当前位置:文档之家› 电动汽车电机及控制器性能测试系统

电动汽车电机及控制器性能测试系统

电动汽车电机及控制器性能测试系统
电动汽车电机及控制器性能测试系统

电动汽车电机及控制器性能测试系统

1 电机驱动系统的作用

电机驱动系统是电动汽车的核心,它与整车动力性能的好坏密切相关,是电动汽车关键技术之一。电机驱动系统由电动机和驱动控制器两部分组成。电动机是一种将电能转变为机械能的装置,为满足整车动力性能的需求,要求其具有瞬时功率大、过载能力强、加速性能好、使用寿命长、调速范围广、减速时实现再生制动能量回馈、效率高、可靠性高等特点。驱动控制器是将电池的电量转变为适于电动机运行的另一种电能变换控制装置。通过这种变换和控制使电动机处于最佳工作状态,以满足电动汽车实际行驶工况的需要,驱动控制器要求结构简单、控制精度高、动态响应好、系统高可靠、成本低。驱动电机及其控制器的性能好坏直接决定车辆的品质好坏,所以在试验室中正确地进行试验是必要的。

2 电机控制器性能测试设备

2.1 实验设备目前常用的测功机主要有直流电力测功机、交流电力测功机、电涡流测功机和水力测功机。直流电力测功机:由直流电机、测力计和测速发电机组合而成。直流电机的定子由独立的轴承座支承。它可以在某一角度范围内自由摆动。机壳上带有测力臂,它与测力计配合,可以检测定子所受到的转矩。转轴上的转矩可以由定子上量测。与直流电机类似,直流测功机调速性能好,控制简单,但由于换向器的原因,不适合高速运行,而且大功率的测功机相对于其他类型,体积较大。不适用于动力电机测试。交流电力测功机:由 1 台三相交流电动机和测

力计、测速发电机组成。它的测功原理与直流测功机相同,但不存在换向问题,结构简单,可靠性高。目前交流测功机在动、静态性能上已经得到了很大提高。电力测功机既可以进行电动性能测试,也可以进行馈电性能的测试。

2.2 测试方法

通过安装夹具及联轴器将被测电机与测功机连接,适当调整使轴与轴的对中度符合试验要求,对个别超高速电机,为防止试验过程中因为轴振动或对中不够精确引起轴承发热失效或者损坏电机的情况,可以考虑在适当位置安装振动传感器及温度传感器,对试验过程中局部情况实时监测,一旦有异常立即停止。针对标准的要求,试验时测试额定及峰值负载下的转速,转矩和效率特性,以及额定负载下的馈馈电特性。温升试验也是在台架上进行,分别测量电机绕组的温升和控制器的温升。电机和控制器都配备有散热系统,或水冷或风冷。电机及控制器从冷机状态下启动开始工作,温度会随之慢慢增加,在固定负载的情况下,温度最终会趋于稳定,这段时间内温度的变化量就是温升值。标准中有3种方法:电阻法、埋置检温计(ETD法和温度计法。试验电机不宜拆开。因此选用电阻法比较适合,通过比较试验前后环境温度、冷却水温度以及绕组直流电阻的变化来计算电机不同工况下的温升值。控制器的温升通过温度计即可测量。温升值根据不同产品的工作制要求进行测试。用在不同类型系统上的电机应选用不同的工作制,比如纯电动汽车,串联式、并联式以及混联式混合动力汽车,PLUG-IN混合动力汽车等不同类型的应用。在该项目中,标准里除了对温升值的要求外,对试验过程中电

机的最高温度也有要求,根据电机不同的绝缘等级,要求也不一样。

2.3测试具体的实验步骤

室内试验;电动汽车传动试验台介绍。电动汽车传动试验台主要由电源模块、电机和变速器模块、整车惯量模拟模块、电涡流加载模块、各类传感器和控制台等六部分组成,可以完成电动机、电机控制器、动力电池、整车性能等相关内容的试验研究。

2.4电动汽车电机及控制器专用测试装备分析电动汽车电机-控制

器专用测试装备通用性较好,可以满足

多种型号、规格的电机和控制器试验。它主要由陪试电机、大功率电机驱动器、高性能嵌入式控制系统、智能工况模拟系统、能源系统(电池系统)、系统工作参数检测和采集系统等构成,能全方位展示电动汽车在不同工况下的工作状况。智能模拟车辆负载系统与电机控制系统联动,模拟电动车系统的不同工况(起动、怠速、匀速、加速、减速、停车及爬坡等),并实时、自适应、智能调节负载大小。测试装备整合了计算机仿真快速、灵活的动态模拟优势和道路试验准确可靠的优点来进行电动汽车电机及控制器的研究。图1 所示为根据电动汽车电机及控制器的试验特点设计的电动汽车电机及控制专用测试装备框图。各模块功能和作用分别如下:

(1)电源模块:根据不同的试验电机或控制器提供可控的交直流电源;(2)电机及控制器性能测试模块:测试动力电机或控制器的性能,实现电动汽车的驱动控制;(3)转矩转速测量模块:用来测量动力电机的转矩、转速等机械特性参数;(4)电参数测量模块:用来测量动力

电机的电压、电流等电力性能指标;(5)行驶阻力模拟模块:模拟电动汽车道路行驶过程中的各种行驶阻力;(6)能量管理模块:实现测试系统的能量管理,并采取一定的控制策略使测试系统达到最优的能量控制。

3 结语

随着能源危机的加深,环境污染的不断加剧,使用清洁环保能源取代石化能源已经成为全球急需和正在解决的热点问题,电动汽车因其具有绿色环保、能量来源多元化、能源利用效率高等优点,世界各国都在积极努力地研究发展能够代替传统汽车的电动汽车。电动汽车是汽车可持续发展的方向,混合动力和纯电动汽车正在迅速发展,在可预见的未来将大量上市,结合试验对标准和测试方法的分析有助于详细地评价电机和控制器的各方面性能,有利于电动汽车行业整体质量水平的提升。随着技术的进步,电机和控制器也在不断发展,标准和测试技术也应当体现当前技术的发展水平,为电动汽车零部件提供更好的测试服务。

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

基于TMS320F28035电动汽车电机控制器

2011-2012德州仪器C2000及MCU创新设计大赛 项目报告 题目:基于TMS320F28035电动汽车用电机控制器 学校:重庆大学 组别:专业组 应用类别:先进控制类 平台: C2000 题目:基于TMS320F28035电动汽车电机控制器 摘要:21世纪,纯电动汽车已经成为了解决燃油车辆带来的能源和环境问题的 最有希望的方案之一。而电动汽车电机控制器又是纯电动汽车的核心部分。本设 计以TI公司的TMS320F28035为控制核心,设计了一款用于电动汽车的低压电机 控制器,采用先进的弱磁控制算法和效率优化策略,实现了电机在整个运行范围 内输出最大转矩和达到较高的效率。 Abstract:ELECTRIC vehicles (EV) are seen as a possible step towards the solution of the pollution problem in urban environment. And the motor controller is core of the electric vehicle. Based on TMS320F28035 ,we design a motor controller used in low voltage EV. With the advanced control

scheme ,we can get the maximum torque in the whole speed range and the maximum efficiency. 1引言 1.1系统设计的背景 20世纪90年代以来,汽车作为人类最重要的代步和交通工具,在全球范围内得到蓬勃快速发展。其实世界汽车工业总共发展了100多年,已经成为世界上许多国家的支柱产业,在人类经济生活和生产中发挥着举足轻重的作用。进入21世纪,在今后的50年里,全球人口将从60亿增加到100亿,汽车的数量将从7亿增加到25亿。如果这些车辆使用内燃机的话,他们所需要的石油将不可估量,它们所排出的尾气将无法处理,它们将对我们的环境造成巨大的伤害。这些问题迫使人们去寻找21世纪可持续发展的道路交通工具。另外,由于能源资源日益消耗,迫使人们重新考虑未来汽车的动力来源,世界各国都竞相积极地研制新能源汽车,从而来替代燃料汽车。由于新能源汽车清洁无污染,能源形式多样并且能量比重高,结构简单而且维护方便,是21世纪最有发展潜力的汽车。 近二十多年来,西方工业发达国家政府把电动汽车的研究开发看作解决环境问题和能源问题的一种有效手段,在经济上给予大力支持。美国政府至今已出资数百亿美元支持汽车厂商和相关厂商进行电动汽车技术的开发研究。美国三大汽车公司1991年联合成立了美国先进电池联合体,投入了4.5亿美元,其中政府拨款2.25亿美元,共同开发镍镉、镍氢、锌空气电池、燃科电池等各种高性能蓄电池。日、法、德等国各大公司也投入巨资研究开发高性能电池。在电动汽车整车研究开发方面,至90年代末期,国外大汽车公司已开发生产了100多种型号的纯电动汽车、燃料电动汽车和混合动力汽车(表1)。其中,已有10多种纯电动汽车车型投入商业化生产;近年来,燃料电池电动汽车成为新的开发热点,美国计划到2010年市场上燃料电池汽车占市场4%份额,达到60万辆,日本政

电动汽车电机控制器

电动汽车电机控制器 一、电机控制器的概述 根据GB/T18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。 3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。

