当前位置:文档之家› 基于TMS320F28035电动汽车电机控制器

基于TMS320F28035电动汽车电机控制器

基于TMS320F28035电动汽车电机控制器
基于TMS320F28035电动汽车电机控制器

2011-2012德州仪器C2000及MCU创新设计大赛

项目报告

题目:基于TMS320F28035电动汽车用电机控制器

学校:重庆大学

组别:专业组

应用类别:先进控制类

平台: C2000 题目:基于TMS320F28035电动汽车电机控制器

摘要:21世纪,纯电动汽车已经成为了解决燃油车辆带来的能源和环境问题的

最有希望的方案之一。而电动汽车电机控制器又是纯电动汽车的核心部分。本设

计以TI公司的TMS320F28035为控制核心,设计了一款用于电动汽车的低压电机

控制器,采用先进的弱磁控制算法和效率优化策略,实现了电机在整个运行范围

内输出最大转矩和达到较高的效率。

Abstract:ELECTRIC vehicles (EV) are seen as a possible step towards

the solution of the pollution problem in urban environment. And the motor controller is core of the electric vehicle. Based on TMS320F28035 ,we

design a motor controller used in low voltage EV. With the advanced control

scheme ,we can get the maximum torque in the whole speed range and the maximum efficiency.

1引言

1.1系统设计的背景

20世纪90年代以来,汽车作为人类最重要的代步和交通工具,在全球范围内得到蓬勃快速发展。其实世界汽车工业总共发展了100多年,已经成为世界上许多国家的支柱产业,在人类经济生活和生产中发挥着举足轻重的作用。进入21世纪,在今后的50年里,全球人口将从60亿增加到100亿,汽车的数量将从7亿增加到25亿。如果这些车辆使用内燃机的话,他们所需要的石油将不可估量,它们所排出的尾气将无法处理,它们将对我们的环境造成巨大的伤害。这些问题迫使人们去寻找21世纪可持续发展的道路交通工具。另外,由于能源资源日益消耗,迫使人们重新考虑未来汽车的动力来源,世界各国都竞相积极地研制新能源汽车,从而来替代燃料汽车。由于新能源汽车清洁无污染,能源形式多样并且能量比重高,结构简单而且维护方便,是21世纪最有发展潜力的汽车。

近二十多年来,西方工业发达国家政府把电动汽车的研究开发看作解决环境问题和能源问题的一种有效手段,在经济上给予大力支持。美国政府至今已出资数百亿美元支持汽车厂商和相关厂商进行电动汽车技术的开发研究。美国三大汽车公司1991年联合成立了美国先进电池联合体,投入了4.5亿美元,其中政府拨款2.25亿美元,共同开发镍镉、镍氢、锌空气电池、燃科电池等各种高性能蓄电池。日、法、德等国各大公司也投入巨资研究开发高性能电池。在电动汽车整车研究开发方面,至90年代末期,国外大汽车公司已开发生产了100多种型号的纯电动汽车、燃料电动汽车和混合动力汽车(表1)。其中,已有10多种纯电动汽车车型投入商业化生产;近年来,燃料电池电动汽车成为新的开发热点,美国计划到2010年市场上燃料电池汽车占市场4%份额,达到60万辆,日本政

府发布燃料电池汽车发展计划--2010年5万辆,2020年500万辆;在纯电动汽车和燃料电池汽车因技术和成本问题尚未进入批量生产情况下,为了尽快降低燃油汽车的排放,美日等国正在广泛研制混合动力汽车,目前已经开始小批量商业化生产。近些年来,国外著名的汽车厂商都在研制各类电动汽车,并取得了一定的成就。如日本的丰田公司在 1997 年 12 月推出了世界上第一款批量生产的混合动力轿车 PRIUS,并在 2000 年后开始出口北美、欧洲。

我国从“九五”期间就有计划地开展了电动汽车关键技术的攻关和整车研制工作,“十五”,“十一五”期间,我国已将电动汽车列入“863”重大科技攻关项目。国家科委、计委在"八五"、"九五"期间组织了纯电动汽车的攻关,现在又将纯电动汽车列入"十五"国家863计划电动汽车重大专项。国内大型汽车企业、高等院校、研究单位对纯电动汽车的研究也热情高涨,通过多轮试制,力争在"十五"结束时实现电动汽车的产业化。"十五"目标是:解决关键技术,完成可实用的电动汽车的开发,并实现产业化。主要研究内容:电动汽车的总体设计;先进的电池技术;电动机及控制驱动系统;整车监控与管理系统、使用环境与配套技术等。

电动汽车是新能源汽车中的一种,采用电力进行驱动,具有无排放、噪音低、能量转换效率高等特点,是当前研究讨论的热点。但是目前电动汽车还不如内燃机汽车技术完善,主要原因是车载电池成本过高,寿命过短。而且单节电池的储能容量很低,需要装载多节电池,占据车身总重量,并且一次充电后续驶里程也不理想。于是各种原因造成了电动汽车的成本一直居高不下。

电池租赁的营销策略的提出,可能打破这一瓶颈,而且从发展长远的角度看,随着科技的不断进步,电动汽车现在存在的问题将会逐步得到解决,价格和使用

成本也会随着技术的成熟、电动汽车的普及和大批量生产逐步降低,价廉物美的电动汽车前景令人瞩目

同时异步电机由于其体积小、结构简单、坚固可靠、成本低、易于维护等优点,被越来越多的厂商用做电动汽车的驱动电机。但是相对于国外,国内对于电动汽车电机驱动控制器的研究还比较落后,很多国内电动汽车厂商都依靠从国外进口电动汽车电机控制器来组装电动汽车,而自身的研发能力不强。因此对电动汽车电机控制器的研究显得非常重要。

1.2系统设计的目的

目前,电动汽车感应电机及驱动控制器通常采用两种控制方法:转子磁场定向矢量控制和直接转矩控制。转子磁场定向适量控制具有类似直流电机的转矩控制特性,得到了广泛的应用。当前多数电动汽车控制器采用大电压加IGBT来驱动电机,在带来大转矩的同时,也带来了安全隐患。一旦发生漏电,对人体的伤害将是致命的。

本系统设计的目的是:采用额定电压为48V的低压电机作为电动轿车的驱动电机,以TI公司生产的DSP芯片TMS320F28035作为核心控制芯片,设计一款用于纯电动汽车的控制器及转子磁场定向矢量控制系统。并对整个控制算法进行优化改进,在提高电动汽车安全性的同时实现电动汽车在运行过程中能提供尽可能大的转矩和达到比较高的效率。

1.3系统设计需要解决的问题

本系统设计学要解决的问题:

①以TI公司生产的DSP芯片TMS320F28035芯片作为控制核心,大电流

MOSFET作为功率器件,完成本系统电动汽车电机控制器硬件部分的设计

②完成电动汽车电机控制器控制算法的编写,实现电动汽车控制器要求的

功能,包括在电动汽车运行过程中实现大转矩输出,高效率以及各种保

护功能。

③对本系统设计进行试验台实验和实车路试实验。

2系统方案

本系统总体方案为:

本系统设计的主要功能有:电子加速,刹车,档位功能,过流保护,欠压保护,过热保护,限流运行,限温运行,CAN通行功能和能量回馈功能。系统设计的整体设计思路如图1所示:

