当前位置:文档之家› 振动量测与频谱分析

振动量测与频谱分析

振动分析

振动分析 常见故障类型及频谱 一、常见的故障主要包括以下几类: 1)共振2)不平衡3)不对中4)轴弯曲 5)机械松动6)电动机问题7)滑动轴承问题 8)滚动轴承问题9)齿轮问题10)皮带问题11)风机问题12)泵的问题 二、频谱 1、共振 1.1 判断依据: 共振是旋转机械常见的问题。旋转部件如转轴的共振通常叫做临界转速。共振存在于一个结构的所有部件,甚至在管路和水泥地板等,重要的是要避免机器运行在导致共振的频率上。识别共振的简单方法是比较同一轴承三个方向水平、垂直和轴向的振动值,如果某一方向的振动大于其它方向的振动三倍以上,机器则可能在该方向存在共振。 1.2 频谱现象: 1.3 解决方法: 在可能的条件下改变机器的转速,常用的解决方法是改变机器结构的质量或刚度。 2、不平衡 2.1 判断依据: 当旋转部件的重心与旋转中心不一致,即质量偏心时产生不平衡。不平衡的转子产生离心力使轴承损坏,导致轴承寿命降低。仅仅百分之几毫米的重心位移可引起非常大的推动力。不平衡引起明显的转频振动。 2.2 频谱现象:

2.3 解决方法: 找动平衡 3、不对中 3.1 判断依据: 不对中是指两个耦合的轴的中心线不重合,如果州中心线平行称为平行不对中,如果轴中心线在一点相交则称为角不对中,现实中的不对中是两种类型的结合。 3.2 频谱现象: 4、轴弯曲 4.1 判断依据: 轴弯曲引起的振动类似不对中,轴弯曲可能是电动机转子笼条故障引起的转子受热不均导致的。如果弯曲发生在轴中心位置,主导振动是1 x RPM,如果弯曲发生在接近、连轴器,主导振动频率会是2 x RPM。 4.2 频谱现象: 5、机械松动 5.1 判断依据: 有两种机械松动,旋转和非旋转,旋转松动指在机器旋转和固定部件间存在太大的空间;非旋转松动指两个固定部件之间间隙太大。二者都在三个测量方向产生过大的1x RPM 谐频振动。 5.2 频谱现象:

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

CATIA 机械运动分析与模拟实例

前言 CATIA软件是法国达索飞机制造公司首先开发的。它具有强大的设计、分析、模拟加工制造、设备管理等功能。其设计工作台多达60多个,就足以说明软件功能的强大。 本书是作者在出版系列CATIA软件功能介绍后,专门针对某一项功能写的实例教程。在讲解示例的过程中,作者也注意了将某些快捷功能插入进来,进行讲解。比如在装配设计工作台对零件进行重新设计,比如在装配图中直接导入或者插入新的零件。在同类的图书中,很难涉及到这些快捷功能。 本书是基于CATIA V5 R16写成的,在完成本书时,已经有R17版本了,读者在更高的版本上也可以使用此书。读者在阅读本书,使用软件时,需要反复练习,才能熟练运用本书所讲解的一些功能。可以根据本书的步骤,做一些自己学习和工作中遇到的模型,也可以拿机械设计的标准件来做练习实例。 本书适合做机械设计的专业人员和机械相关专业的学生使用。本书也同样适合想学习CATIA软件的其他读者。本书前面20章都是讲解某一项铰的设计方法,最后一章是综合前面各章内容做的一个实例。本书编写过程中考虑到了初学者可能对CATIA机械零件设计的功能还不是很熟悉,因此,对于各章所涉及到的零件,模型建立方法都做了详细的介绍。对于已经熟悉CATIA基本设计功能的读者,可以略读这部分内容,直接阅读各章最后一节的内容。对于只想了解CATIA 机械零件设计的读者,可以仔细阅读每章前面各节的内容,把本书作为机械设计的详细教程,未尝不可。 感谢我的家人,他们给了我很大的支持,使我能抽出时间完成此书。感谢我的单位领导对工作的支持,特别是反应堆结构室的领导和各位同仁,他们的鼓励和帮助,使我坚持下来完成此书,并使我受益匪浅。 本书由盛选禹和盛选军主编。 冯志江老师参加了本书第1、第2、第3章的编写工作。王存福同志参加了第6、第7、第8章的编写工作 参加本书编写工作的还有张宏志,王玉洁,孙新城,盛选贵,曹京文、陈树青、王恩标、于伟谦、盛帅、候险峰、盛硕、陈永澎、盛博、曹睿馨、张继革、刘向芳、富晶、孟庆元、宗纪鸿、唐守琴。 由于时间比较仓促,认识水平有限等,不能避免有错误出现,读者在阅读时发现错误,请通知编者,不胜感激。也希望就CATIA软件的问题和广大读者继续探讨。作者联系电子邮件:xuanyu@https://www.doczj.com/doc/4a10806004.html,。 编者 2006年12月于北京