4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

电动汽车用驱动电机发展现状与趋势分析

龙源期刊网 https://www.doczj.com/doc/8d3292253.html, 电动汽车用驱动电机发展现状与趋势分析 作者:张勇 来源:《时代汽车》2016年第12期 摘要:目前,我国电动汽车行业正在不断发展,相关的生产技术也逐步完善。本文中,笔者即将对电动汽车用驱动电机进行介绍,并就驱动电机目前的发展状况以及在将来一段时间的发展趋势作出相关分析。 关键词:电动汽车;驱动电机;现状;趋势 1电动汽车用驱动电机概述 目前,电动汽车的不同特性对于驱动电机提出了不同类型的要求。其中,对速度要求较高的电动汽车,要求其电机的瞬时功率及功率密度值较高;而要求电池使用周期较长,充电后可以行使更远距离的电动汽车,要求电机的效率应相对较高;此外,电动汽车还要求驱动电机具有比较理想的高低速综合效率,用材坚固,耐用性强,且具有理想的防水性能,性价比高等特性。依据上述要求,目前国内设计生产的比较常见的驱动电机主要包括下述4种类型。 1.1直流有刷电机 直流有刷电机是一种采用直流供电的驱动电机,是最早研发并使用的电动汽车用驱动电机类型,且目前在很多类型的电动汽车中仍旧在广泛使用。直流有刷电机最大的优势在于控制特性较好,简单易于操作,且目前国内的生产技术较为成熟,质量比较稳定。 然而,直流有刷电机之所以后来逐步为其他类型的驱动电机所取代,正是由于其也存在着一些比较突显的缺陷。首先,由于直流有刷电机具有电刷及机械换向器两个结构,导致其电机过载能力及速度得不到有效的提高,且使用过程中对零部件的维护成本较高。此外,直流有刷电机的损耗主要发生在转子部分,这便导致产生的热量散失难度较大,对转矩质量比参数需要进一步优化。第三,直流有刷电机在运行过程中,电刷容易因摩擦产生火花,从而形成电磁干扰对电动汽车的正常运行造成不利影响。第四,由于采用的是机械换向器,因此会对电机的容量、转速等性能造成限制,越来越无法满足用户对于驱动电机的需求。 1.2感应电机 目前电动汽车中最为常用的就是交流三相感应电机。此类电机的定子和转子是通过对硅钢片进行叠压后制成的,没有其他零部件接触。具有结构简单,性能稳定,耐用性能优良等特点。此外,该电机的功率范围较广;可以通过空气进行冷却,也可以通过液体冷却;同时,对于周边环境具有很好的适应性能。相比于其他类型的驱动电机,感应电机的质量小,价位低,性价比高,并且保养及维修成本也相对较低。

电动汽车用车电机及控制器技术条件

ID号:9034790 受控文件归档日期:2009-04-21 09:13:27 编码:ID号:xxxxxxx 受控文件归档日期:2009-04-xx 编 码: JLYY-XX -09 电动汽车用电机及控制器 技术条件 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二○○九年五月

前言 为了规范电动汽车用电机及控制器的技术特性,控制驱动电机及控制器系统质量和出厂检验规则编制了本标准。 本标准由浙江吉利汽车研究院有限公司提出。 本标准由浙江吉利汽车研究院有限公司新能源技术开发部负责起草。 本标准主要起草人:刘波。 本标准于2009年5月13日发布并实施。

1 范围 本标准规定了吉利电动汽车使用的电机及控制器型号、要求、检验规则、标志、随车技术文件、包装、运输、贮存及质量承诺。 本标准适用于吉利电动汽车用的驱动电机及其控制器。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 755-200 旋转电机定额和性能 GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法 GB/T 4772.1-1999 旋转电机尺寸和输出功率等级第1部分:机座号56~400和凸缘号55~1080 GB/T 4942.1-1985 电机外壳防护分级 GB/T 4942.2-1993 低压电器外壳防护等级 GB 10068.2-2000 轴中心高为56 mm及以上电机的机械振动—振动的测量、评定及限值 GB 10069.3-1988 旋转电机噪声测定方法及限值噪声限值 GB/T 12665-1990 电机在一般环境条件下使用的湿热试验要求 GB/T 12668-1990 交流电动机半导体变频调速装置总技术条件 GB 1471l-1993 中小型旋转电机安全通用要求 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值测量方法 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 GB/T 2900.25-1994 电工术语旋转电机 GB/T 2900.26-1995 电工术语控制电机 GB/T 2900.33-1993 电工术语电力电子技术 GB/T 10069.1-2006 旋转电机噪声测定方法及限值第1部分:旋转电机噪声测定方法 GB 10069.3 旋转电机噪声测定方法及限值第3部分:噪声限值 GB/T 18488.1-2001 电动汽车用电机及其控制器技术条件 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 3 定义

