钡比氯化钡的溶解度小,所以钡的硝酸盐比氯化物更易被包藏。③生成混晶,如果晶形沉淀晶格中的阴、阳离子被具有相同电荷的、离子半径相近的其他离子所取代,就形成混晶。例如,当大量Ba2+和痕量Ra2+共存时,硫酸钡就可和硫酸镭形成混晶同时析出,这是由于二者有相同的晶格结构,Ra2+和Ba2+的离子大小相近的缘故。 注意事项:

化学溶解性表

化学溶解性表 物质的溶解性 溶解性溶解度(20℃) 易溶大于等于10g 可溶大于等于1g小于10g 微溶大于等于0.01g小于1g 难溶(不溶)小于0.01g

在许多化学反应里,作为一个整体参加反应,好像一个原子一样,这样的原子集团叫做原子团。原子团又叫做根或基团,如氢氧根OH- 、硝酸根NO3- 、碳酸根CO32-、硫酸根SO42-、氯酸根ClO3-、磷酸根PO43-、碳酸氢根HCO3-、铵根NH4+、碳酸根CO32-等。值得注意的是:原子团不能独立存在,只是化合物的一个组成部分。在溶液中原子团作为一个整体参加反应。各种原子团都有自己的特性反应,如CO32 -遇酸变成CO2,SO 42-遇Ba2+产生不溶于稀硝酸的白色沉淀,OH-使酚酞试液变成红色等。利用特性反应可以检验根的存在。

g (气体)、l (液体)、s (固体)、aq (溶液)

化学活动性 金属的活动性是反映金属在水溶液里形成水合离子倾向的大小,也就是反映金属在水溶液里起氧化反应的难易, Cs>Rb>K>Ca>Na>Li>Mg>Al>Ti>Zn>Fe>Sn>Pb>Ni>(H)>Cu>Hg>Ag>Os>Ru>Ir>Rh>Pt>Pd>Au 非金属活动性,一般是指卤素与类卤素的活动性。一般的,周期大的卤素可以把周期小的卤素从它们的卤化物中置换出来 F>SCN>Cl(O)>Br>CN>OCN>I>S>N>P>C>Si>H 物质溶解性表及沉淀颜色 1.Fe2O3+3H2SO4= Fe2(SO4)3+3H2O 铁锈溶解溶液呈黄色铁器除锈 2.Al2O3+3H2SO4= Al2(SO4)3+3H2O 白色固体溶解 3.CuO+H2SO4=CuSO4+H2O 黑色固体溶解溶液呈蓝色 4.ZnO+H2SO4=ZnSO4+H2O 白色固体溶解 5.MgO+H2SO4=MgSO4+H2O 白色固体溶解 6.2NaOH+H2SO4=Na2SO4+2H2O 7.Cu(OH)2+H2SO4=CuSO4+2H2O 蓝色固体溶解 8.Ca(OH)2+H2SO4=CaSO4+2H2O 9.Mg(OH)2+H2SO4=MgSO4+2H2O 白色固体溶解 10.2Al(OH)3+3H2SO4=Al2(SO4)3+3H2O 白色固体溶解 11.2Fe(OH)3+3H2SO4=Fe2(SO4)3+3H2O 红褐色沉淀溶解溶液呈黄色 12.Ba(OH)2+ H2SO4=BaSO4+2H2O 生成白色沉淀不溶解于稀硝酸检验SO42的原理 13..BaCl2+ H2SO4=BaSO4+2HCl 生成白色沉淀不溶解于稀硝酸检验SO42的原理 14.Ba(NO3)2+H2SO4=BaSO4+2HNO3 生成白色沉淀不溶解于稀硝酸检验SO42的原理 15.Na2O+2HNO3=2NaNO3+H2O 白色固体溶解 16.CuO+2HNO3=Cu(NO3)2+H2O 黑色固体溶解溶液呈蓝色 17.ZnO+2HNO3=Zn(NO3)2+ H2O 白色固体溶解 18.MgO+2HNO3=Mg(NO3)2+ H2O 白色固体溶解 19.CaO+2HNO3=Ca(NO3)2+ H2O 白色固体溶解 20.NaOH+HNO3=NaNO3+ H2O 21.Cu(OH)2+2HNO3=Cu(NO3)2+2H2O 蓝色固体溶解 22.Mg(OH)2+2HNO3=Mg(NO3)2+2H2O 白色固体溶解 23.Al(OH)3+3HNO3=Al(NO3)3+3H2O 白色固体溶解 24.Ca(OH)2+2HNO3=Ca(NO3)2+2H2O 25.Fe(OH)3+3HNO3=Fe(NO3)3+3H2O 红褐色沉淀溶解溶液呈黄色 26.3NaOH + H3PO4=3H2O + Na3PO4 27.3NH3+H3PO4=(NH4)3PO4 28.2NaOH+CO2=Na2CO3+ H2O 吸收COO2H2中的CO2 29.2NaOH+SO2=Na2SO3+ H2O 2NaOH+SO3=Na2SO4+ H2O 处理硫酸工厂的尾气(SO2) 30.FeCl3+3NaOH=Fe(OH)3+3NaCl 溶液黄色褪去有红褐色沉淀生成