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

2电机振动异常的识别与诊断

电机振动异常的识别与诊断 一、三相交流电机定子异常产生的电磁振动 三相交流电机在正常运转时,机座上受到一个频率为电网频率2倍的旋转力波的作用,而可能产生振动,振动大小与旋转力波的大小和机座的刚度直接有关。 定子电磁振动异常的原因: ①定子三相磁场不对称,如电网三相电压不平衡。因接触不良和断线造成单相运行,定子绕组三相不对称等原因,都会造成定子磁场不对称,而产生异常振动。 ②定子铁心和定子线圈松动将使定子电磁振动和电磁噪声加大。 ③电磁底脚线条松动,相当于机座刚度降低使定子振动增加。 定子电磁振动的特征: ①振动频率为电源频率的2倍,F=2f ②切断电源,电磁振动立即消失 ③振动可以在定子机座上和轴承上测得 ④振动强度与机座刚度的负载有关 二、气隙静态偏心引起的电磁力 电机定子中心与转子轴心不重合时,定、转子之间气隙将会出现偏心现象,偏心固定在一个位置上,在一般情况下,气隙偏心误差不超过气隙平均值的上下10%是允许的,过大的偏心值产生很大的单边磁拉力。 气隙静态偏心产生的原因: ①电磁振动频率是电源频率的2倍F=2f。 ②振动随偏心值的增大在增加,随负载增大而增加。 ③断电后电磁振动消失。 ④静态偏心产生的电磁振动与定子异常产生的电磁振动非常相似,难以区别。 三、气隙动态偏心引起电磁振动 偏心的位置对定子是不固定的,对转子是固定的,因此偏心的位置随转子而转动。 气隙动态偏心产生的原因: ①转子的转轴弯曲 ②转子铁心与转轴或轴承不同心。 ③转子铁心不圆 气隙动态偏心产生电磁振动的特征; ①转子旋转频率和定子磁场旋转频率的电磁振动都可能出现。 ②电磁振动的振幅随时间变化而脉动(振),脉动的频率为2sf,周期为1/2sf 当电动机负载增加,S加大,其脉动节拍加快。 ③电动机往往发生与脉动节拍相一致的电磁噪声。 ④断电后,电磁振动消失,电磁噪声消失。 四、转子绕组故障引起的电磁振动 笼形电机笼条断裂,绕组异步电机由于转子回路电气不平衡都将产生不平衡电磁力。 转子绕组故障产生的原因: ①笼条铸造质量不良,产生断条和高阻。

MATLAB在机械振动信号中的应用

MATLAB在机械振动信号中的应用 申振 (山东理工大学交通与车辆工程学院) 摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 关键词:时域分析频域分析 MATLAB 信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。 时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。 MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。 本文主要运用了MATLAB R2014a对机械振动信号进行分析。分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。频域分析的性能指标包括对功率谱分析、倒频谱分析。在进行上述分析之前先要对振动信号进