图1 系统设计整体思路

2.1系统设计电压等级的选择

目前电动汽车电压等级有:48V,72V,300V等,当前多数电动汽车控制器采用大电压加IGBT来驱动电机,在带来大转矩的同时,也带来了安全隐患。一旦发生漏电,对人体的伤害将是致命的。同时采用高电压对整个电动汽车的绝缘性能要求非常高,因此成本将大大增加。从安全角度出发,因此本系统设计选择低压48V作为驱动电压。本系统设计采用16节3.3V的磷酸铁锂电池串联来作为电动汽车的驱动电压。图2为实际驱动电压实物图;

图2 48V电池实物图

2.2系统设计主驱电机的选择

电动机是电机驱动系统的核心,其性能、效率、重量直接影响电动汽车的性能。目前电动汽车使用的电机主要有直流电动机,感应电动机,永磁无刷电动机和开关磁阻电动机,对各种电机特点简要介绍如下:

①直流电动机

有刷直流电动机具有调速性能好、控制简单、技术成熟等优点,在早期开发的电动汽车上大量采用直流电动机进行驱动。有刷直流电动机的缺点存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且寿命低、维护成本高;另外,由于损耗存在于转子上,使得散热困难,限制了电机转矩质量比的进一步提高。因此,在新研制的电动汽车上已基本不采用有刷直流电动机。

②永磁无刷电动机

永磁无刷直流电动机是一种具有直流电动机的调速特性的高性能电动机。它的主要优点是没有电刷及相关机械结构,没有换向火花,寿命长,运行可靠,维护简便。但是永磁无刷直流电动机受到永磁材料工艺的影响和限制,功率范围较小;而且永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降或发生退磁现象,将降低永磁电动机的性能,严重时还会损坏电动机;永磁无刷直流电动机在恒功率模式下,操纵复杂,需要一套复杂的控制系统,从而使得永磁无刷直流电动机的驱动系统造价很高。

③开关磁阻电动机

开关磁阻电动机是一种新型电动机,可控参数多,调速性能好、控制方便、结构简单、成本低、运转效率高、易于在很宽转速范围内实现高效节能控制。但是由于其磁极端部的严重磁饱和以及磁极和沟槽的边缘效应,使开关磁阻电机设计和控制非常困难和精细,而且开关磁阻电机经常引起噪声问题。因为受到国内电机发展水平和电机价格的限制,目前国内将开关磁阻电机应用到电动汽车上的比较少。

④感应电动机

感应电动机是应用得最广泛的电动机。感应电机有绕线式和鼠笼式两种类型,鼠笼式感应电机在电动汽车上的应用最为广泛。感应电机没有滑环、换向器等部件,结构简单,运行可靠,经久耐用。转速可达到12000~15000r/min。可采用空气冷却或液体冷却方式。对环境的适应性好,并能够实现再生反馈制动。与同样功率的直流电动机相比较,效率较高,质量减轻一半左右,价格便宜,维修方便。感应电动机的低成本、高可靠性及免维护等特性使其在电动汽车上得到了广泛的应用。三相感应电动机的缺点是:矢量控制算法复杂,对处理器运算速度要求较高,造成控制系统的成本较高。

表1为目前使用的各种电动汽车用电动机的比较,其性能以0-5分来评比。

表1 各种电动汽车用电动机性能的比较[4][5]

通过上述分析可知:异步电动机具有体积小、结构简单、坚固可靠、成本低、易于维护等优点,并且随着变频调速技术的发展,让异步电动机的控制方法越来越完善,使异步电机有着优异的启动和调速性能,高效率、高功率因数和节能,有着广泛的应用范围。本课题选用低压大电流鼠笼式异步电机作为电动汽车电机驱动。

采用电机的主要参数为:额定电压48V的4极鼠笼式异步电机,额定频率100HZ,最高转速6000rpm,启动转矩85N.M,额定功率5KW,峰值功率20KW,最大电流500A,额定线电流有效值133A。图3为实际电机实物图:

图3 48V电机实物图

2.3系统设计主控芯片的选择

本系统设计采用TI 公司的DSP 芯片TMS320F28035作为电动汽车异步电机的电机控制器的主控芯片。该芯片速该芯片是TI 公司专门为电机驱动开发设计的一款DSP 芯片其速度快,成本低,完全能满足系统要求,该芯片具有以下一些特点:

①.高性能32位CPU ,16×16位和 32×32位MAC 操作,16×16位双通道MAC (乘累加运算),采用哈佛总线结构 ,快速的中断响应和处理 ,统一的存储模式 用C/C++和汇编语言,代码效率高。

②.装置和系统低消耗,单独的3.3V 供电 ,没有上电顺序要求,先进的仿真性能, 分析和断点功能,可通过硬件实时调试,增强性的控制模块 ,增强的PWM 模块,HRPWM ,增强性的脉冲编码模块 ,ADC 转换模块

2.4系统设计主控制策略的选取

2.41 异步电机矢量控制策略

矢量控制理论是从异步电机内部的机电能量转换、电机统一理论和空间矢量理论基础上发展起来的,理论基础严谨。矢量控制技术完全模仿对直流电机的控制技术,用矢量变换的方式,把异步电机定子电流解耦成互相独立的产生激磁的分量和产生转矩的分量,分别控制着两个分量就可以实现对异步电机的转矩控制和磁链控制的解耦,从而实现理想的动态性能。

在理想的情况下矢量控制的异步电机传动类似于他励直流电动机传动。在直流电机中,若忽略电枢效应和磁场饱和,则输出转矩可被表示为:

f a t I I k Te (式2-1)

式中I a 为电枢电流,I f 是励磁电流。直流电机的构造决定了励磁电流I f 产生的磁链f ψ与电枢电流I a 是垂直的,当控制电流I a 以控制转矩时,磁链f ψ不受影响。异步电机是多变量,非线性,强耦合系统,控制起来远比直流电机复杂。异步电机矢量控制示意图如图4

图4异步电机矢量控制示意图

将异步电机放在同步旋转坐标系(d-q )上进行控制,如果将I ds 定向在转子磁链

r ψ的方向且与I qs 垂直,则稳态时正弦量就变成了直流量,这样异步电机就具有了直流电机的特性,可获得类似直流电机的特性。此时异步电机的转矩可表示为:

qs ds e I kI T = (式2-2)

其中*ds I 为同步旋转坐标系按转子磁场定向后d 轴电流,*qs I 为同步旋转坐标系按转子磁场定向后q 轴电流,这意味着当控制*qs I 时,只会影响实际的转矩电流I qs,而不会影响磁链r ψ,当控制电流*ds I 时,只会影响磁链r ψ,而不会影响电流的转

矩分量。

图5动汽车异步电机矢量控制原理系统框图

2.42 空间矢量SVPWM调制技术

目前PWM开关信号的获得最常见的有正弦脉宽调制(SPWM)和空间矢量脉宽调制(SVPWM)。其中,SVPWM是将逆变器和电动机看成一个整体,建立逆变器开关模式和电机电压空间矢量的内在联系,通过控制逆变器的开关模式,使电机的定子电压空间矢量沿圆形轨迹运动,从而明显降低转矩脉动,与传统的SPWM相比,其开关器件的开关次数可以减少1/3,直流电压的利用率可提高15%,能获得较好的谐波抑制效果,且易于实现数字化控制。

2.43高速时电机的弱磁控制

当电机要求运行在基速以上时,由于直流母线电压的限制和反电动势的影响,就需要转子磁场随着转速的上升而下降,即所谓的弱磁运行。电动汽车对电机驱动系统的弱磁运行性能有较高要求,有限的供电电压无法提供电机转速升高所需的不断升高的转子反电势,因此需要选择适当的弱磁方法在满足电机及逆变器的