初中化学常见沉淀物质

初中化学常见沉淀物质 红褐色絮状沉淀--------Fe(OH)3 浅绿色沉淀------------Fe(OH)2 蓝色絮状沉淀----------Cu(OH)2 白色沉淀--------------CaCO3,BaCO3,AgCl,BaSO4,(其中BaSO4、AgCl是不溶于HNO3的白色沉淀,CaCO3 BaCO3是溶于HNO3 的白色沉淀),Mg(OH)2. 淡黄色沉淀(水溶液中)----S 微溶于水------------Ca(OH)2,CaSO4 氧化反应: 1、镁在空气中燃烧:2Mg + O22MgO 白色信号弹 现象:(1)发出耀眼的白光(2)放出热量(3)生成白色粉末 2、铁在氧气中燃烧:3Fe + 2O2Fe3O4 现象:(1)剧烈燃烧,火星四射(2)放出热量(3)生成一种黑色固体 注意:瓶底要放少量水或细沙,防止生成的固体物质溅落下来,炸裂瓶底。 3、铜在空气中受热:2Cu + O22CuO现象:铜丝变黑、用来检验是否含氧气。 4、铝在空气中燃烧:4Al + 3O22Al2O3 现象:发出耀眼的白光,放热,有白色固体生成。 5、氢气中空气中燃烧:2H2 + O22H2O 高能燃料 现象:(1)产生淡蓝色火焰(2)放出热量(3)烧杯内壁出现水雾。 6、红(白)磷在空气中燃烧:4P + 5O22P2O5 证明空气中氧气含量 现象:(1)发出白光(2)放出热量(3)生成大量白烟。 7、硫粉在空气中燃烧: S + O2SO2现象:

A、在纯的氧气中 发出明亮的蓝紫火焰,放出热量,生成一种有刺激性气味的气体。 B、在空气中燃烧 (1)发出淡蓝色火焰(2)放出热量(3)生成一种有刺激性气味的气体。 8、碳在氧气中充分燃烧: C + O2CO2 现象:(1)发出白光(2)放出热量(3)澄清石灰水变浑浊 9、碳在氧气中不充分燃烧:2C + O22CO 10、二氧化碳通过灼热碳层: C + CO22CO(是吸热的反应) 11、一氧化碳在氧气中燃烧:2CO + O22CO2 现象:发出蓝色的火焰,放热,产生的气体能使澄清石灰水变浑浊。 12、二氧化碳和水反应(二氧化碳通入紫色石蕊试液): CO2 + H2O===H2CO3 现象:石蕊试液由紫色变成红色。 注意:酸性氧化物+水→酸 如:SO2 + H2O=== H2SO3 SO3 + H2O H2SO4 13、生石灰溶于水:CaO + H2O=== Ca(OH)2(此反应放出大量的热) 注意:碱性氧化物+水→碱 氧化钠溶于水:Na2O + H2O==2NaOH 氧化钾溶于水:K2O + H2O=== 2KOH 氧化钡溶于水:BaO + H2O === Ba(OH)2