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

电动汽车的四种驱动电机比较

电动汽车的四种驱动电机比较 电动汽车主要是由电机驱动系统、电池系统和整车控制系统三部分构成,其中的电机驱动系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。因此,对于驱动电机的选择就尤为重要。 新能源汽车具有环保、节约、简单三大优势。在纯电动汽车上体现尤为明显:以电动机代替燃油机,由电机驱动而无需自动变速箱。相对于自动变速箱,电机结构简单、技术成熟、运行可靠,甚至被视为中国在新能源汽车行业实现汽车工业“弯道超车”的希望领域之一。新能源电动汽车主要是由电机驱动系统、电池系统和整车控制系统三部分构成,其中的电机驱动系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。因此,对于驱动电机的选择就尤为重要。 电动汽车的驱动电机要求有以下几个特点: ?宽广的恒功率范围,满足汽车的变速性能 ?启动扭矩大,调速能力强 ?效率高,高效区广 ?瞬时功率大,过载能力强 ?功率密度大,体积小,重量轻 ?环境适应性高,适应恶劣环境 ?能量回馈效率高 根据驱动原理,电动汽车的驱动电机可分为以下4种: 1、直流电动机 在电动汽车发展的早期,很多电动汽车都是采用直流电动机方案。主要是看中了直流电机的产品成熟,控制方式容易,调速优良的特点。但由于直流电动机本身 的短板非常突出,其自身复杂的机械结构(电刷和机械换向器等),制约了它的瞬 时过载能力和电机转速的进一步提高;而且在长时间工作的情况下,电机的机械结 构会产生损耗,提高了维护成本。此外,电动机运转时的电刷火花会使转子发热, 浪费能量,散热困难,还会造成高频电磁干扰,这些因素都会影响具体整车性能。 由于直流电动机的缺点非常突出,目前的电动汽车已经将直流电机淘汰。 2、交流异步电动机 交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简 单,运行可靠耐用,维修方便。交流异步电机与同功率的直流电动机相比效率更高,质量约轻了二分之一左右。如果采用矢量控制的控制方式,可以获得与直流电机相 媲美的可控性和更宽的调速范围。由于有着效率高、比功率较大、适合于高速运转

电动汽车用电机可行性报告

1.我国电动汽车发展概况 1.1 产业背景 1.2 产业政策 1.3 发展状况 1.3.1 技术状况 1.3.2 产业化状况 1.3.3 产品状况 1.3.4 国内主要生产企业及其产品明细表 1.4 发展方向 1.4.1 未来趋势 1.4.2 专家评述 2.我国发展电动汽车的相关政策 2.1 国家发展电动汽车的相关政策(按出台时间、名称、主要内容列表) 2.2 各省市发展电动汽车的相关政策(对北京、山东、湖南、湖北、河南、安徽、天津等分述之) 2.3 电动汽车技术支持的相关单位与组织 3.电动汽车驱动系统与驱动电机 3.1 电动汽车对其驱动系统的主要技术要求 3.2 电动汽车驱动系统的分类及其说明 3.3 电动汽车驱动电机的分类及其技术指标汇总 3.4 国内电动汽车研发单位及其研发情况

3.5 电动汽车驱动电机发展方向 4.技术方案 4.1 永磁一磁阻同步电机先进性与可行性 4.2 永磁一磁阻同步电机的优越性 4.3 永磁一磁阻同步电机现有工作基础 5.技术路线 6.合作组织 7.投资估算 8.其他 国外电动汽车及其驱动系统(本网页可阅览) 1.电动汽车的技术特征 1.1 电动汽车的基本概念和基本分类 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。它使用存储在电池中的电来发动。电动汽车主要有纯电动汽车、混合动力电动汽车和燃料电池电动汽车3种类型. 纯电动汽车 纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池等)提供动力的汽车。 混合动力电动汽车 一般是指采用内燃机和电动机两种动力,将内燃机与储能器件(如