高速旋转机械的振动频谱分析

高速旋转机械的振动频谱分析 一、前言我公司绝大多数关键设备为旋转机械设备,如各类风机、空压机、大型电机等。设备的日常维护和安装调试过程中,经常遇到因剧烈振动而无法正常生产的情况,而振动的原因错综复杂,仅靠耳听、手摸的原始方法,很难全面准确的分析判断故障的原因。采用先进的设备状态检测和故障诊断技术,通过振动检测掌握各类设备在一定时期的运行状态,为从事设备维护、安装、调试的工程技术人员提供一套完整的设备运行状态资料,根据这些资料进行数据分析,可以准确的分析判断故障原因,缩短检修工期,合理的安排关键设备的预防维修计划,从而避免因突发性设备故障而造成的经济损失,确保产生的顺利进行。 二、采用故障诊断技术处理设备故障的几个实例 1.氧气厂2#DA350一61型空压机组振动故障的处理氧气厂DA350~61型空压机是制氧机的动力设备,机组进行是否正常,直接关系到第一炼钢厂的生产,是总公司的关键设备。1999年4月份,该机组借第一炼钢厂停产机会,解体大修,组装后试车时,机组振动超标,无法正常运行,严重影响检修工期。如解体检查至少需要3天的时间,况且对能否检查到故障点也没有十分把握。于是我们利用NG 一8902多通道数据采集故障诊断系统,对该机组进行了全面的测试。(1)空压机组的测点布置如图1所示。(2) 机组的测试情况(取振动值最大的方向)见表1 测点振动值,mm/s 特征频率,Hz 1 S(水平)0.12 50 2 S(水平)0.14 50 3 C(垂直)0.344 146 4 C(垂直)0.776 146 5 C(垂直)0.28 146 6 C(垂直)0.577 146 7 C(垂直)2.79 146 8 C(垂直)8.25 146 由表1可见,1#、2#、3#、4#、5#、6#测点,振动情况良好。7#、8#测点振动速度超标,8#测点振值8.25mm/s,严重超标,7#、8#测点的轴向振动谱图如图2、图3又测量了7#、8#测点的振动加速度,见表2(取振动值最大的方向)。测点振动速度值,mm/s 特征频率,Hz 8#瓦S(水平)5.67 2487 C(垂直)12.67 2625 Z(轴向)14.61 2625 7#瓦 S(水平)1.58 438 C(垂直)1.66 146 Z(轴向)11.24 2625 根据以上的振动测量及频谱图分析,空压机组的振动故障分析如下:3#、4#、5#、6#测点振动速度良好,说明大小齿轮运行状态正常,振源不在大小