化学共沉淀法制备磁性纳米微粒实验方案

化学共沉淀法制备磁性纳米微粒实验方案 化学共沉淀法得到的磁性壳聚糖微球通常粒径较小具有较大的的比表面积和固载量对干细胞具有很强的吸附能力而且分散性很好其磁性胶粒可以稳定地分散于水中但是其磁响应性较弱操作时需施加较强的磁场。 方案一: 化学共沉淀法是指在二价与三价铁离子在碱性条件下沉淀生 成Fe3O4 或利用氧化还原反应生成Fe3O4的同时利用壳聚糖作分散剂从而得到外包有壳聚糖的磁性微球。Honda等将20mL0.5%的壳聚糖溶液和2.4mL 含FeCl3 720 mg FeCl2 4H2O 290mg 的混合物在激烈搅拌下均匀混合然后加氨水恒温静置经过反应处理后制得磁性壳聚糖微球。 方案二: 1.Fe3O4纳米微粒的制备 将20 mL FeCl3(1.0 mol L-1)与5 mL FeCl2(2.0 mol L-1,在2.0 mol L-1的盐酸溶液中配制)溶液混合均匀加入到250 mL 0.7 mol L-1的氨水溶液中,离心分离后所得的黑褐色沉淀用150 mL 2.0 mol L-1的高氯酸分散,用超纯水洗至中性,干燥,得到Fe3O4纳米粒子。 2.磁性壳聚糖微球的制备 将0.5 g壳聚糖溶解于20 mL 2%的乙酸溶液中,加入150 mg磁性纳米粒子,在搅拌下缓慢加至装有80 mL液体石蜡和4 mL span-80混合溶剂的三颈瓶中,常温下充分搅拌30 min,加入10 mL一定浓度的戊二醛,在40℃的水浴中反应60 min后,用1.0 mol L-1的NaOH溶液将pH值调至9.0~10.0,升温至70℃继续反应2 h,得到的产物依次用丙酮、石油醚、N,N-二甲基甲酰胺、超纯水充分洗涤抽滤,磁铁收集,60℃真空干燥,得到磁性壳聚糖微球。 方案三: 将二价铁盐(FeCl2·4H20)和三价铁盐(FeCl3·6H20)按不同的物质的量比(1:1.25)溶于蒸馏水中,配制成一定浓度的溶液.水浴恒温(40℃),剧烈搅拌下滴加1.5mol/L氨水,将体系的pH保持在一定的范围内(pH=9),在恒温过程中搅拌30min,结束反应。生成的颗粒磁分离后用蒸馏水反复洗涤直至中性,真空干燥后,研磨即得纳米Fe304颗粒。 方案四(超声沉淀法): 超声波对化学反应起作用的主要原因在于超声波所产生的“超声波

化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究

Advances in Material Chemistry 材料化学前沿, 2017, 5(2), 46-51 Published Online April 2017 in Hans. https://www.doczj.com/doc/4211571944.html,/journal/amc https://https://www.doczj.com/doc/4211571944.html,/10.12677/amc.2017.52006 Preparation and Properties of NCA Cathode Materials by Chemical Co-Precipitation Method Jian Li1,2,3, Zhongzhong Liu1, Hongming Zhou1,2,3, Baorong Chen1 1Institute of Materials Science and Engineering of Central South University, Changsha Hunan 2Key Laboratory of the Ministry of Education of Non-Ferrous Metal Science and Engineering at Central South University, Changsha Hunan 3Zhengyuan Institute of Energy Storage Materials and Devices of Hunan Province, Changsha Hunan Received: Apr. 2nd, 2017; accepted: Apr. 14th, 2017; published: Apr. 24th, 2017 Abstract In this article, Li2CO3, Ni(NO3)2, CO(NO3)2, Al(NO3)2 were used as the raw materials to synthesize the mixture of nickel cobalt aluminum carbonate and lithium carbonate via co-precipitation me-thod, then the mixture were presintered 4 hours at 550?C and sintered 15 hours at 750?C in the tube furnace to obtain cathode material NCA. XRD, SEM of this material were investigated as well as its electrochemical properties. The first discharge capacity of the material was about 180 mAh/g at 1C, and still kept at 165 mAh/g after 50 circulations, which showed good cycle perfor-mance and rate performance. Keywords NCA Cathode Material, Co-Precipitation Method, Lithium Battery 化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究 李荐1.2.3,刘忠忠1,周宏明1.2.3,陈宝荣1 1中南大学材料科学与工程学院, 湖南长沙 2中南大学有色金属科学与工程教育部重点实验室, 湖南长沙 3湖南省正源储能材料与器件研究所, 湖南长沙 Email: ziliao2000@https://www.doczj.com/doc/4211571944.html, 收稿日期:2017年4月2日;录用日期:2017年4月14日;发布日期:2017年4月24日 文章引用:李荐, 刘忠忠, 周宏明, 陈宝荣. 化学共沉淀法制备镍钴铝酸锂(NCA)正极材料及其性能研究[J]. 材料化学

