当前位置:文档之家› 数形结合思想在求参数范围中的应用

数形结合思想在求参数范围中的应用

数形结合思想在求参数范围中的应用
数形结合思想在求参数范围中的应用

数形结合思想在求参数范围中的应用

[典例] 已知函数y =|x 2

-1|x -1 的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.

[解析] 因为函数y =|x 2-1|x -1=????? x +1,x ≤-1或x >1,-x -1,-1

过点(0,-2),根据图象易知,两个函数图象有两个交点时,0

[答案] (0,1)∪(1,4)

[题后悟道]

所谓数形结合思想,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的

几何性质.解答本题利用了数形结合思想,本题首先作出y =|x 2

-1|x -1

的图象,然后利用图象直观确定直线y =kx -2的位置.作图时应注意不包括B 、C 两点,而函数y =kx -2的图象恒过定点A (0,-2),直线绕A 点可以转动,直线过B 、C 两点是关键点.

针对训练

1. 设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.

解析:如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观

察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )

恒成立,因此a 的取值范围是[-1,+∞).

答案:[-1,+∞)

2.已知函数f (x )=????? |2x -1|,x <2,3x -1

,x ≥2,若方程f (x )-a =0有三个不同的实数根,则

实数a 的取值范围为( ) A .(1,3)

B .(0,3)

C .(0,2)

D .(0,1) 解析:选D

因为方程f (x )-a =0的根,即是直线x =a 与函数f (x )=?????

|2x

-1|,x <2,

3

x -1,x ≥2的图象交点的横坐标,画出函数图象进行观察可以得知,a 的取值范围是(0,1).

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

数形结合思想在小学数学教学中的渗透与应用

数形结合思想在小学数学教学中的渗透与应用 数形结合思想是根据数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法。数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形,可以使许多数学问题变得简易化。 小学数学中虽然不像初中数学那样,将数形结合的思想系统化, 但作为学习数学的启蒙和基础阶段,数形结合的思想已经渐渐渗透其中,为更好的学习数与代数、空间与图形两方面的知识服务,同时也在培养抽象思维,解决实际问题方面起了较大的作用。 数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。 如我在教学“求一个数的几倍是多少”时,学生最难理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有自己的理解,并内化成自己的东西?我认为用图形演示的方法是最简单又最有效的方法。于是我就利用书上的主题图。在第一行排出用4根小棒围出的一个正方形,再在第二行排出同样的两个正方形,第三行摆出同样的四个正方形。结合演示,让学生观察比较第一行和第二行小棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:第一行与第二行比较,第一行是1个4根,第二行是2个4根;把一个4根当作一份,则第一行小棒是1份,而第二行就有两份。用数学语言:把4根小棒当作1倍,第二行小棒的根数就是第一行小棒的2倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。接着我请学生说出第三行小棒根数与第一行的关系,学生能准确的从三个4根说出了第三行是第一行的3倍。 再如六年级有这样一题:一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶? 此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思 5分米,或宽增加12分米,面积都增加60平方分米,原来长方形的面积是多少平方分米?”的教学中,我引导学生根据题意画出面积图:

数形结合在二次函数中的应用 理论

初中《二次函数》教学中 如何运用和培养“数形结合”的思想 摘要:二次函数是初中数学的重要内容,也是学习的难点。要解决学生学习中的难点,行之有效的方法就是在教学中从分运用数形结合的思想方法,借助数形结合的思想方法,加深学生对函数概念的理解;让学生直观地理解二次函数性质;加强知识间的横向联系。运用数形结合的思想方法可以使复杂问题直观化。使学生的抽象思维能力得到发展。也为学生提供了一种简单解决问题的方法,培养学生自觉运用“数形结合”的数学思想和意识。 关键词:二次函数教学运用培养数形结合思想函数是初中数学的重要内容之一,初中数学主要学习三种简单函数:一次函数、反比例函数、二次函数。二次函数是学习了一次函数和反比例函数之后所认识的另一种函数,相对前两种函数来说,二次函数反应出来的关系和性质更复杂抽象一些,是学生学习的一个难点。学生主要存在的困难是对函数概念难以理解,对各类函数中两个变量的变化关系感觉比较抽象,对函数关系的表示方法不能灵活转化。要解决学生学习中的难点,行之有效的方法就是在教学中从分运用数形结合的思想方法,通过“数”与“形”的相互转化,使复杂问题简单化、抽象问题具体化;下面就二次函数谈谈函数教学中如何渗透和应用数形结合思想。 一、数形结合思想的概论。 数形结合是初中数学的重要思想之一,包含“以形助数,以数辅形”