基于LabVIEW的机械振动信号分析系统的应用

基于LabVIEW的机械振动信号分析系统的开发 随着现代化工业大生产的不断发展,机械设备的结构变得越来越复杂,并且经常运行于高速、重载以及恶劣环境等条件下。由于各种因素的干扰和影响,会导致机械设备发生故障,轻则降低生产质量或导致停产,重则会造成严重的甚至是灾难性的事故。为此,为尽最大可能地避免事故的发生,机械设备状态监测与故障诊断技术近年来得到了极为广泛的重视,其应用所达到的深入程度十分令人鼓舞。目前,机械设备状态监测与故障诊断已经基本上形成了一门既有理论基础、又有实际应用背景的交叉性学科。 在实际应用中,故障与征兆之间往往并不存在简单的一一对应关系,一种故障可能对应着多种征兆,反之一种征兆也可能是由于多种故障所致。因此,通常必须要借助信号处理等手段从采集的原始数据中加工出特征信息,提取特征量,从而保证有效、准确地进行故障诊断,也就是说,信号处理与故障诊断有着极为密切的联系,信号特征提取是故障诊断中必不可少的一个重要环节[1]。 故障诊断技术的各种理论研究和方法探讨最终都必须落实到具体诊断装置的研制上。而传统的测控仪器以硬件为关键,其开发与维护的费用高、技术更新周期长、价格高、仪器功能柔性差、不易与其他设备连接等特点,越来越不能满足科技进步的要求。虚拟仪器的出现改变了这样的局面,它充分利用了计算机技术来实现和扩展传统测试系统与仪器的功能。 NI公司的图形化编程语言LabVIEW成为当今虚拟仪器开发最流行的一种语言。LabVIEW 的最大特点是用图标代码来代替编程语言创建应用程序。LabVIEW有丰富的函数、工具包、软件包、数值分析、信号处理、设备驱动等功能,还有应用于专业领域的专业模块,解决了传统的虚拟仪器系统采用C、C++、汇编等语言存在的编程、调试过程繁琐、开发周期长、对编程人员要求高等问题,广泛地应用于航空、航天、电子、机械等众多领域[2,3]。 本文基于LabVIEW开发一个针对旋转机械故障诊断的振动信号分析系统,并在成都飞机设计研究所某航空设备监控上获得了应用。 系统设计 根据信号分析系统的设计原则,又考虑到LabVIEW具有图形化编程特点以及丰富的工具箱。因此,笔者选用NI公司的Lab VIEW 7.1作为信号分析系统的开发平台。 笔者开发的信号分析系统主要分为三大模块,即文件管理模块(文件的读取及存储)、信号分析模块、显示模块。按照图1所示的使用流程对这三个模块进行设计。

高中物理《机械振动》知识梳理

《机械振动》知识梳理 【简谐振动】 1.机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。 回复力:使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2.简谐振动: 在机械振动中最简单的一种理想化的振动。 对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 【简谐运动的描述】 位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。 周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 频率f:振动物体单位时间内完成全振动的次数。 角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。【简谐运动的处理】 用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 【单摆】 单摆周期公式简谐振动物体的周期和频率是由振动系统本身的条件决定的。 单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。【外力作用下的振动】 物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。 当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。 1

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

频谱分析

频谱是频率谱密度的简称,是频率的分布曲线。复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。频谱广泛应用于声学、光学和无线电技术等方面。频谱将对信号的研究从时域引入到频域,从而带来更直观的认识。把复杂的机械振动分解成的频谱称为机械振动谱,把声振动分解成的频谱称为声谱,把光振动分解成的频谱称为光谱,把电磁振动分解成的频谱称为电磁波谱,一般常把光谱包括在电磁波谱的范围之内。分析各种振动的频谱就能了解该复杂振动的许多基本性质,因此频谱分析已经成为分析各种复杂振动的一项基本方法 使用情况 频谱,又称振动谱[1] 。反映振动现象最基本的物理量就是频率,简单周期振动只有一个频率。复杂运动不能用一个频率描写它的运动情况,如下图1、图2中左图所示,而且我们也无法从振动图形上定量描写它们的特点,通常采用频谱来描写一个复杂的振动情况。任何复杂的振动都可以分解为许多不同振幅不同频率的简谐振动之和。为了分析实际振动的性质,将分振动振幅按其频率的大小排列而成的图象称为该复杂振动的频谱。振动谱中,横坐标表示分振动的圆频率,纵坐标则表示分振动振幅。对周期性复杂振动,其频率为f,则按照傅里叶定理,由它所分解的各简谐振动的频率是f的整数倍,即为f,2f,3f,4f,…,其振动谱是分立的线状谱,图中每一条线称为谱线。对于非周期性振动(如阻尼振动或短促的冲击),按照傅里叶积分,它可以分解为频率连续分布的无限多个简谐振动之和。由于谱线变得无限多,这时振动谱不再是分立的线状谱,各谱线密集使其顶端形成一条连续曲线,即形成所谓的连续谱,连续谱曲线即为各种谱线的包络线;而它也有可能分解为频率不可通约的许多简谐振动而形成分立谱。[1] 频谱利用率