化学共沉淀法-注意事项

1.沉淀溶液的浓度 沉淀溶液的浓度会影响沉淀的粒度、晶形、收率、纯度及表面性质。通常情况下,相对稀的沉淀溶液,由于有较低的成核速度,容易获得粒度较大、晶形较为完整、纯度及表面性质较高的晶形沉淀,但其收率要低一些,这适于单纯追求产品的化学纯度的情况;反之,如果成核速度太低,那么生成的颗粒数就少,单个颗粒的粒度就会变大,这对于微细粉体材料的制备是不利的,因此,实际生产中应根据产品性能的不同要求,控制适宜的沉淀液浓度,在一定程度上控制成核速度和生长速度。 2.合成温度 沉淀的合成温度也会影响到沉淀的粒度、晶形、收率、纯度及表面性质。在热溶液中,沉淀的溶解度一般都比较大,过饱和度相对较低,从而使得沉淀的成核速度减慢,有利于晶核的长大,得到的沉淀比较紧密,便于沉降和洗涤;沉淀在热溶液中的吸附作用要小一些,有利于纯度的提高。在制备不同的沉淀物质时,由于追求的理化性能不同,具体采用的温度应视试验结果而定。例如:在合成时如果温度太高,产品会分解而只得到黑色氧化铜;在采用易地分解、易挥发的沉淀剂时,温度太高会增加原料的损失。 3.沉淀剂的加入方式及速度 沉淀剂的加入方式及速度均摊会影响沉淀的各种理化性能。沉淀剂若分散加入,而且加料的速度较慢,同时进行搅拌,可避免溶液局部过浓而形成大量晶核,有利于制备纯度较高、大颗粒的晶形沉淀。例如:制备白色无定形粉末状沉淀氢氧化铝,使用的原料为NaAlO2及碳酸氢铵,其主要杂质为碱金属,开始时以较慢的线速度将NH4HCO3加入到NaAlO2的热溶液中,待沉淀析出大半时,再加快沉淀剂的加入速度,直至反应结束。这样得到的Al(OH)3颗粒较大,只需要洗涤数次,产品中碱金属杂质即可合格。如将沉淀剂浓度加大,加料速度加快、反应温度又低,这样得到的是Al(OH)3的胶状沉淀,即使洗涤数十次,产品中碱金属含量也不容易合格。当然,这只是从化学纯度的角度来考虑的,或要生产专用性的Al(OH)3产品,沉淀剂的加入方式及速度则应该根据具体要求而定。 4.加料顺序 加料方式分正加、反加、并加三种。生产中的“正加”是指将金属盐类先放于反应器中,再加入沉淀剂;反之为“反加”;而把含沉淀物阴、阳离子的溶液同时按比例加入到反应器的方法,称为“并加”。加料顺序与沉淀物吸附哪种杂质以及沉淀物的均匀性有密切的关系。“正加”方式的沉淀主要吸附原料金属盐的阴离子杂质;且在中和沉淀时,先、后生成的沉淀,其所处的环境PH值不同,得到的沉淀产品均匀性差。“反加”方式主要吸附沉淀的阴离子杂质;若是中和填充沉淀时,在整个沉淀过程占卜PH值变化很小,产品均匀性较好。“并加”方式可避免优秀作品溶液的局部过浓,沉淀过程较为稳定,且吸附杂质较小,从而可得到理化性能较好的产品。在实际生产中应视产品的具体要求而定。 5.沉淀剂 沉淀剂的选择应考虑产品质量、工艺、产率、原料来源及成本、环境污染和安全性等问题。在工艺允许的情况下,应该选项用溶解度较大、选择性较高、副产物影响较小的沉淀剂,也便易于除去多余的沉淀剂、减少吸附和副反应的发生。在生产碳酸盐沉淀产品时,可选择的沉淀剂有Na2CO3、NaHCO3 NH4HCO3和其他多种可溶性碳酸盐,但一般以NH4HCO3为好,因为它的溶解度大、易洗涤、副产物易挥发、污染也较小,而且原料来源广泛、价格也低。沉淀剂的使用一般应过量,以便能获得高的收率,减少金属盐离子的污染;但也不可太过量,否则会因络合效应和盐效应等降低收率。一般过量20%-50%就能满足要求了。 6.沉淀的陈化 陈化可释出沉淀过程带入的大部分杂质。在陈化过程中,因小颗粒沉淀的比表面积大,表面能也大;相同量大颗粒沉淀的比表面积较小,表面能就小,体系的变化有从高能量到低能量的自发趋

相关主题
文本预览
相关文档 最新文档