两个方面。著名数学家华罗庚教授曾精辟的概述:“数以形而直观,形以数而入微”,其应用大致分为两种情形:借助形的生动和直观来阐明数之间的联系,即以形为手段,数为目的。借助数的规范严密和精确来阐明形的属性。通过“数”与“形”的相互转化,使复杂问题简单化、抽象问题具体化;数形结合是初中数学基本思想之一,是用来解决数学问题的重要思想。 二、借助数形结合加深学生对函数概念的理解。 初中数学课程标准中对函数概念的要求是“了解常量、变量、函数的意义,会举出函数的实例以及分辨出常量与变量以及两者之间的关系。”课本通过大量实例,如一天的气温随时间的变化而变化,邮资随邮件重量的变化而变化,园的面积随半径的变化而变化,路程、速度和时间的关系等,得出“一个量随另一个量的变化而变化”的结论,使学生感知函数问题在客观世界中是大量存在的,充分认识到建立函数概念的必要性。 初中数学对函数的定义是:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 学生对于这一概念的理解比较抽象而机械的,比如学生认识一次函数和反比例函数的概念后,学生从函数表达式(关系式)可以判断两个变量间属于哪一种函数关系,但并不能透过表达式看到其中隐含的两数量间的变化关系的区别,面对新的问题是不会建立相应的函数模型

《数形结合思想》专题(整理)

数形结合思想 知识综述 (1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。 (2)解答此类问题必须充分注意以下问题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。 d. 熟练掌握几个距离公式: 点P(x,y)到原点的距离 e. 具备扎实的几何推理论证能力。 一、填空题(每空5分,共50分) 1. 如果a,b两数在数轴上的对应点如图所示: 则化简:__________。 2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。 3. 已知△ABC的三边之比是,则这个三角形是__________三角形。 4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。(写出符合条件的一个点即可) 5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。 6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数

a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上) 7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。 8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。 9. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为 __________。 10. 如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若 ,则AD的长为__________。

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

《数形结合思想在小学数学教学中的运用》结题报告

《数形结合思想在小学数学教学中的运用》 课题结题报告

《<数形结合思想在小学数学教学中的运用>课题结题报告》 数学以是现实世界的空间形式和数量关系作为自己特定的研究对象,也可以说数学是研究“数”与“形”及其相互关系的一门科学,而在数学教学中把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。可以说,数形结合是小学数学范围里最基本、最重要的思想。源于在数学教学世界越来越重视数学思想的渗透与应用,我们决定以数形结合思想为研究方向,让其成为我们学校提升教师素质和教学行为以及培养学生的数学素养的重要媒介。 一、课题研究背景 “数形结合”可以看成是数学的本质牲特征。“数形结合”是借助简单的图形、符号和文字所作的示意图,可促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。华罗庚先生说过:“数缺形时少直观,形缺数时难入微”,从这句话中可体现出数形结合对数学教学起着很主要的作用,把数形结合思想贯穿在学习数学过程的始终,是学好数学的关键。在我们的教学实践当中,教师对数形结合不够重视,关于数形结合教学理论缺乏,大部分学生了解数形结合,但未能充分、广泛运用数形结合去解决问题,这是值得我们去研究的问题。 二、课题研究目标 1、促进教师教学意识及行为的转变,使教师们对数形结合思想方法有系统的认识,明确地位、作用。 2、根据不同学段学生的认知规律,形成适合不同学段进行的以数形结合思想方法指导教学的教学策略。 3、帮助学生树立数形结合的观点,善于运用数形结合思想方法观察、分析、解决问题,提高学生分析问题、解决问题的能力。 4、培养学生的数学精神、思想与方法,发展抽象思维和形象思维能力及辨证思维能力,提高对数学的整体认识。 三、课题研究内容 1、全面认识数形结合思想方法,挖掘教材中蕴含数形结合思想方法的内容,分析数形结合思想方法在数学教学中的价值和功能。 2、针对不同的教学问题,探索渗透数形结合思想方法的教学策略。 3、探索让学生更好地理解、掌握数学知识,提高数学能力的同时,也学会运用数形结合分析、解决问题的教学途径。 四、课题研究方法