机械振动基础实验指导书

目录 实验一振动信号采集与处理相关软件和硬件设计介绍 (2) 实验二单自由度系统阻尼比的测定 (6) 实验三二自由度系统频响函数的测定 (9)

实验一 振动信号采集与处理相关软件和硬件设计介绍 一、 实验目的 1、熟悉振动信号采集与处理软件的基本功能和设置方法; 2、熟悉硬件中各通道代表的意义和设置方式; 3、掌握基本振动测试流程。 二、 振动信号采集和处理软件简介 软件名称 YE6251力学教学装置。 软件介绍 左面板 下面板 至少应为实验所需最大频率的2倍 力锤信号用信号触发,电磁激振器信号可选连续采样 试件类型 不用的通道双击使其为错号,使用的通道使其为对号 实验中可以使用的方法 采样状态栏

上面板和右面板 某测试全图 三、 振动信号采集和处理硬件简介 试件 单自由度系统 模拟单自由度的质量块、阻尼、弹簧系统振动。本实验台的力学模型如下: 时间波形 傅立叶分析 传函幅值,需设置输入和输出通道,用右键 仪器的软件开关 开始采样或停止采样 峰谷 值 等光标选择 缩小x 轴图形显示 放大x 轴图形显示 缩小y 轴图形显示 放大y 轴图形显示 自动量程

二自由度系统 模拟二自由度的质量块、阻尼、弹簧系统振动。本实验台的力学模型如下: 激励设备 力锤 给试件施加脉冲激振力并通过其内置的压力传感器感应力信号。有四个锤头,分别用来测量不同的频段,同时对应不同刚度的材料,本实验以铝制锤头为最佳。 信号发生器(通道2) 产生一定频率的电信号,分为手动调频和自动扫频两种操作方式。手动调频用于产生固定的激励频率;自动扫频是仪器在设定的频段内自动循环扫描。 功率放大器(通道1) 本实验台中,接在信号发生器的后端,电磁激振器的前端。由于信号发生器产生的频率信号通常较小,因此在将其传送到激振器之前,需要将信号通过功率放大器进行放大。 电磁激振器 对试件进行激励。 采集设备 位移传感器 采用非接触式感应试件位移。 加速度传感器 感应试件加速度。 力和加速度复合传感器 其输出包含两路信号:力和加速度。一般感应激振器的激振力并响应试件的加速度。 位移测量仪(通道4) 本实验台中,位移测量仪用来测量电涡流位移传感器的信号幅值大小,同时将该信号输入计算机以便于数据分析。 力测量仪(通道5) 通过该通道实时测量力值大小,同时将该信号输入计算机以便于数据分析。 加速度测量仪(通道6和通道7) 测量加速度传感器的电信号大小,同时将该信号输入计算机以便于数据分

机械振动状态分析仪VIB07 简介与案例应用

机械振动状态分析仪VIB07 简介与案例应用 之前,VIB07机械振动分析仪在新疆克拉玛依石化得到了有效的应用,并在中国石油网发布过相关推荐报导。此次湖北荆门石化的成功应用即再一次证实了VIB07机械振动分析仪的性能与使用功效。在前期现场演示的过程中,KM工程师对厂里几台泵与离心机进行了抽样巡检与分析,检测的结果与厂里同类型的全进口仪器检测结果完全一致,用不到1/3的价格就能取得完全一样的检测效果,还同时拥有轴承包络谱显示的功能,厂里的技术人员对VIB07的检测效果十分满意。在随后招标投标中直接是指定型号,购进两台VIB07机械振动分析仪,实现对厂里1000多台设备进行巡检,对设备轴承的状态进行测量报警。 中国石油化工股份有限公司荆门分公司(以下简称荆门石化)是从原荆门石化总厂中以优良资产组成的国有企业,同时也是湖北省最大的石油化工企业及中南地区最大的润滑油、石蜡生产基地。荆门石