电压和电流限制条件下得到尽可能大的电机转矩输出,功率输出及良好的系统动静态特性。

在电动汽车中,电机逆变器的母线电压易受电机运行工矿和电池特性的影响而产生一定范围的电压波动,为了能在全速度范围内保持电机转矩可控性,特别是在高速弱磁区,需要留一定的电压余量以保证电机定子电流转矩及励磁分量的动静态性能 。目前最为常见的异步电机高速弱磁方法是假定母线电压不变的前提下按照磁链与速度成反比的关系进行的高速弱磁控制 在以转子磁场定向矢量控制下有以下公式:

(式2-3)

(式2-4)

高速时电阻压降可以忽略,从以上两式可得:

(式2-5)

采用转子磁场定向后:

(式2-6)

电机高速运行时, 则:

Sd

S S Sq S sq I L I R U ω-=Sq

S S Sd S Sd I L I R U δω-=1

22

2+=Sd

Sq Sd

S s I I I L U δωSd

S Sd M r I L I L ≈=ψs

r ωω≈

(式2-7)

从式3-9 可以看出采用磁链与速度成反比的弱磁控制时,只有在空载时才能保证U 恒定不变,U 随电机负载增加而增加,另外逆变器母线电压是波动的这给电机弱磁控制增加了难度。

通过以上分析可以看出,传统弱磁方法并不能在整个电动汽车运行过程中产生最大的转矩,因此本文采用先进的弱磁控制算法,其控制框图如图6所示:

图6 本系统设计采用的弱磁控制原理框图

同过判断d 轴和q 轴电压来判断系统是否进入弱磁区,在进入弱磁区后,通过PI 调节器来自动调节励磁电流和转矩电流的分配。

1

222+=Sq

Sq

r

r I

I U δψω

(1)在恒转矩区域,电机运行在基速以下,在这个区域电机所需电压矢量的幅值没有超过max s u ,电机运行只受电流限制圆的限制,有能力保证sd i ,sq i 达到其额定值,产生最大转矩。整个恒转矩区域电机电流分配如方程(3.21)所示:

?????-=-==2

2max 22max lim sdrated s sdref s it

sq sdrated

sd i I i I i i i (2-8) (2)恒功率区,弱磁区1(1ωωω<

max s u 相等。如果转速在增加,电机运行所需要的电压矢量幅值将大于max s u ,调

节器PI(e)将调整电机所需的电压矢量幅值使其不超过最大电压max s u 。PI(e)调节器将自动减小励磁电流sd i 从而保证电机若需电压不超过最大电压限制,这将导致sd i 减小,sq u 减小。同时在该区域转矩电流sq i 将增加,sd u 将增加这也意味着电机弱磁控制的开始。该区域电流的分配情况: sd i 由PI 调节器自动调节,转矩电流sq i 为:

2

2max lim sdref s it sq i I i -= (2-9)

(3)恒电压区,弱磁区2(1ωω>):当电机转速进一步增加时,电机运行状态进入弱磁区2,在该区域,由于电机反电动势很高,已经不可能在在向电机输入最大的电流,所以在该区域电机运行状态只受电压限制椭圆的限制。该区域电机励磁电流任由PI(e)调节器来调节来满足电机运行的电压限制条件,该区域的电流分配策略为:

σ

sd

it sq i i =

lim (2-10)

通过上面分析可以看出系统设计采用的方法能在整个电机运行过程中得到最大的转矩,不需要查表,对参数的依赖小,系统鲁棒性强。与传统的弱磁方法相比,电流分配更加合理,能够在整个电机运行区域得到更大的转矩。

3系统硬件设计

本系统设计的电动汽车电机控制器总体框图和实物图如图7所示:

图7 电动汽车电机控制器总体框图和实物图

如图7所示,本系统采用48V电池作为控制器母线电压输入,主驱电机为鼠笼是异步电机,控制器主控芯片采用TI公司生产的TMS320F28035,功率逆变桥部分采用大电流MOSFET并联,电流采样采用新型的电流采样芯片MLX91205.整个控制器状态的检测采用一个上位机来监测,控制器与上位机之间通过CAN通信来实现数据的传输。

3.1主控芯片选择

本文采用的主控芯片为TI公司新推出的专门用于电机控制的芯片TMS320F28035,该芯片运算速率快,价格便宜,该芯片还具有一下一些特点:

?高性能32位CPU :16×16位和 32×32位MAC 操作,16×16位双通道MAC

(乘累加运算),采用哈佛总线结构,原子操作,快速的中断响应和处理,统一的存储模式,用C/C++和汇编语言,代码效率高

?可编程的CAL:32位的浮点数加速器,主CPU独立处理代码

?装置和系统低消耗:单独的3.3V供电,没有上电顺序要求, 完整的上电复

位和掉电复位

?时钟: 2个内部的振荡器, 片内晶体振荡器和外部时钟输入, 基于锁相

环的PLL时钟模块, 程序监视器模块, 没有时钟侦查电路

?多达45个独立可编程复用的I/O引脚

?外设中断扩展模块(PIE),支持所有的外设中断

?32位的CPU定时器:每个ePWM模块都有独立的16位的定时器,片内存储

器,包括Flash,SARAM,OTP,BootROM.

?128位的安全密钥: 保护存储模块的安全,防止逆向设计

?连续的通信模块:1个SCI模块,2个SPI模块,1个I2C,1个LIN网络,1

个ECAN

?先进的仿真性能:分析和断点功能,可通过硬件实时调试

?增强性的控制模块:增强的PWM模块, HRPWM,增强性的脉冲编码模块,ADC

转换,片内温度传感器, 比较器

?28035封装:64脚(TQFP), 80脚(LQFP)

因此其完全满足电动汽车电机控制器要求,本系统设计采用80引脚的28035,其实物图为:

图8TMS320F28035实物图

3.2MOSFET 功率电路设计

随着半导体技术的快速发展,功率MOSFET 性能越来越高,价格越来越低,因此在大电流功率驱动电路中被广泛采用。

本系统采用功率MOSFET 型号为STP75NF75,这种MOSFET 的漏极和源极间电压DS V 最大为75V ,栅极和源极之间的驱动电压GS V 最大为20V ,导通电阻DS R 小于0.0095 ,导通电流D I 最大为80A 。

本文设计的控制系统最大功率为20kW ,直流供电电压为48V ,因此每个桥臂允许通过的最大直流电流为416.7A ,为此采用MOSFET 并联结构,增大过流能力,本系统中每个桥臂并联12个MOSFET ,这样每个桥臂可以承受的最大电流理论值为1000A ,从而可以满足系统大电流工作情况的需要。

号电压计算,一般在5欧姆~30欧姆之间取值。

②在MOSFET后级设计了RC滤波电路,对三相逆变桥输出的交流电压信号进行调节,防止出现过压等故障现象。

功率电路部分采用了贴片式MOSFET,贴片式MOSFET的铝基板如图10所示,采用铝基板增大了导电面积,使板子可以承受的最大电流增大;采用贴片元件,板子体积小,器件焊接牢固,不易松动,可靠性较高;便于使用自动焊接技术,适合大批量生产。但是制板成本相对较高。