电动汽车电机及控制器性能测试系统

电动汽车电机及控制器性能测试系统 1 电机驱动系统的作用 电机驱动系统是电动汽车的核心,它与整车动力性能的好坏密切相关,是电动汽车关键技术之一。电机驱动系统由电动机和驱动控制器两部分组成。电动机是一种将电能转变为机械能的装置,为满足整车动力性能的需求,要求其具有瞬时功率大、过载能力强、加速性能好、使用寿命长、调速范围广、减速时实现再生制动能量回馈、效率高、可靠性高等特点。驱动控制器是将电池的电量转变为适于电动机运行的另一种电能变换控制装置。通过这种变换和控制使电动机处于最佳工作状态,以满足电动汽车实际行驶工况的需要,驱动控制器要求结构简单、控制精度高、动态响应好、系统高可靠、成本低。驱动电机及其控制器的性能好坏直接决定车辆的品质好坏,所以在试验室中正确地进行试验是必要的。 2 电机控制器性能测试设备 2.1 实验设备目前常用的测功机主要有直流电力测功机、交流电力测功机、电涡流测功机和水力测功机。直流电力测功机:由直流电机、测力计和测速发电机组合而成。直流电机的定子由独立的轴承座支承。它可以在某一角度范围内自由摆动。机壳上带有测力臂,它与测力计配合,可以检测定子所受到的转矩。转轴上的转矩可以由定子上量测。与直流电机类似,直流测功机调速性能好,控制简单,但由于换向器的原因,不适合高速运行,而且大功率的测功机相对于其他类型,体积较大。不适用于动力电机测试。交流电力测功机:由 1 台三相交流电动机和测

力计、测速发电机组成。它的测功原理与直流测功机相同,但不存在换向问题,结构简单,可靠性高。目前交流测功机在动、静态性能上已经得到了很大提高。电力测功机既可以进行电动性能测试,也可以进行馈电性能的测试。 2.2 测试方法 通过安装夹具及联轴器将被测电机与测功机连接,适当调整使轴与轴的对中度符合试验要求,对个别超高速电机,为防止试验过程中因为轴振动或对中不够精确引起轴承发热失效或者损坏电机的情况,可以考虑在适当位置安装振动传感器及温度传感器,对试验过程中局部情况实时监测,一旦有异常立即停止。针对标准的要求,试验时测试额定及峰值负载下的转速,转矩和效率特性,以及额定负载下的馈馈电特性。温升试验也是在台架上进行,分别测量电机绕组的温升和控制器的温升。电机和控制器都配备有散热系统,或水冷或风冷。电机及控制器从冷机状态下启动开始工作,温度会随之慢慢增加,在固定负载的情况下,温度最终会趋于稳定,这段时间内温度的变化量就是温升值。标准中有3种方法:电阻法、埋置检温计(ETD法和温度计法。试验电机不宜拆开。因此选用电阻法比较适合,通过比较试验前后环境温度、冷却水温度以及绕组直流电阻的变化来计算电机不同工况下的温升值。控制器的温升通过温度计即可测量。温升值根据不同产品的工作制要求进行测试。用在不同类型系统上的电机应选用不同的工作制,比如纯电动汽车,串联式、并联式以及混联式混合动力汽车,PLUG-IN混合动力汽车等不同类型的应用。在该项目中,标准里除了对温升值的要求外,对试验过程中电

电动车用电机控制器原理

电动车用电机控制器原理 2010-03-02 12:45:20 作者:路西法浏览次数:1415 车用电机控制器近年来的发展速度之快,使人难以想象,操作上越来越“傻瓜”化,而显示则越来越复杂化。比如,车速的控制已经发展到“巡航锁定”;驱动方面,有的同时具有电动性能和助力功能,如果转换到助力状态,借助链条张力测力器,或中轴扭力传感器,只要用脚踏动脚蹬,便可执行助力或确定助力的大小。这期本刊开始给您讲述控制器的知识,让您对控制器有一个更全面的了解。 一、控制器与保护功能 (一)控制器简介 简略地讲控制器是由周边器件和主芯片(或单片机)组成。周边器件是一些功能器件,如执行、采样等,它们是电阻、传感器、桥式开关电路,以及辅助单片机或专用集成电路完成控制过程的器件;单片机也称微控制器,是在一块集成片上把存贮器、有变换信号语言的译码器、锯齿波发生器和脉宽调制功能电路以及能使开关电路功率管导通或截止、通过方波控制功率管的的导通时间以控制电机转速的驱动电路、输入输出端口等集成在一起,而构成的计算机片。这就是电动自行车的智能控制器。它是以“傻瓜”面目出现的高技术产品。 控制器的设计品质、特性、所采用的微处理器的功能、功率开关器件电路及周边器件布局等,直接关系到整车的性能和运行状态,也影响控制器本身性能和效率。不同品质的控制器,用在同一辆车上,配用同一组相同充放电状态的电池,有时也会在续驶能力上显示出较大差别。 (二)控制器的型式