化曾先后被国家有关部委授予:全国500家最优工业企业,石油开采及加工工业第一名,全国行业十强企业,全国最佳信誉企业,全国最佳工业企业,全国最佳形象AAA级等荣誉。 VIB07 FFT机械状态分析仪 Route Based Data Collection & Trending 设备状态巡检和趋势分析 VIB07多功能型机械振动分析 仪是检修人员开展工厂设备状 态监测(CBM),实现设备预测维 修(PdM)最可靠的点检采集仪器, 是设备可靠性管理和TPM的利 器。它操作简单,特别适合于设备点检和检维修人员,同样也适合现场生产操作者用于测量、记录和跟踪设备状态,发现异常,并能够对常见的机器振动故障进行诊断和趋势监测。 Create the Value of Maintenance 创造维修的价值 VIB07多功能型机械振动分析仪是一款具有极高性价比的“傻瓜型”仪器,它基于专家经验,满足现实的需要,在确保状态信息完整有效的

振动测量仪器知识

振动测量仪器知识 一、概述 (一)用途 振动测量仪器是一种测量物体机械振动的测量仪器。测量的基本量是振动的加速度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点几赫兹~几千赫兹。外部联接或内部设置带通滤波器,可以进行噪声的频谱分析。随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过数字信号处理技术代替模拟电路来实现。这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。 (二)分类与特点 振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器(或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。 振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号分析仪。 振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。 ●工作测振仪特点 通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位移等。以前用电表显示测量值,现在都是用数字显示。通常不带数据储存和打印功能,用于一般振动测量。振动烈度计是指专用于测量振动烈度(10 Hz~1000 Hz 频率范围的速度有效值)的振动测量仪器。 ●实时信号分析仪特点 实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来进行振动的测量和频谱分析。当模拟信号通过采样及A/D转换成数字信号后,进入数字计算机进行运算,实现各种测量和分析功能。实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak)、峰-峰值(Peak-Peak)检波可并行工作。不仅分析速度快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来。 ●动态信号测试和分析系统特点 包含多路高性能数据采集、多功能信号发生、基本信号分析,还可以选择高级信号分析;以及模态分析、故障分析等应用。尤其适合振动、噪声、冲击、应变、温度等信号的采集和分析。 ●人体(响应)振动计特点 主要用于测量和分析振动对人体的影响。人体振动又分为人体全身振动和手传振动,测量计权振动加速度有效值。仪器性能应符合GB/T 23716-2009《人体对振动的响应——测量仪器》的要求,对于全身振动(频率计权W c、W d、W e、W j、W k、)和用于进行轨道车辆舒适度评价的全身振动(频率计权W b)频率范围为0.5 Hz~80 Hz,对于建筑物内连续与冲击引起的振动(频率计权W m)频率范围为1 Hz~80 Hz,

典型振动频谱图范例

典型振动频谱图范例(经典中的经典!) 频谱图(Spectrum)依照物理学,旋转中物体的振动,是呈现正弦波形。在转动机械上所量测到的振动波形,是许多零件的综合振动。利用数学方法,可以将合成振动,利用数学方法(傅立叶转换,Fourier Transform)分解成不同零件各自的正弦波形振动。 如上图中,(a)为由机械所量测之总振动,可以分解成不同转速频率的振动(b)。 (b)图中的正弦波,由右侧方向观察,其端视图为(c),亦即所谓的频谱图(Spectrum)。频谱图的横轴为代表转速的频率,纵轴表振动量。若在机械主轴转速的频率出现高峰图形,表示转轴发生大的振动量。若在倍数於主轴转速处出现高峰,而其倍数为叶轮数,代表叶轮为振动来源。若在频率极高区域出现高峰,则一般为轴承发生

问题。 ? ? ?? ?? ?? ??频谱分析利用频谱图中频率分布特性,可以判断机器之振源。常见频谱图形如下表摘要说明: ?? 问题频谱??&??相位摘要说明 转子不平衡,分为两轴承间、两轴承外~ ?? 两轴承间不平衡,细分为三种: 1.静不平衡Static Unblance 振动频率为 1倍转速(1×RPM)。 径向振动大,轴向小。两轴承径向呈同相(In Phase)运动,两相角相差0°,同轴承垂直与水平相位差90°。