二次函数数形结合问题

二次函数与图形专题 姓名: 图象型 经典例题 例1.如图,已知?ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交 AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则?DEF 的面积y 关于x 的函数的图象大致为( ) D O 4 2 4O 424 O 4 24 O 4 24 A y x B C C A E F B D 例2.(2013年南京建邺区一模)矩形ABCD 中,AD =8 cm ,AB =6 cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2 ),则y 与x 之间的函数关系用图象表示大致是下图中的 ( ) 变式训练*举一反三 1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD =45°,DF ⊥AB 于点F ,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF =x ,DE =y ,下列中图象中,能表示y 与x 的函数关系式的 图象大致是( ) 2.如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( ) A . 2 425 y x = B .225y x = C .2225y x = D .2 45 y x = 3.(赵州二中九年七班模拟)点E 为正方形ABCD 的BC 边的中点,动点F 在对角线AC 上运动,连接BF 、 EF .设AF =x ,△BEF 的周长为y ,那么能表示y 与x 的函数关系的图象大致是( ) 第3题 A B C D

学习心得数形结合

数形结合学习心得 低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过多媒体教学,既充分展现数与形之间的内在关系,又激发了学生的好奇心和求知欲,为培养学生数形结合的兴趣提供了可靠的保证。 又例如:在教学有余数的除法时,我是利用7根小棒来完成的教学的。首先出示7根小棒,问能拼成几个三角形?要求学生用除法算式表示拼三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。 再如:教学连除应用题时,课一始,呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。 30÷2÷3,学生画了右图:平均分成2份,再将获得一份平均分成3份。 30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。 30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。 在教学中我要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。

在教学实践中,这样的例子多不胜数。数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。

数学中数形结合思想、分类讨论的思想、函数与方程的思想

初中数学中蕴含的数学思想方法很多,最基本最主要的有:数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1. 数形结合的思想和方法 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: (1)、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 (2)、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 (3)、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 (4)、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 (5)、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 (6)、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。(7)、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。(8)、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。 ①由数思形,数形结合,用形解决数的问题。 例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 ②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何

浅谈数形结合思想的应用

浅谈数形结合思想的应用 ——蒋海朋摘要:数学是在客观上研究数量关系和空间形式的一门科学,用通俗易懂的话来概括就是数学是研究“数”和“形”的一门科学。数相对于形来说更为抽象,形相对于数来说较为直观,在研究学习中,数与形是相辅相成、息息相关的。对于这个问题,本人在结合自己学习的总结以及前人所提供的经验,并且查阅相关资料,对于这个话题做一个简单的分析。文中的例子都是本人在学习中总结的历年高考、中考的试题以及模拟题,有很强的代表性。 关键词:数形结合数学思想应用 1 引言 1.1问题提出的背景 纵观数学发展的历史进程,数学家们早已把“数”和“形”联系在一起。早在公元300年之前,欧几里得的著作《几何原本》,他从几何的角度出发去研究和处理等价的代数问题;笛卡尔利用坐标为根基,通过代数为途径来研究几何问题,进而创立了解析几何学;化圆为方、三等分角、立方倍积这些几何难题都通过代数的方法得以完美解决。 数学往往被分为两大类:代数、几何。虽然他们被分为两类,但他们绝不是相互独立的,反而是密切相关的。很多代数上的问题计算量很大,看似非常复杂,甚至无从下手,但是利用了图形之后就会发现问题迎刃而解,直观的图形很容易反映图形的性质;很多几何问题因为辅助线相对复杂想不到,导致无法进一步研究,但是往往我们利用坐标系能够把几何问题转化成代数问题,同样也做到了化 繁为简。这就是数学上常用的数形结合思想。 1.2问题研究的意义 伟大的数学家华罗庚就曾说过:“数形结合百般好,割裂分家万事休。”这两句诗充分直观得反映了“数”与“形”这两者密不可分的联系。应用数形结合思想来思考问题就是要求我们结合代数的准确论证和图形的直观描述来发现问题的解决途径的一种思想方法。由此可见,数形结合思想对于数学解题方面的应用来说是十分重要的,但老师往往仅仅把它当做一种思想一谈而过,照着课本讲课,没有引导学生进一步思考,导致很多学生都不能具体有序地应用这种思想。 2 数形结合思想的重要地位 2.1使用数形结合思想的意义 数形结合思想无疑是连接“数”和“形”的桥梁,几何的直观形象和数量关系的严谨他们各有优点,在应用过程中有目的有计划地将“数”与“形”结合在一起,根据题目的已知条件,整合“数”和“形”的相关信息,巧妙结合,从而建起它们中间的桥梁,兼取两者之优,能让我们的解题更为轻松。