目前,电动自行车所采用的控制器电路原理基本相同或接近。 有刷和无刷直流电机大都采用脉宽调制的PWM控制方法调速,只是选用驱动电路、集成电路、开关电路功率晶体管和某些相关功能上的差别。元器件和电路上的差异,构成了控制器性能上的不大相同。控制器从结构上分两种,我们把它称为分离式和整体式。 1、分离式所谓分离,是指控制器主体和显示部分分离(图4-2 2、图4-23)。后者安装在车把上,控制器主体则隐藏在车体包厢或电动箱内,不露在外面。这种方式使控制器与电源、电机间连线距离缩短,车体外观显得简洁。 2、一体式控制部分与显示部分合为一体,装在一个精致的专用塑料盒子里。盒子安装在车把的正中,盒子的面板上开有数量不等的小孔,孔径4~5mm,外敷透明防水膜。孔内相应位置设有发光二极管以指示车速、电源和电池剩余电量。 (三)控制器的保护功能 保护功能是对控制器中换相功率管、电源免过放电,以及电动机在运行中,因某种故障或误操作而导致的可能引起的损伤等故障出现时,电路根据反馈信号采取的保护措施。电动自行车基本的保护功能和扩展功能如下: 1、制动断电电动自行车车把上两个钳形制动手把均安装有接点开关。当制动时,开关被推押闭合或被断开,而改变了原来的开关状态。这个变化形成信号传送到控制电路中,电路根据预设程序发出指令,立即切断基极驱动电流,使功率截止,停止供电。因而,既保护了功率管本身,又保护了电动机,也防止了电源的浪费。 2、欠压保护这里指的是电源的电压。当放电最后阶段,在负载状态下,电源电压已经接近“放电终止电压”,控制器面板(或仪表显示盘)即显示电量不足,引起骑行者的注意,计划自己的行程。当电源电压已经达到放终时,电压取样电阻将分流信息馈入比较器,保护电路即按预先设定的程序发出指令,切断电流以保护电子器件和电源。

电动汽车用电机控制器过电流保护方法

2011年第8期 D 驱动控制rive and co n trol 电动汽车用电机控制器过电流保护方法 61 收稿日期:2011-02-15 电动汽车用电机控制器过电流保护方法 王淑旺,郗世洪,孙纯哲,周 政,桂星星 (合肥工业大学,安徽合肥230009) 摘 要:系统地分析了电机控制器过电流故障产生的原因,建立了基于TM S320LF2407A 的电控平台,搭建了电流的检测、采样、硬件过流保护电路和软件过流保护策略,从而有效地解决了电机控制器过电流故障的保护问题,并且提出了减少过流故障的几点建议。 关键词:电动汽车;电机控制器;过电流保护 中图分类号:T M 33 文献标识码:A 文章编号:1004-7018(2011)08-0061-03 Over-Current Prot ecti o n M et hods of E lectric V ehicle M ot or Controller WANG Shu -w ang,X I Shi -hong,SU N Chun -zhe ,Z HOU Zheng,GUI X ing -xing (H efeiUn iversity of Techno logy ,H e fei 230009,China) Abstract :Th is paper syste m aticall y analyzed the causes o f over-curren t i n m oto r contro ller ,bu ilt the platfo r m o f the electronic contro l based on TM S320LF2407A D SP ,and establis hed the current detection ,samp li ng ,ov er-cu rrent ha rd w are protection circu it and ov er-current so ft w are protec ti on strategy .W ith these ,the system effecti ve l y so lves the prob l e m of over -current i n m otor controll e r ,and proposes som e suggesti ons on how to reduce t he over-current f ault of mo tor contro ller . K ey word s :electr i c vehic l e ;m oto r contro ller ;over-curren t protec tion 0引 言 随着能源危机的日益加剧和环境压力的增加, 电动汽车代替传统的燃油汽车已经成为一个必然的趋势 [1] 。电驱动系统是电动汽车的心脏,是提高电 动汽车的驱动性能、行驶里程及可靠性的根本保证[2] ,电机控制器是电驱动系统的关键部件,在复 杂极限路况下使电机控制器内部的电流、电压值可能达到所设定的值,内部的元器件承受能力有限,尤其是对功率模块的损害巨大,需要对其采取相应的措施。其中过电流故障是电动车电机控制器的常见故障,主要是突变性和峰值性的电流值,该故障的保护在电机控制器中极其重要。 目前电机控制器过电流保护一般可通过延长加速时间和减速时间,减少负载突变,加强绝缘水平,外加能耗制动元件、E MC 滤波器 [3] 。下面从电机控 制器产生过电流的原因、电流值的信号检测、采样、硬件保护电路和软件保护策略角度对该电机控制器进行过电流分析和保护。 1电机控制器过电流故障产生原因 过电流故障是电动车电机控制器的常见故障,主要是突变性和峰值性的电流值,一般表现为: (1)电动汽车电机控制器输出端三相线出现短 路,导致过电流; (2)电动车出现冲击负载或者电动车爬坡出现驱动电机堵转时,导致驱动电机的两相长时间接通,相线电感饱和,导致过电流; (3)电动车急加速(急刹车)时,车子本身负载惯性较大,升速(降速)时间设定太短,电机控制器的工作频率上升太快,同步电机的转速迅速上升(下降),同步电机原来处于转子产生的磁场与定子产生的旋转磁场同步,当出现急加速(急刹车)时,电机的转子转速因惯性较大,转子速度仍处于高速旋转,转子产生的磁场与定子的旋转磁场出现转差过大,导致绕组切割磁感线太快,产生过大的感应电动势,导致产生过电流; (4)电机控制器电源侧缺相、输出侧断线、电动机内部故障引起过电流故障; (5)驱动电机受电磁干扰的影响,漏电流变大,产生轴电流、轴电压,引起电机控制器过电流; (6)电机控制器的控制电路遭到电磁干扰,导致控制信号错误,速度反馈信号丢失或非正常时,也会引起过电流; (7)电机控制器的容量选择与负载特性不匹配,引起电机控制器功能和工作异常,造成过电流;(8)电机控制器参数设定不正确和硬件电路出问题,也导致过电流; (9)短时间内I G B T 电流值变化过大也会导致 过电流;如瞬时断电,电流产生尖峰,导致I GBT 过