图10 实物图

3.2电流检测的设计

本系统设计中,使用新型的霍尔传感器MLX91205进行电流采样。

磁集极霍尔传感器具有高线性度、低磁滞、高灵敏度、体积小、安装方便、价格低等优点。随着该技术的推广,磁集极霍尔传感器必将广泛应用于很多领域。

与传统的霍尔传感器和磁阻传感器比较,磁集极霍尔传感器具有3个优点:

①磁集极霍尔传感器的灵敏度比传统霍尔传感器高,和磁阻传感器相当。磁集极霍尔传感器的灵敏度高达280V/T,典型的霍尔传感器在5V供电的情况下的灵敏度是25V/T;

②磁集极霍尔传感器改善了磁阻传感器的非线性和磁滞现象;

③磁集极霍尔传感器的3dB带宽为100kHz,典型的响应时间只有3μs,可以广泛的应用于PWM 控制和过载保护中检测电流信号,实现快速保护错误!未找到引用源。。

本系统设计选用melexis公司的MLX91205磁集极霍尔传感器,应用于电动汽车异步电机控制器的电流检测(未加屏蔽防干扰),其实物连接图如图11所示:

(a)未加导电条(b)加上导电条

图11 MLX91205的实物连接图

根据电磁学理论,随着距离r的增大,磁场强度B迅速衰减。因此,传感器和导线之间的距离越小,传感器的输出电压就越大。本试验比较了距离与电流的关系。其试验部分波形如图12所示:

图12 测试所得波形

4统软件设计

详细介绍算法设计与算法流程图(不得大量复制源代码)

系统软件采用模块化设计方法,将各个功能单元制作成各个独立的软件模块,在主程序中根据需要调用各个功能模块,从而实现系统整体功能。模块化编程使得程序结构清晰明了,编写程序时思路清楚,简化了编写程序的步骤,使程序功能更容易实现,同时为阅读程序和进一步修改程序带来极大的方便。

系统中的功能模块主要包括:AD采样转换模块、弱磁控制模块,SVPWM模块、转子磁场角度计算、转速估计模块、CLARK变换,PARK变换、PARK反变换和PID 计算模块等。

系统软件主要采用C语言编写,部分需要快速执行的功能模块采用汇编语言编写,从而大大减小了软件编写的难度,并提高了系统软件的运行效率。

电动汽车驱动电机类型种类和结构原理图

电动汽车驱动电机类型种类和结构原理图 随着电动汽车行业的发展,各大汽车厂商纷纷开发了自家的电动车型。在雨后春笋般的的电动汽车市场,大家在看车的时候,厂商均推出了各自车型应用的电机。到底不同的电机有什么差别,下面本文就来讲讲新能源汽车电机的基础知识,介绍各种电机在电动汽车应用特点。 一、什么是电机? 所谓电机,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动汽车在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。

二、电动汽车应用驱动电机特点 基于电动汽车的特点,对所采用的电机也有较高的要求。为了提升最高时速,电机应有较高的瞬时功率和功率密度(W/kg);为了增加1次充电行驶距离,电机应有较高的效率;而且电动汽车是变速工作的,所以电机应有较高的高低速综合效率;此外有很强的过载能力、大的启动转矩、转矩响应要快。电动车起动和爬坡时速度较低,但要求力矩较大;正常运行时需要的力矩较小,而速度很高。低速时为恒转矩特性,高速时为恒功率特性,且电动机的运行速度范围应该较宽。另外,电机还应具备坚固、可靠,有一定的防尘防水能力,且成本不能过高。 目前,从现已成熟的电机技术来看,开关磁阻电机在各个技术特性方面似乎很符合电动车的使用需要,但尚未得到广泛应用;而现今永磁同步电机在电动汽车行业应用较广泛;现在较为知名的特斯拉Model系列均采用异步电机。此外,如果按电流类型划分还可分为直流电机和交流电机两种。下面根据转速、功率密度、体积等多方面特性参数对比来了解4种较为典型的驱动电机特点。

基于TMS320F28035电动汽车电机控制器

2011-2012德州仪器C2000及MCU创新设计大赛 项目报告 题目:基于TMS320F28035电动汽车用电机控制器 学校:重庆大学 组别:专业组 应用类别:先进控制类 平台: C2000 题目:基于TMS320F28035电动汽车电机控制器 摘要:21世纪,纯电动汽车已经成为了解决燃油车辆带来的能源和环境问题的 最有希望的方案之一。而电动汽车电机控制器又是纯电动汽车的核心部分。本设 计以TI公司的TMS320F28035为控制核心,设计了一款用于电动汽车的低压电机 控制器,采用先进的弱磁控制算法和效率优化策略,实现了电机在整个运行范围 内输出最大转矩和达到较高的效率。 Abstract:ELECTRIC vehicles (EV) are seen as a possible step towards the solution of the pollution problem in urban environment. And the motor controller is core of the electric vehicle. Based on TMS320F28035 ,we design a motor controller used in low voltage EV. With the advanced control

scheme ,we can get the maximum torque in the whole speed range and the maximum efficiency. 1引言 1.1系统设计的背景 20世纪90年代以来,汽车作为人类最重要的代步和交通工具,在全球范围内得到蓬勃快速发展。其实世界汽车工业总共发展了100多年,已经成为世界上许多国家的支柱产业,在人类经济生活和生产中发挥着举足轻重的作用。进入21世纪,在今后的50年里,全球人口将从60亿增加到100亿,汽车的数量将从7亿增加到25亿。如果这些车辆使用内燃机的话,他们所需要的石油将不可估量,它们所排出的尾气将无法处理,它们将对我们的环境造成巨大的伤害。这些问题迫使人们去寻找21世纪可持续发展的道路交通工具。另外,由于能源资源日益消耗,迫使人们重新考虑未来汽车的动力来源,世界各国都竞相积极地研制新能源汽车,从而来替代燃料汽车。由于新能源汽车清洁无污染,能源形式多样并且能量比重高,结构简单而且维护方便,是21世纪最有发展潜力的汽车。 近二十多年来,西方工业发达国家政府把电动汽车的研究开发看作解决环境问题和能源问题的一种有效手段,在经济上给予大力支持。美国政府至今已出资数百亿美元支持汽车厂商和相关厂商进行电动汽车技术的开发研究。美国三大汽车公司1991年联合成立了美国先进电池联合体,投入了4.5亿美元,其中政府拨款2.25亿美元,共同开发镍镉、镍氢、锌空气电池、燃科电池等各种高性能蓄电池。日、法、德等国各大公司也投入巨资研究开发高性能电池。在电动汽车整车研究开发方面,至90年代末期,国外大汽车公司已开发生产了100多种型号的纯电动汽车、燃料电动汽车和混合动力汽车(表1)。其中,已有10多种纯电动汽车车型投入商业化生产;近年来,燃料电池电动汽车成为新的开发热点,美国计划到2010年市场上燃料电池汽车占市场4%份额,达到60万辆,日本政