数形结合思想在小学数学中的应用完整版

数形结合思想在小学数 学中的应用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 班级:2013级初等教育理科1班 目录

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显着提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验[1],说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。 数形结合思想的涵义 数、形是一个数学事物两个方面的基本属性。数形结合思想的实质是数字与

数形结合思想在求参数范围中的应用

数形结合思想在求参数范围中的应用 [典例] 已知函数y =|x 2 -1|x -1 的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. [解析] 因为函数y =|x 2-1|x -1=????? x +1,x ≤-1或x >1,-x -1,-1

浅谈数形结合思想在小学数学中的应用

浅谈数形结合思想在小学数学中的应用 摘要 数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题, 利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形, 可以使抽象问题具体化,可以使复杂问题简单化。 关键词 数形结合、思想、应用 一、小学生都是从直观、形象的图形开始入门学习数学 从人类发展的历史来看,具体形象的事物是出现在抽象的符号、文字之前的,人类一开始用小石子,贝壳记下所发生的事情,慢慢的发展成为用形象的符号记事,后来出现了数字。这个过程和小学生学习数学过程有着很大的相似之处。低年级的小学生学习数学,也是从具体的物体开始识数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。这方面的例子有有很多,如低年级开始学习识数、学习找规律、学习乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出来。 此外,他们往往能在图形的操作或观察中学会收集与选择重要的信息内容;发现图形与数学知识之间的联系,并乐于用图形来表达数学关系。现在的小学课本中很多习题,已知条件不是用文字的形式给出,而是蕴藏在图形中,既是学生喜欢接受的形象,也培养了他们的观察能力和逻辑思维能力。 要让学生真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果教师只讲解几个典型习题并且学生会解题了,就认为学生领会了数形结合这一思想方法,这是一种片面的观点。平时要求学生认真上好每一堂课,学好新教材的系统知识,掌握各种图像特点,理解和把握各种几何图形的性质。教师讲题时,要引导学生根据问题的具体实际情况,多角度多方面的观察和理解问题,揭示问题的本质联系,利用“数”的准确澄清“形”的模糊,用“形”的直观了解“数”的计算,从而来解决问题。教学中要紧紧抓住数形转化的策略,通过多渠道来协调知识间的联系,激发学生学习兴趣,并及时总结数形结合在解题中运用的规律性,来训练学生的逻辑思维能力,并提高学生的理解能力和运用水平。 二、利用图形的直观,帮助学生理解数量之间的关系,提高学习效率 用数形结合策略表示题中量与量之间的关系,可以达到化繁为简、化难为易的目的。 “数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显其最本质的特征。它是小学数学教材的一个重要特点,更是解决问题时常用的方法。 例如:1、小学高年级中所学的,运用分数乘法、除法解决问题。引用人教版小学六年级上册数学书,第二章分数乘法,第二节解决问题,第20页,第二题。

浅谈数形结合思想如何教学

浅谈数形结合思想如何教学 数形结合的思想,是把函数、坐标、几何图形作为同一个数学系统的一种思想,如果用这种思想来想问题,这三者之间可以通过某种需要相互转换,数形结合思想是简化数学问题的一种重要的思想.高中数学教师要合理引导学生理 解和运用数形结合的思想,以便让学生能够更灵活地解决数学问题.本次研究将说明高中数学教师在教学中培养学生数 形结合思想的方法. 一、强化学生的数形结合理念 通常高中生在学习的过程中已经建立了数形结合这个 概念,然而高中数学教师必须要看到,很多学生的数形结合理念仅仅只建立在一个观念上,即他们理解有数形结合是一种数学思路,然而遇到数学问题的时候,学生可能就会忘记数形结合这种解决数学问题的思想。数学教师要在数学教学中强调数形结合这个理念,让学生只要遇到数学问题,就能联想到可以用数形结合这种解决问题方法的数学思路. 以数学教师引导学生做习题1为例:已知一个有向线段PQ,它的起点P的坐标为P(-1,1),终点的座标Q为(2,2),如果有一条直线x十my+m=0与该有向线段相交,那么实数m的取值范围为多少?