电动汽车用电机控制策略分析

电动汽车用电机控制策略分析摘要 第一章绪论 1.1引言 1.2电动汽车的定义及优势 1.2.1电动汽车的定义 1.2.2电动汽车的优势 1.3电动汽车的基本结构 1.4本论文选题的意义及主要内容 1.4.1选题的意义 1.4.2本文的主要内容 第二章电动汽车电机驱动系统介绍 2.1电动汽车驱动电机分类 2.2电机驱动系统系统构成与布置方式 2.3电动汽车中电动机类型及其驱动系统 2.4电动汽车电机驱动控制的发展现状和趋势 第三章交流感应电动机及其控制策略 第四章无刷直流电动机及其控制策略 第五章永磁同步电动机及其控制策略 5.1永磁同步电机的结构和特点 5.2永磁同步电机矢量控制理论 5.2.1电动机的转矩控制 5.2.2 PMSM坐标变换 5.2.3 PMSM数学模型 5.2.4电流极限圆和电压极限圆 5.3永磁同步电动机恒转矩控制

5.3.1id =0控制 5.3.2最大转矩/电流比控制 5.3.3恒磁链控制 5.3.4 cosφ=1控制 5.4永磁同步电动机弱磁控制 第六章全文总结与展望 摘要 第一章绪论 1.1引言 在未来的一段时间内,我国将成为世界最大的汽车消费国,2010年我国汽车增加到五千六百万辆以上,不过空气污染源也会大幅度提高,空气污染将有64%来自于汽车尾气的排放,在2020年左右,我国石油消费量将超过4.5亿吨,而我国能源系统效率平均低于国际先进水平10%,但是我国60%石油消费量依赖于进口,要是仍然采用传统的内燃机技术发展汽车工业将会使我国为此付出巨大代价和对环境保护也会造成巨大的压力。在这种严峻的形势下,我国汽车工业的未来发展需要我们好好思考。 根据现在世界人口和汽车的增长趋势来看,今后50年中,世界人口和汽车数量分别从60亿增加到100亿和7千万增加到2亿5千万辆以上。若这些车辆都采用内燃机,能源需求和空气污染将会给人类造成巨大的压力和损坏。因此我们必须开发节能环保型以及高效智能型的交通车辆,只有这样才能在本世纪实现交通的可持续发展。能源危机曾经对世界经济带来严重影响,因此石油毕源的争夺更加强烈,石油纠纷在国际上也不断发生,甚至为了争夺石油资源而爆发的战争在近几年也不断发生。因此石油资源的解决是当今世界每个国家所面临的首要考虑的问题,石油资源解决的好坏是当今世界是否稳定的重要因素。 电动汽车是将机算机、电子与化学各学科领域中的高新技术于一体,是汽车、计算机、电力拖动、新材料、新能源、功率电子、自动控制、化学电源等工程技术中最新成果的集成产物。混合动力电动汽车、燃料电池汽车和纯电动汽车对世界汽车的发展以及环境的保护都起到一个前所未有的阶段,具有里程碑的意义。 1.2电动汽车的定义及优势 我国政府已将电动汽车的快速发展列入我国“十五”国家863计划,加大了对电动汽车开发和产业化的投入,与世界发达国家电动汽车发展接轨,目前已经取得了一定得成就。我国不少高等院校、相关的研究以及国内部分企业都加强了对电动汽车研究开发的力度,加快了汽车事业的发展速度。目前我国纯电动汽车研发比较顺利,可以小批量生产与应用;与此同时混合动力汽车的发展目前它的产业化也可以说具备条件;值得炫耀的是我国的燃料电池汽车研发目前达到国际先进水平。因此我国建立电动汽车产业,逐步实施车用能源动为系统转型,实现节能环保目标奠定了技术基础。 1.2.1电动汽车的定义 电动汽车是指以车载电源为动力,用全部或部分由电机驱动,并配置大容量电能储存装置,符合道路交通、安全法规各项要求的车辆 1.2.2电动汽车的优势 现如今各国都在发展电动汽车事业,是由于它具有以下几个方面的优点:

电动汽车用电机控制器设计规范

XXXX有限公司企业标准 电动汽车用电机控制器设计规范 编制: 校对: 审核: 标准化: 批准: 2019-XXX发布2019-XXX实施 XXXX有限公司发布

XXX 前言 为了保证XXXX有限公司的电机控制器产品设计的合理性和适用性,为电机控制器的开发工作提供设计依据,特编制本标准。 本标准代替XXXX《电机控制器设计规范》,与XXXX相比,除编辑性修改外主要技术变化如下: ——增加了机械环境术语定义(见3.2); ——修改了4.2.1(见4.2.1.2,2016年版的4.3.1); ——增加了信号检测精度(见4.2.2); ——修改了电机控制器温升限制(见4.2.3,2016年版的4.2.9); ——修改了控制器对加速踏板信号的响应范围(见4.2.4,2016年版的4.3.2); ——修改了电机控制器输出最大电流精度(见4.2.7,2016年版的4.3.5); ——增加了倒车时速的限值(见4.2.9); ——修改了电机温度保护策略(见4.2.13,2016年版的4.3.13); ——修改了电机控制器工作电压范围(见4.2.14,2016年版的4.3.1)。 ——增加了驻坡辅助模式控制策略(见4.2.15); ——增加了换挡操作逻辑策略(见4.2.15); ——增加了电机控制器缺相保护功能(见4.4.2); ——增加了软件版本要求(见4.5); ——增加了设计开发流程(见5); ——增加了包装及标识要求(见7); ——增加了附录A,电机控制器编码规则(见附录A); ——增加了附录B,电机控制器故障代码解析(见附录B); ——删除了引用文件QC/T 238、QC/T 413-2002; 本标准由XXXX有限公司技术研究院提出。 本标准由XXXX有限公司技术研究院起草并负责解释。 本标准主要起草人: 本标准所代替标准的历次版本发布情况为: ——XXXX I

新能源电动汽车电驱动系统

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra 和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁

电动汽车电机控制器方案设计说明书

电动汽车电机控制器方案设计说明书 1 引言 随着常规能源的日益减少和环境污染的日益严重,世界各国的环保意识逐渐增强,电动汽车以其零排放的优点受到世界各国的重视,并成为未来车辆的一个发展趋势。 传统的电动汽车多采用直流电机,其中最多的是有刷他励直流电机,因为存在电刷,导致电机的寿命和效率降低,目前比较新的无刷直流电机,这种电机寿长,效率比较高,但是因为位置传感器的安装精度不够导致控制效果不是很好和寿命短的问题。无速度传感低压交流驱动器,比传统的直流系统相比。 目前研究比较多的是交流异步电机及其控制器,与直流电机相比,交流异步电机具有效率高,相同功率等级下成本低等优点,交流系统低速恒转矩模式有效攻克了直流无刷启动力矩不足的问题。高速恒功率模式使整机效率更加优越。 随着交流电机控制算法的日益完善,其控制性能可以和直流电机相媲美,交流异步电机在电动汽车上的广泛应用成为发展趋势。 本系统采用无速度传感器矢量控制策略,提高电机工作效率,采用SVPWM技术,提高电压利用率,并减少谐波干扰,并克服了传统直流系统电动车启动力矩不足的缺点。 2 硬件总体说明 系统总共分为三块电路板叠成立体方式实现。 2.1功率变化电路总体说明 2.1.1 功能介绍 此功率电路采用三相相移120度 2.1.2 理论依据 ACI3_1的简易系统图如图1所示: 电动汽车电机控制器方案设计说明书(原创)- ZZ - 狂风悟浪 图1 ACI3_1的简易系统图 图1所示为三相感应电机驱动的完整系统图。使用了一个三相电压源逆变器来控制三相感应电机,DSP输出六路PWM信号控制逆变器的六个MOSFET的通断,从而控制电机电压。还有一个捕获输入脚用来捕获电机速度传感器的输出以测量电机转速,但在实际调试时没有使用速度传感器,所以没有速度反馈,整个系统是一个开环系统。 感应电机的等效电路如图2所示: 电动汽车电机控制器方案设计说明书(原创)- ZZ - 狂风悟浪

相关主题
文本预览
相关文档 最新文档