2.偶不平衡Couple Unblance 径向振动大,轴向有可能大。 振动频率为 1倍转速(1×RPM)。 两轴承径向呈反相(Out of Phase)运动,两相角相差180°,同轴承垂直与水平相位差90°。 3.动不平衡同上径向振动大,轴向有可能大。 振动频率为 1倍转速(1×RPM)。 两轴承径向呈不同相运动。 两轴承 外不平衡 ? ? ?? ??Overh 轴向及径向振动大。振动频率为 1倍转速(1×RPM)。 两轴承径向呈同相(In Phase)运动,

振动大实例与原因分析

振动大实例与原因分析 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1倍频振动大除了动平衡还应检查什么 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。 4.外力作用下(旋转)产生的共振 各个零部件、结构件在外力作用下所产生的固有共振为自激振动,其频率与不同的结构对应,即刚度不同引起的不同共振。频谱特征为时域波形为正弦波,振动频率以一倍频为主。 二、相关一倍频信号 1.转子永久弯曲 振动类似于动不平衡和不对中,以一倍转频为主,也会产生二倍转频振动;振动随转速增加很快;通常振幅稳定,轴向振动较大,两支承处相位相差180度。 2.转子存在裂纹使挠度增大

15.机械振动故障诊断-2017

《机械振动与故障诊断》课程教学大纲 课程代码:010132013 课程英文名称:Mechanical Vibration and Fault Diagnosis 课程总学时:32 讲课:32 实验:0 上机:0 适用专业:机械设计制造及其自动化专业 大纲编写(修订)时间:2017.7 一、大纲使用说明 (一)课程的地位及教学目标 机械振动与故障诊断是机械设计制造及其自动化专业机械设计方向的专业基础课,是设备现代化管理的重要内容之一。通过本课程的学习,使学生掌握机械振动与故障诊断的基础知识、基础理论、基本方法以及机械振动与故障诊断在工程领域的应用。同时,通过一些工程实例的研究,培养学生分析和解决工程实际问题的能力,并具备从事机械设备状态监测与故障诊断的基本技能。 (二)知识、能力及技能方面的基本要求 1.要求掌握机械振动的基本理论知识和分析方法。 2.具有建立典型机械结构的力学模型的能力,并能够确定其边界条件和初始条件。 3.掌握用解决工程实际问题机械振动的能力。 4.掌握机械设备故障诊断技术的基础理论、诊断方法和手段以及旋转机械设备的振动的监诊断技术。 (三)实施说明 1.本课程主要内容:对于单自由度系统,主要研究各种类型振动的特性和响应求解及其参数的确定,并通过一些例子说明振动的应用。多自由度系统是机械振动的重点,必须给予充分的重视,对于影响系数法,着重于应用其定义建立系统的运动方程。通过实例讲清计算固有频率的数值方法。振型正交性要给出完整的证明,要振型叠加法的解题步骤,并通过例子加以说明。故障诊断技术主要讲述机械设备振动监测以及信号处理的基础理论、诊断方法和手段以及旋转机械设备的振动的监诊断技术。在教学过程中注意理论与工程实际的相结合,在讲清基本理论的基础上突出工程实际问题应用。 2.教学方法和教学手段:积极开展多媒体教学和实际工程案例教学,充分利用幻灯、投影仪、音像、CAI等现代化教学手段,将该领域的一些科研成果作为案例,在课堂上为学生演示。以提高课堂效率和教学效果,激发学生的学习兴趣。 3.课外作业,布置一定课外作业,让学生巩固、加深对课堂所学内容的理解,掌握机械振动方法。 4.对学生的要求:基于学业规范的要求(道德行为规范、作业规范、实验规范等),学生应遵守《沈阳理工大学学生手册(本科生)》中的有关条例,上课时认真听讲,下课有一定时间复习,独立完成作业,做到不迟到、不早退。 5.教师执行本大纲时,应着眼于基本概念和设计方法的讲解,至于各章节的教学顺序,教学环节和教学手段等不完全拘泥于大纲所限,充分发挥教师的能动性、创造性。 (四)对先修课的要求 在学习本课程之前,必须先修完高等数学、线性代数、工程力学、机械设计课程,并达到这