新能源电动汽车电驱动系统

新能源电动汽车电驱动 系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁性能受温度振动等因素的影响,有高温退磁等问题。 开关磁阻电机(SRM)是由磁阻电机和开关电路控制器组成的机电一体化新型调速电机。开关磁阻电机工作时,依次使定子线圈中的电流导通或截止,电流变化形成的磁场吸引转子的凸出磁极从而产生转矩。开关磁阻电机结构简单,成本较低,可靠性高,起动性能和调速性能好,控制装置也比较简单。然而在实际应用中,开关磁阻电动机存在着转矩波动大、噪声大、需要位置检测器等缺点,所以目前应用开关磁阻电机的驱动系统仍然很少,主要以Chloride公司的“Lucas”电动汽车为代表。 异步感应电机(M)具有结构简单、坚固、成本低、可靠性高、转矩脉动小、噪声小、转速极限高、无需位置传感器及免维护等特点,因而在电动汽车驱动电机领域里,是应用很广泛的一种无换向器电机。近年来,由IM驱动的电动汽车几乎都采用矢量控制和直接转矩控制。美国以及欧洲研制的电动汽车多采用这种电动机。 异步电机的矢量控制调速技术也比较成熟,其电驱动系统具有良好的性能,因此被较早地应用于电动汽车,目前仍然是电动汽车驱动系统的主流产品。迄今为止,美国“Impact’’系列、“ETX.2”型,日本“Cedric"、“OTwn"、“FEV"型,德国 “T4”、“190’’型等电动汽车均采用异步感应电机。异步电机的最大缺点是驱动电路复杂,效率比永磁电机和开关磁阻电机低,特别是在轻载运行时效率更低。因此,如何进一步提高异步电机的运行效率,己经成为人们关注的重要课题。 2.变速器

电动汽车电机控制器

电动汽车电机控制器 一、电机控制器的概述 根据GB/T18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。 3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。

4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。

纯电动汽车驱动电机应用概述

纯电动汽车驱动电机应用概述 郑金凤 胡冰乐 张翔 (福建农林大学机电工程学院,福建 福州 350002) 摘 要:介绍了目前纯电动汽车的发展状况,叙述了纯电动汽车驱动电机不同类型的特点及相关的控制方法。还介绍了一些目前应用比较广泛的驱动电机控制方法的主要内容及其所解决的相关问题。 关键词:纯电动汽车 驱动电机 矢量控制 直接转矩控制 中图分类号:TP202 文献标识码:A Driving Motor for Electric Vehicles Application Overview Zheng Jinfeng Hu Bingle Zhang Xiang (College of Mechanical and Electronic Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China) Abstract: the current state of development of electric vehicles and features of the electric vehicles are described.Otherwise,driving motors and its control methods are narrated. Also major contents of some driving motor control methods applied extensively at present and its related issues are discussed. Key words:Electric vehicle,Drive motor,Vector control,Direct Torque Control 引言 由于环境保护越来越受消费者和政府的重视,以及能源价格的不断上涨,使得世界的汽车制造商都纷纷加大开新能源汽车开发力度。在去年金融危机的影响下,今年以来,由于全球大多主流的汽车市场纷纷出现衰退,尤其以美国和日本为代表的两大汽车市场出现了急剧下滑,使得美国和日本汽车厂家不得不加速原本保守的计划,从而重新刺激美国和日本等原有核心市场。而电动汽车以电能为能源,具有零排放无污染的突出优点,因此备受汽车界的推崇。在中国,政府今年也不断的推出各种政策来促进纯电动汽车的发展。回顾一下国际上电动汽车的发展史,连这次至少有四次,世界汽车工业界要启动纯电动汽车,但是前三次都失败了。前三次失败主要是因为电池。前三次基本上都是以铅酸电池为基础,由于他的比能量和比价格都比较差,所以没有得到推广。现在随着电池技术的不断发展,使得纯电动汽车的推广得以实现。现在纯电动汽车主要采用的是锂电池,锂电池的比能量是铅酸电池的八到十倍,且质量轻。今年比亚迪、丰田、奇瑞等汽车公司都将推出各自的纯电动汽车。并且电动汽车将可能慢慢成为汽车发展的一种趋势和必然[1,2,3]。 1各种电动汽车驱动电机的性能[4-11] 纯电动汽车关键的难点重点在于电池技术和驱动电机。电池技术已经在一定程度上得到了突破。下面主要讨论一下驱动电机的相关状况。 1.1电动汽车驱动电机控制的关键问题 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。下面主要阐述控制过程中的一些关键问题: (1)用在电动汽车的电动机应具有瞬时功率大、过载能力强(过载3~4倍)、加速性能好,使用寿命长的特点。 (2)电动汽车用电动机调速范围应该宽广,包括恒转矩区和恒功率区。要求在低速运行时可以输出大恒定转矩,来适应快速起动、加速、负荷爬坡等要求;高速时能够输出恒定功率,能有较大的调速范围,以适应平坦的路面、超车等高速行驶要求。

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

电动汽车用电机可行性报告

1.我国电动汽车发展概况 1.1 产业背景 1.2 产业政策 1.3 发展状况 1.3.1 技术状况 1.3.2 产业化状况 1.3.3 产品状况 1.3.4 国内主要生产企业及其产品明细表 1.4 发展方向 1.4.1 未来趋势 1.4.2 专家评述 2.我国发展电动汽车的相关政策 2.1 国家发展电动汽车的相关政策(按出台时间、名称、主要内容列表) 2.2 各省市发展电动汽车的相关政策(对北京、山东、湖南、湖北、河南、安徽、天津等分述之) 2.3 电动汽车技术支持的相关单位与组织 3.电动汽车驱动系统与驱动电机 3.1 电动汽车对其驱动系统的主要技术要求 3.2 电动汽车驱动系统的分类及其说明 3.3 电动汽车驱动电机的分类及其技术指标汇总 3.4 国内电动汽车研发单位及其研发情况 3.5 电动汽车驱动电机发展方向 4.技术方案 4.1 永磁一磁阻同步电机先进性与可行性 4.2 永磁一磁阻同步电机的优越性 4.3 永磁一磁阻同步电机现有工作基础 5.技术路线 6.合作组织 7.投资估算 8.其他

国外电动汽车及其驱动系统(本网页可阅览) 1.电动汽车的技术特征 1.1 电动汽车的基本概念和基本分类 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。它使用存储在电池中的电来发动。电动汽车主要有纯电动汽车、混合动力电动汽车和燃料电池电动汽车3种类型. 纯电动汽车 纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池等)提供动力的汽车。 混合动力电动汽车 一般是指采用内燃机和电动机两种动力,将内燃机与储能器件(如高性能电池或超级电容器) 通过先进控制系统相结合, 提供车辆行驶所需要的动力, 混合动力电动汽车并未从根本上摆脱交通运输对石油资源的依赖。因此,混合动力电动汽车是电动汽车发展过程中的一种过渡车型。 燃料电池车 燃料电池车是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装臵, 具有完全无污染(排放物为水)的优点, 1.2电动车的基本特点 概括来讲, 电动汽车与内燃机汽车相比有以下优点 (1)效率高:对能源的利用,电动汽车的总效率至少在19%以上(采用燃料电池时效率远高于这一数值),而内燃机汽车效率低于12%,由此可见, 电动汽车更加节能。 (2)环境污染小: 电动汽车排出的废气非常少甚至不排出废气, 产生的废热也明显少于内燃机汽车. (3)可使用多种能源: 可直接利用电厂输出的电能,也可以通过太阳能、化学能、机械能转化而获得电能。 (4)噪音低: 即使靠近正在高速运转的电动机也不会感觉到让人不舒服的噪音, 而内燃机的噪音则非常大。 (5)结构简单,使用维修方便,操作控制易实现自动化。 三种类型电动汽车的比较如附表所示

