当前位置:文档之家› 时间序列分解Decompose

时间序列分解Decompose

时间序列分解Decompose
时间序列分解Decompose

时间序列分解算法和d ecompose函数实现

李思亮 55531469@https://www.doczj.com/doc/554770914.html,

目录

时间序列分解算法和decompose函数实现 (1)

1 数据读入并生成时间序列 (2)

2 数据可视化 (4)

3 时间序列分解 (7)

在时间序列分析的过程中,往往需要对时间序列作出初步分析,本文主要采用R语言作为分析平台,从数据的读入,可视化图,分解(decompose)为趋势项,季节项,随机波动等角度对数据开展分析的几个案例。最后对分解算法作出初步描述并探讨其预测预报中的潜在应用。本文的数据和部分内容主要采用https://www.doczj.com/doc/554770914.html,/en/latest/中的内容,感兴趣的读者可以参考。

1 数据读入并生成时间序列

对于数据分析来讲,数据读入是一个比较关键的步骤。常用的数据读入函数有scan,read.table 等。下面列举了几种常见的数据。

首先是https://www.doczj.com/doc/554770914.html,/tsdldata/misc/kings.dat,中包含了英国国王的寿命从William开始,数据来源(Hipel and Mcleod, 1994)。

> kings <- scan("https://www.doczj.com/doc/554770914.html,/tsdldata/misc/kings.dat",skip=3)

Read 42 items

> kings

[1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56

上述例子中,读入了连续42个公国国王的寿命并将其赋给变量‘kings’

如果我们希望对读入数据开展分析,下一步就是将其转化为时间序列对象(时间序列类),R提供了很多函数用于分析时间序列类数据。可以使用ts函数将变量转化为时间序列类。

> kingsts <- ts(kings)

> kingsts

Time Series:

Start = 1

End = 42

Frequency = 1

[1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56

对于上述数据操作的好处是将数据转化为特定的“时间序列类”便于我们使用R中的函数分析数据。

有时候我们会按照一定的时间周期来收集数据,这个周期可能是季度,月,日,小时,分。在大数据时代,有些情况下的数据是按照秒来采集收集。这种情况下,我们需要对数据的周期或频率进行设置。这里采用ts函数中的frequency参数可以实现这种功能。比方说,若按1年为一个周期,我们的月度时间

序列数据应为frequency=12,若为季度时间序列数据,则可设置frequency=4。

另外,还可以利用start参数,设置时间序列的起点,比如若我们一个周期共4个观测,而第一个数据对应为1986年的起的第2个观测,则可使用start=c(1986,2)。

有一个纽约市月出生数量的数据集,从1946年1月至1959年12月。数据可通过

https://www.doczj.com/doc/554770914.html,/tsdldata/data/nybirths.dat获取。我们将其读入至R中。

> births <- scan("https://www.doczj.com/doc/554770914.html,/tsdldata/data/nybirths.dat")

Read 168 items

> birthsTS<-ts(births,frequency=12,start=c(1946,1))

> birthsTS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1946 26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.901 23.175 23.227 21.672 21.870

1947 21.439 21.089 23.709 21.669 21.752 20.761 23.479 23.824 23.105 23.110 21.759 22.073

1948 21.937 20.035 23.590 21.672 22.222 22.123 23.950 23.504 22.238 23.142 21.059 21.573

1949 21.548 20.000 22.424 20.615 21.761 22.874 24.104 23.748 23.262 22.907 21.519 22.025

1950 22.604 20.894 24.677 23.673 25.320 23.583 24.671 24.454 24.122 24.252 22.084 22.991

1951 23.287 23.049 25.076 24.037 24.430 24.667 26.451 25.618 25.014 25.110 22.964 23.981

1952 23.798 22.270 24.775 22.646 23.988 24.737 26.276 25.816 25.210 25.199 23.162 24.707

1953 24.364 22.644 25.565 24.062 25.431 24.635 27.009 26.606 26.268 26.462 25.246 25.180

1954 24.657 23.304 26.982 26.199 27.210 26.122 26.706 26.878 26.152 26.379 24.712 25.688

1955 24.990 24.239 26.721 23.475 24.767 26.219 28.361 28.599 27.914 27.784 25.693 26.881

1956 26.217 24.218 27.914 26.975 28.527 27.139 28.982 28.169 28.056 29.136 26.291 26.987