学生遇到这一类问题时,一般会认为这种题适合用坐标图解决问题,于是照题意绘出图1,然而教师要让学生意识到图1,既可以转化为两个斜线方程式的相交问题,也可以将它理解为图形角度的问题,学生只有从多种角度看问题,解题的思路才更宽广.如果以最简思路来想问题,可将此题视为斜率 解:将x十my+m=0转化为点斜式方程y+l:=-1/m(x-0),由此可得直线x十my+m =0过定点M(0,-1),且它的斜率为-1/m 由于直线x+my+m=0与PQ相交,那么由图1可知当直线x+ my +m =0过点P,Q时,可取得边界值,因此可得:如果设直线x+my +m =0的斜率为k1,那么可以得到k1∈(一∞,一2] U[3/2,+∞), 即解一1/m≤一2或一1/m≥3/2,从而得到 教师可以从这一题引导学生学会从宏观的视角看问题,让学生了解到函数、坐标图、几何图形这三样事物的特点,学生了解了这三样事物的特点以后,就可以根据自己的需要灵活地做数形转换. 教师如果能够引导学生具备灵活的数形转换思路,学生就能够用更宏观的思维看待数学问题. 二、提高学生的数形结合技巧 当学生意识到数形结合思路的重要性,心中已经建立起

高一数学专题1-数形结合思想含答案

数形结合思想 一.作图、识图、用图技巧 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究. (4)利用基本函数图象的变换作图 ①平移变换: y =f (x )――→h >0,右移|h |个单位 h <0,左移|h |个单位 y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位 y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ), y =f (x )――→01,纵坐标伸长到原来的A 倍y =Af (x ). ③对称变换: y =f (x )――→关于x 轴对称y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x )――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称 y =-f (-x ). f (x )――→关于原点对称y =-f (-x ). 二、通法归纳与感悟 1.应用数形结合的思想应注意以下数与形的转化

(1)集合的运算及韦恩图; (2)函数及其图像; (3)方程(多指二元方程)及方程的曲线; (4)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可; (5)对于研究函数、方程或不等式(最值)的问题,可通过函数的图像求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用. 2.运用数形结合的思想分析解决问题时,应把握以下三个原则 (1)等价性原则 在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导. (2)双向性原则 在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的. 例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化. (3)简单性原则 就是找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单,而不是去刻意追求代数问题运用几何方法,几何问题运用代数方法. 三、利用数形结合讨论函数零点、方程的解或图像的交点 利用数形结合求方程解应注意两点 (1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. (2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合. 1. (2013·长沙模拟)若f (x )+1=1f x +1 ,当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是( ) A. ???? ??0,12 B. ??????12,+∞ C. ??????0,13 D. ? ?? ??0,12 2. 若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]

浅谈数形结合思想在教学中的应用

本科生毕业论文(设计)题目:浅谈数形结合思想在教学中的应用 学号: 0707140154 姓名:汪洋 专业:数学与应用数学 年级:07级一班 系别:数学系 完成日期:2010年10月 指导教师:

浅谈数形结合思想在教学中的应用 汪洋 (合肥师范学院数学系) 摘要 数形结合就是把问题的数量关系和空间形式结合起来考察,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题去讨论,或者把图形的性质问题转化为数量关系的问题来研究,简言之“数形相互取长补短”。数形结合作为一种常见的数学方法, 沟通了代数、三角与几何的内在联系。一方面,借助于图形的性质可以将许多抽象的数学概念和数量关系形象化、简单化,给人以直觉的启示。另一方面,将图形问题转化为代数问题,以获得精确的结论。因此,数形结合不应仅仅作为一种解题方法,而应作为一种十分重要的数学思想方法, 它可以拓宽学生的解题思路, 提高他们的解题能力,将它作为知识转化为能力的“桥”。 关键词:数形结合思想;直观;数学教学;应用 Discusses the number shape union thought shallowly in the teaching

application Wang yang (Department of Mathematics, Hefei Normal University) ABSTRACT Counts the shape union is unifying the question stoichiometric relation and the space form to inspect, according to solving the question need, we can transform the stoichiometric relation question for the graph nature question discusses, or transform the graph nature question for the stoichiometric relation question studies, “the number shape makes up for one's deficiency by learning from others strong points mutually in short”. Counts the shape union as one common mathematical method, has communicated the algebra, the triangle and the geometry inner link. On one hand, with the aid in the graph nature may make many abstract mathematics concepts and the stoichiometric relation visualization and simplification, for the human by the intuition enlightenment. On the other hand, transforming the graph question as the algebra question, obtains the precise conclusion. Therefore, counts the shape union not to take one problem solving method merely, but should take one very important mathematics thinking method, it may expand students' problem solving mentality, sharpens their problem solving ability, takes the knowledge it to transform as ability “the bridge”. Key words: Counts the shape union thought,Intuitively, Mathematics teaching, Application 目录 一、前言 (3) 二、正文 (3)

相关主题
文本预览
相关文档 最新文档