电动汽车用车电机及控制器技术条件

ID号:9034790 受控文件归档日期:2009-04-21 09:13:27 编码:ID号:xxxxxxx 受控文件归档日期:2009-04-xx 编 码: JLYY-XX -09 电动汽车用电机及控制器 技术条件 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二○○九年五月

前言 为了规范电动汽车用电机及控制器的技术特性,控制驱动电机及控制器系统质量和出厂检验规则编制了本标准。 本标准由浙江吉利汽车研究院有限公司提出。 本标准由浙江吉利汽车研究院有限公司新能源技术开发部负责起草。 本标准主要起草人:刘波。 本标准于2009年5月13日发布并实施。

1 范围 本标准规定了吉利电动汽车使用的电机及控制器型号、要求、检验规则、标志、随车技术文件、包装、运输、贮存及质量承诺。 本标准适用于吉利电动汽车用的驱动电机及其控制器。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 755-200 旋转电机定额和性能 GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法 GB/T 4772.1-1999 旋转电机尺寸和输出功率等级第1部分:机座号56~400和凸缘号55~1080 GB/T 4942.1-1985 电机外壳防护分级 GB/T 4942.2-1993 低压电器外壳防护等级 GB 10068.2-2000 轴中心高为56 mm及以上电机的机械振动—振动的测量、评定及限值 GB 10069.3-1988 旋转电机噪声测定方法及限值噪声限值 GB/T 12665-1990 电机在一般环境条件下使用的湿热试验要求 GB/T 12668-1990 交流电动机半导体变频调速装置总技术条件 GB 1471l-1993 中小型旋转电机安全通用要求 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值测量方法 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 GB/T 2900.25-1994 电工术语旋转电机 GB/T 2900.26-1995 电工术语控制电机 GB/T 2900.33-1993 电工术语电力电子技术 GB/T 10069.1-2006 旋转电机噪声测定方法及限值第1部分:旋转电机噪声测定方法 GB 10069.3 旋转电机噪声测定方法及限值第3部分:噪声限值 GB/T 18488.1-2001 电动汽车用电机及其控制器技术条件 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 3 定义

电动汽车驱动电机实训报告材料

驱动电机 实 训 报 告 汽工1302 黄祥吉

图给出三相BLDCM 控制系统的六开关逆变器拓扑图。根据无刷直流电机的特点,为了减小转矩脉动,提高电机控制性能,要求加在电机定子上的电流为方波,并与电机的梯形反电动势严格同步,每相电流导通120。表给出图所示的六开关逆变器的开关器件导通顺序。 由表可见,六开关逆变器中,根据开关器件的状态,可组成6个状态组合或电压矢量,即:(0,一1,1)、(1,一1,0)、(1,0,一1)、(0,1,一1)、(一1,1,0)、(一1,0,

1),其中,1表示上桥臂导通,一1表示下桥臂导通,0表示没有管子导通。如(0,一1,1)表示B相的下桥臂和C相的上桥臂导通,即VS5,Vs6导通,A相处于不导通状态。这样在任何时刻总是只有两相处于导通状态,即任何时刻总有一相的两个开关器件不参与工作。开关磁阻电机的控制系统。 开关磁阻电机作为一种新型调速电机,兼有直流和交流调速的优点,适用的领域很广。它是由磁阻电机与电子开关驱动控制电路组成一体的能量换转机构。 如图所示为四相的开关磁阻电机。图表示导通顺序A、B、C、D时定转子工作情况。图4a 表示V1导通,A相绕组通电,而其余的三相绕组断电,因此转子磁1.1′受到气隙中弯曲磁力线的切向磁拉力而产生转矩,使转子沿逆时针旋转,转子磁极1.1′向定子磁极AA′趋近,直到两者重合。此时,控制器据位置传感器的关断信号,去控制驱动器,关断V1,切断A 相绕组电流,紧接着控制器根据位置传感器的开、断信号,依次使V2、V3、V4通、断,使B、C、D相绕组顺序的通与断,使转子受同一方向转矩作用,沿逆时针的运行。若改变相电流大小,则可改变电机转矩和转速。 总之,国已经开发出了以上四种电机驱动系统,取得了很大的技术进步,已经在车辆上获得了应用。但是,还存在着需要改进之处。就交流感应电机电控系统而言,国的绝大多数电动效率在70%以上区域围占整个工作的区域还在80%以下;电机在低速运行过程中,输出转矩脉动性过大;在高速运转时可输出的转矩偏小,加载能力差,且转矩降落略大;甚至在一定转速围存在较大电磁振动(噪音),有待于进一步解决。四种电机电控系统的可靠性都有待进一步提高以适应产业化要求。

电动汽车电机及控制器性能测试系统

电动汽车电机及控制器性能测试系统 1 电机驱动系统的作用 电机驱动系统是电动汽车的核心,它与整车动力性能的好坏密切相关,是电动汽车关键技术之一。电机驱动系统由电动机和驱动控制器两部分组成。电动机是一种将电能转变为机械能的装置,为满足整车动力性能的需求,要求其具有瞬时功率大、过载能力强、加速性能好、使用寿命长、调速范围广、减速时实现再生制动能量回馈、效率高、可靠性高等特点。驱动控制器是将电池的电量转变为适于电动机运行的另一种电能变换控制装置。通过这种变换和控制使电动机处于最佳工作状态,以满足电动汽车实际行驶工况的需要,驱动控制器要求结构简单、控制精度高、动态响应好、系统高可靠、成本低。驱动电机及其控制器的性能好坏直接决定车辆的品质好坏,所以在试验室中正确地进行试验是必要的。 2 电机控制器性能测试设备 2.1 实验设备目前常用的测功机主要有直流电力测功机、交流电力测功机、电涡流测功机和水力测功机。直流电力测功机:由直流电机、测力计和测速发电机组合而成。直流电机的定子由独立的轴承座支承。它可以在某一角度范围内自由摆动。机壳上带有测力臂,它与测力计配合,可以检测定子所受到的转矩。转轴上的转矩可以由定子上量测。与直流电机类似,直流测功机调速性能好,控制简单,但由于换向器的原因,不适合高速运行,而且大功率的测功机相对于其他类型,体积较大。不适用于动力电机测试。交流电力测功机:由 1 台三相交流电动机和测

力计、测速发电机组成。它的测功原理与直流测功机相同,但不存在换向问题,结构简单,可靠性高。目前交流测功机在动、静态性能上已经得到了很大提高。电力测功机既可以进行电动性能测试,也可以进行馈电性能的测试。 2.2 测试方法 通过安装夹具及联轴器将被测电机与测功机连接,适当调整使轴与轴的对中度符合试验要求,对个别超高速电机,为防止试验过程中因为轴振动或对中不够精确引起轴承发热失效或者损坏电机的情况,可以考虑在适当位置安装振动传感器及温度传感器,对试验过程中局部情况实时监测,一旦有异常立即停止。针对标准的要求,试验时测试额定及峰值负载下的转速,转矩和效率特性,以及额定负载下的馈馈电特性。温升试验也是在台架上进行,分别测量电机绕组的温升和控制器的温升。电机和控制器都配备有散热系统,或水冷或风冷。电机及控制器从冷机状态下启动开始工作,温度会随之慢慢增加,在固定负载的情况下,温度最终会趋于稳定,这段时间内温度的变化量就是温升值。标准中有3种方法:电阻法、埋置检温计(ETD法和温度计法。试验电机不宜拆开。因此选用电阻法比较适合,通过比较试验前后环境温度、冷却水温度以及绕组直流电阻的变化来计算电机不同工况下的温升值。控制器的温升通过温度计即可测量。温升值根据不同产品的工作制要求进行测试。用在不同类型系统上的电机应选用不同的工作制,比如纯电动汽车,串联式、并联式以及混联式混合动力汽车,PLUG-IN混合动力汽车等不同类型的应用。在该项目中,标准里除了对温升值的要求外,对试验过程中电