机械振动信号分析及故障报警_课程设计

燕山大学 课程设计说明书 题目:机械振动信号分析及故障报警 学院(系):电气工程学院 年级专业: 10级仪表3班

电气工程学院《课程设计》任务书 课程名称:“单片机原理及应用——数字信号处理”课程设计 院(系):电气工程学院基层教案单位:自动化仪表系 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份. 2、学生那份任务书要求装订到课程设计报告前面.

目录 第一章摘要 第二章总体设计方案 第三章基本原理 第四章MATLAB界面设计 第五章各模块设计及程序 第六章设计心得及总结 参考文献

第一章摘要 机械振动信号分析是现代机械故障诊断地一个有效方法.在诸多信号分析地手段中,小波分析与傅氏变换相结合地方法得到广泛应用.因为这种方法更适合于提取微弱机械振动地特征信号. 但是与其他分析工具一样,小波分析工具有自己地特点,如果不能正确使用,反而会影响对信号地正确分析.从本质上说,小波分析是用小波函数与被被分析地信号函数做一系列地互相关运算,因此选用小波函数不当会引起分析地误差或误判. 第二章总体设计方案 对机械振动信号进行采样,把采样地数据进行时域和频域上地分析,包括FFT,功率谱,倒谱分析.提取时域波形指标如均值、峰峰值、峭度、偏度、脉冲因数等.以一种指标为标准,分析振动信号产生地变化.本次课设利用matlab软件,实现对机械振动信号时频域地分析以及故障地判断.因为频域分析特征值地提取较麻烦,这里我们用其中一种参数地计算量为标准来判断是否发生故障. 第三章基本原理 3.1小波变换

与Fourier变换相比,小波变换是空间(时间)和频率地局部变换,因而能有效地从信号中提取信息.通过伸缩和平移等运算功能可对函数或信号进行多尺度地细化分析,解决了Fourier变换不能解决地许多困难问题.小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科.数学家认为,小波分析是一个新地数学分支,它是泛函分析、Fourier分析、样调分析、数值分析地完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析地一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面地研究都取得了有科学意义和应用价值地成果.信号分析地主要目地是寻找一种简单有效地信号变换方法,使信号所包含地重要信息能显现出来.小波分析属于信号时频分析地一种,在小波分析出现之前,傅立叶变换是信号处理领域应用最广泛、效果最好地一种分析手段.傅立叶变换是时域到频域互相转化地工具,从物理意义上讲,傅立叶变换地实质是把这个波形分解成不同频率地正弦波地叠加和.正是傅立叶变换地这种重要地物理意义,决定了傅立叶变换在信号分析和信号处理中地独特地位.傅立叶变换用在两个方向上都无限伸展地正弦曲线波作为正交基函数,把周期函数展成傅立叶级数,把非周期函数展成傅立叶积分,利用傅立叶变换对函数作频谱分析,反映了整个信号地时间频谱特性,较好地揭示了平稳信号地特征. 小波变换是一种新地变换分析方法,它继承和发展了短时傅立叶变换局部化地思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变地时间一频率窗口,是进行信号时频分析和处理地理想工具.它地主要特点是通过变换能够充分突出问题某些方面地特征,因此,小波变换在许多领域都得到了成功地应用,特别是小波变换地离散数字算法已被广泛用于许多问题地变换研究中.从此,小波变换越来越引起人们地重视,其应用领域来越来越广泛. 3.2 傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley和Tukey提出了计算离散傅里叶变换(DFT)

相关主题
文本预览
相关文档 最新文档