电动车用电机控制器原理

电动车用电机控制器原理 2010-03-02 12:45:20 作者:路西法浏览次数:1415 车用电机控制器近年来的发展速度之快,使人难以想象,操作上越来越“傻瓜”化,而显示则越来越复杂化。比如,车速的控制已经发展到“巡航锁定”;驱动方面,有的同时具有电动性能和助力功能,如果转换到助力状态,借助链条张力测力器,或中轴扭力传感器,只要用脚踏动脚蹬,便可执行助力或确定助力的大小。这期本刊开始给您讲述控制器的知识,让您对控制器有一个更全面的了解。 一、控制器与保护功能 (一)控制器简介 简略地讲控制器是由周边器件和主芯片(或单片机)组成。周边器件是一些功能器件,如执行、采样等,它们是电阻、传感器、桥式开关电路,以及辅助单片机或专用集成电路完成控制过程的器件;单片机也称微控制器,是在一块集成片上把存贮器、有变换信号语言的译码器、锯齿波发生器和脉宽调制功能电路以及能使开关电路功率管导通或截止、通过方波控制功率管的的导通时间以控制电机转速的驱动电路、输入输出端口等集成在一起,而构成的计算机片。这就是电动自行车的智能控制器。它是以“傻瓜”面目出现的高技术产品。 控制器的设计品质、特性、所采用的微处理器的功能、功率开关器件电路及周边器件布局等,直接关系到整车的性能和运行状态,也影响控制器本身性能和效率。不同品质的控制器,用在同一辆车上,配用同一组相同充放电状态的电池,有时也会在续驶能力上显示出较大差别。 (二)控制器的型式

目前,电动自行车所采用的控制器电路原理基本相同或接近。 有刷和无刷直流电机大都采用脉宽调制的PWM控制方法调速,只是选用驱动电路、集成电路、开关电路功率晶体管和某些相关功能上的差别。元器件和电路上的差异,构成了控制器性能上的不大相同。控制器从结构上分两种,我们把它称为分离式和整体式。 1、分离式所谓分离,是指控制器主体和显示部分分离(图4-2 2、图4-23)。后者安装在车把上,控制器主体则隐藏在车体包厢或电动箱内,不露在外面。这种方式使控制器与电源、电机间连线距离缩短,车体外观显得简洁。 2、一体式控制部分与显示部分合为一体,装在一个精致的专用塑料盒子里。盒子安装在车把的正中,盒子的面板上开有数量不等的小孔,孔径4~5mm,外敷透明防水膜。孔内相应位置设有发光二极管以指示车速、电源和电池剩余电量。 (三)控制器的保护功能 保护功能是对控制器中换相功率管、电源免过放电,以及电动机在运行中,因某种故障或误操作而导致的可能引起的损伤等故障出现时,电路根据反馈信号采取的保护措施。电动自行车基本的保护功能和扩展功能如下: 1、制动断电电动自行车车把上两个钳形制动手把均安装有接点开关。当制动时,开关被推押闭合或被断开,而改变了原来的开关状态。这个变化形成信号传送到控制电路中,电路根据预设程序发出指令,立即切断基极驱动电流,使功率截止,停止供电。因而,既保护了功率管本身,又保护了电动机,也防止了电源的浪费。 2、欠压保护这里指的是电源的电压。当放电最后阶段,在负载状态下,电源电压已经接近“放电终止电压”,控制器面板(或仪表显示盘)即显示电量不足,引起骑行者的注意,计划自己的行程。当电源电压已经达到放终时,电压取样电阻将分流信息馈入比较器,保护电路即按预先设定的程序发出指令,切断电流以保护电子器件和电源。

电动汽车用电机控制器过电流保护方法

2011年第8期 D 驱动控制rive and co n trol 电动汽车用电机控制器过电流保护方法 61 收稿日期:2011-02-15 电动汽车用电机控制器过电流保护方法 王淑旺,郗世洪,孙纯哲,周 政,桂星星 (合肥工业大学,安徽合肥230009) 摘 要:系统地分析了电机控制器过电流故障产生的原因,建立了基于TM S320LF2407A 的电控平台,搭建了电流的检测、采样、硬件过流保护电路和软件过流保护策略,从而有效地解决了电机控制器过电流故障的保护问题,并且提出了减少过流故障的几点建议。 关键词:电动汽车;电机控制器;过电流保护 中图分类号:T M 33 文献标识码:A 文章编号:1004-7018(2011)08-0061-03 Over-Current Prot ecti o n M et hods of E lectric V ehicle M ot or Controller WANG Shu -w ang,X I Shi -hong,SU N Chun -zhe ,Z HOU Zheng,GUI X ing -xing (H efeiUn iversity of Techno logy ,H e fei 230009,China) Abstract :Th is paper syste m aticall y analyzed the causes o f over-curren t i n m oto r contro ller ,bu ilt the platfo r m o f the electronic contro l based on TM S320LF2407A D SP ,and establis hed the current detection ,samp li ng ,ov er-cu rrent ha rd w are protection circu it and ov er-current so ft w are protec ti on strategy .W ith these ,the system effecti ve l y so lves the prob l e m of over -current i n m otor controll e r ,and proposes som e suggesti ons on how to reduce t he over-current f ault of mo tor contro ller . K ey word s :electr i c vehic l e ;m oto r contro ller ;over-curren t protec tion 0引 言 随着能源危机的日益加剧和环境压力的增加, 电动汽车代替传统的燃油汽车已经成为一个必然的趋势 [1] 。电驱动系统是电动汽车的心脏,是提高电 动汽车的驱动性能、行驶里程及可靠性的根本保证[2] ,电机控制器是电驱动系统的关键部件,在复 杂极限路况下使电机控制器内部的电流、电压值可能达到所设定的值,内部的元器件承受能力有限,尤其是对功率模块的损害巨大,需要对其采取相应的措施。其中过电流故障是电动车电机控制器的常见故障,主要是突变性和峰值性的电流值,该故障的保护在电机控制器中极其重要。 目前电机控制器过电流保护一般可通过延长加速时间和减速时间,减少负载突变,加强绝缘水平,外加能耗制动元件、E MC 滤波器 [3] 。下面从电机控 制器产生过电流的原因、电流值的信号检测、采样、硬件保护电路和软件保护策略角度对该电机控制器进行过电流分析和保护。 1电机控制器过电流故障产生原因 过电流故障是电动车电机控制器的常见故障,主要是突变性和峰值性的电流值,一般表现为: (1)电动汽车电机控制器输出端三相线出现短 路,导致过电流; (2)电动车出现冲击负载或者电动车爬坡出现驱动电机堵转时,导致驱动电机的两相长时间接通,相线电感饱和,导致过电流; (3)电动车急加速(急刹车)时,车子本身负载惯性较大,升速(降速)时间设定太短,电机控制器的工作频率上升太快,同步电机的转速迅速上升(下降),同步电机原来处于转子产生的磁场与定子产生的旋转磁场同步,当出现急加速(急刹车)时,电机的转子转速因惯性较大,转子速度仍处于高速旋转,转子产生的磁场与定子的旋转磁场出现转差过大,导致绕组切割磁感线太快,产生过大的感应电动势,导致产生过电流; (4)电机控制器电源侧缺相、输出侧断线、电动机内部故障引起过电流故障; (5)驱动电机受电磁干扰的影响,漏电流变大,产生轴电流、轴电压,引起电机控制器过电流; (6)电机控制器的控制电路遭到电磁干扰,导致控制信号错误,速度反馈信号丢失或非正常时,也会引起过电流; (7)电机控制器的容量选择与负载特性不匹配,引起电机控制器功能和工作异常,造成过电流;(8)电机控制器参数设定不正确和硬件电路出问题,也导致过电流; (9)短时间内I G B T 电流值变化过大也会导致 过电流;如瞬时断电,电流产生尖峰,导致I GBT 过

北汽新能源纯电动汽车驱动电机控制系统故障维修

近年来,在我国作为技术的纯的研发与应用取得了突破性发展。这就客观要求行业提升维修 水平,升级故障维修手段,利用有效的电子诊断技术提升效率。本文以北汽纯的具体故障作 为切入点,通过故障分析及其排除过程,对关键技术进行相应的探究。 一、故障现象 一辆北汽生产的EV 160新能源纯,整车型号为:BJ7000B3D5-BEV,电机型号为: TZ20S02,电池型号为:29/135/220-80Ah,电池工作电压为320V。该车行驶里程为0.56万km,出现无法行驶且仪表报警灯常亮、报警音鸣叫的故障;故障发生时电机有沉闷的“咔、咔”声。 二、系统重要作用及其结构原理 驱动电机系统由驱动电动机(DM)、驱动电机控制器(MCU)构成,通过高低压线束与 整车其它系统作电气连接。驱动电机系统是纯三大核心部件之一,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。 1.驱动电机系统工作原理 在驱动电机系统中,驱动电机的输出动作主要是执行控制单元给出的命令,即控制器输出 命令。如图1所示,控制器主要是将输入的直流电逆变成电压、频率可调的三相交流电,供 给配套的三相交流永磁同步电机使用。 整车控制器(VCU)根据驾驶员意图发出各种指令,电机控制器响应并反馈,实时调整驱 动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能。电机控制 器另一个重要功能是通信和保护,实时进行状态和故障检测,保护驱动电机系统和整车安全 可靠运行。 电机控制器(MCU)由逆变器和控制器两部分组成。驱动电机控制器采用三相两电平电 压源型逆变器。逆变器负责将动力电池输送的直流电电能逆变成三相交流电给汽车驱动电机 提供电源;控制器接受驱动电机和其它部件的信号反馈到仪表,当发生制动或者加速行为时,它能控制频率的升降,从而达到加速或减速的目的。 电机控制器是依靠内置旋转变压器、温度传感器、电流传感器、电压传感器等来提供电 机的工作状态信息,并将驱动电机运行状态信息实时发送给VCU。驱动电机系统的控制中心,又称智能功率模块,以绝缘栅双极型晶体管模块(IGBT)为核心,辅以驱动集成电路、主控集成电路,对所有的输入信号进行处理,并将驱动电机控制系统运行状态的信息通过 CAN2.0网络发送给整车控制器,同时也会储存故障码和数据。

电动汽车用电机控制器设计规范

XXXX有限公司企业标准 电动汽车用电机控制器设计规范 编制: 校对: 审核: 标准化: 批准: 2019-XXX发布2019-XXX实施 XXXX有限公司发布

XXX 前言 为了保证XXXX有限公司的电机控制器产品设计的合理性和适用性,为电机控制器的开发工作提供设计依据,特编制本标准。 本标准代替XXXX《电机控制器设计规范》,与XXXX相比,除编辑性修改外主要技术变化如下: ——增加了机械环境术语定义(见3.2); ——修改了4.2.1(见4.2.1.2,2016年版的4.3.1); ——增加了信号检测精度(见4.2.2); ——修改了电机控制器温升限制(见4.2.3,2016年版的4.2.9); ——修改了控制器对加速踏板信号的响应范围(见4.2.4,2016年版的4.3.2); ——修改了电机控制器输出最大电流精度(见4.2.7,2016年版的4.3.5); ——增加了倒车时速的限值(见4.2.9); ——修改了电机温度保护策略(见4.2.13,2016年版的4.3.13); ——修改了电机控制器工作电压范围(见4.2.14,2016年版的4.3.1)。 ——增加了驻坡辅助模式控制策略(见4.2.15); ——增加了换挡操作逻辑策略(见4.2.15); ——增加了电机控制器缺相保护功能(见4.4.2); ——增加了软件版本要求(见4.5); ——增加了设计开发流程(见5); ——增加了包装及标识要求(见7); ——增加了附录A,电机控制器编码规则(见附录A); ——增加了附录B,电机控制器故障代码解析(见附录B); ——删除了引用文件QC/T 238、QC/T 413-2002; 本标准由XXXX有限公司技术研究院提出。 本标准由XXXX有限公司技术研究院起草并负责解释。 本标准主要起草人: 本标准所代替标准的历次版本发布情况为: ——XXXX I

电动汽车电机控制器方案设计说明书

电动汽车电机控制器方案设计说明书 1 引言 随着常规能源的日益减少和环境污染的日益严重,世界各国的环保意识逐渐增强,电动汽车以其零排放的优点受到世界各国的重视,并成为未来车辆的一个发展趋势。 传统的电动汽车多采用直流电机,其中最多的是有刷他励直流电机,因为存在电刷,导致电机的寿命和效率降低,目前比较新的无刷直流电机,这种电机寿长,效率比较高,但是因为位置传感器的安装精度不够导致控制效果不是很好和寿命短的问题。无速度传感低压交流驱动器,比传统的直流系统相比。 目前研究比较多的是交流异步电机及其控制器,与直流电机相比,交流异步电机具有效率高,相同功率等级下成本低等优点,交流系统低速恒转矩模式有效攻克了直流无刷启动力矩不足的问题。高速恒功率模式使整机效率更加优越。 随着交流电机控制算法的日益完善,其控制性能可以和直流电机相媲美,交流异步电机在电动汽车上的广泛应用成为发展趋势。 本系统采用无速度传感器矢量控制策略,提高电机工作效率,采用SVPWM技术,提高电压利用率,并减少谐波干扰,并克服了传统直流系统电动车启动力矩不足的缺点。 2 硬件总体说明 系统总共分为三块电路板叠成立体方式实现。 2.1功率变化电路总体说明 2.1.1 功能介绍 此功率电路采用三相相移120度 2.1.2 理论依据 ACI3_1的简易系统图如图1所示: 电动汽车电机控制器方案设计说明书(原创)- ZZ - 狂风悟浪 图1 ACI3_1的简易系统图 图1所示为三相感应电机驱动的完整系统图。使用了一个三相电压源逆变器来控制三相感应电机,DSP输出六路PWM信号控制逆变器的六个MOSFET的通断,从而控制电机电压。还有一个捕获输入脚用来捕获电机速度传感器的输出以测量电机转速,但在实际调试时没有使用速度传感器,所以没有速度反馈,整个系统是一个开环系统。 感应电机的等效电路如图2所示: 电动汽车电机控制器方案设计说明书(原创)- ZZ - 狂风悟浪

相关主题
文本预览
相关文档 最新文档