1957 26.589 24.848 27.543 26.896 28.878 27.390 28.065 28.141 29.048 28.484 26.634 27.735

1958 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945 25.912 26.619

1959 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897

类似的,文件https://www.doczj.com/doc/554770914.html,/tsdldata/data/fancy.dat中包含了澳大利亚昆士兰州

的一个海滩小镇纪念品商店的月销量数据,时间从1987/01~1993/12(数据来源Wheelwright and Hyndman, 1998)。我们用下述代码将其读入至R中。

> souvenir <- scan("https://www.doczj.com/doc/554770914.html,/tsdldata/data/fancy.dat")

Read 84 items

> souvenirTS<-ts(souvenir,frequency=12,start=c(1987,1))

> souvenirTS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1987 1664.81 2397.53 2840.71 3547.29 3752.96 3714.74 4349.61

3566.34 5021.82 6423.48 7600.60 19756.21

1988 2499.81 5198.24 7225.14 4806.03 5900.88 4951.34 6179.12

4752.15 5496.43 5835.10 12600.08 28541.72

1989 4717.02 5702.63 9957.58 5304.78 6492.43 6630.80 7349.62

8176.62 8573.17 9690.50 15151.84 34061.01

1990 5921.10 5814.58 12421.25 6369.77 7609.12 7224.75 8121.22

7979.25 8093.06 8476.70 17914.66 30114.41

1991 4826.64 6470.23 9638.77 8821.17 8722.37 10209.48 11276.55

12552.22 11637.39 13606.89 21822.11 45060.69

1992 7615.03 9849.69 14558.40 11587.33 9332.56 13082.09 16732.78 19888.61 23933.38 25391.35 36024.80 80721.71

1993 10243.24 11266.88 21826.84 17357.33 15997.79 18601.53 26155.15 28586.52 30505.41 30821.33 46634.38 104660.67

2 数据可视化

上述章节中我们读入并生成了3个时间序列数据分别为,kingsts,birthsTS和souvenirTS。数

据分析的后续过程为可视化过程,让有关人员可以从直观角度来认识数据的变化规律。plot函数提供了各

种类的绘图功能

> plot(kingsts)

上图中的时间序列看来的话,没有比较明显的周期性规律,直观判断上述时间序列类似于一个随机波动序列(平稳时间序列),后续我们会探讨如何判断序列为平稳时间序列。

我们对纽约市月出生数量画图,结果为

> plot(birthsTS)

从上述结果看来,每个月的出生数量似乎含有一定的季节变化(周期性),在夏季较高,在冬季较低。另外每个周期内的波动幅度(振幅)似乎是固定的,并不随时间序列的水平(趋势)变化而变化。随机波动随时间变化也不明显。

我们同样对澳大利亚昆士兰州海滩旅游小镇纪念品商店的月销量数据画图。

从上图中可以看出误差波动和振幅都随时间水平增加而增加。因此,我们需要对原始时间序列作出对数变换(取log),以便使用additive模型对数据开展分析预测。

直观上看来,上述的对数化时间序列的季节变化和随机变化随时间稳定在一个范围内,不随时间序列变化而变化。因此,时间序列对数化可以用于additive模型。

3 时间序列分解

时间序列分解主要针对非平稳时间序列,非平稳时间序列包含4种主要趋势:长期趋势(Trend),循环趋势,季节趋势(Seasonal)和随机趋势(Random)。

可以利用additive模型分解长期趋势项和季节项。使用R语言的decompose函数。该函数可以分解出趋势项,季节项和随机项并利用additive模型描述时间序列。

时间序列分解的主要参考的函数有decompose函数和stl函数。在这里我们先介绍decompose函数的主要思路。

相加分解模型(additive)的主要形式为:

x t=T t+S t+e t

另外还有相乘模型(multiplicative),主要形式为:

x t=T t*S t*e t

其中,在t时刻,x t为该时刻的观测值,T t为该时刻的趋势值,S t为该时刻的季节(周期)效应,e t

为该时刻的无规则部分,也就是剩余项。一般而言,理想的分解模型结果中的剩余项应该为一个均值为0

的随机变量。

我们先利用R 的decompose 函数,看看有关时间序列分解的结果,再从结果入手分析其具体数据分析处理流程。分解我们之前的birthsTS 数据,可视化后的结果为:

> birthsTSDecompose<-decompose(birthsTS) > plot(birthsTSDecompose)

2022242628

30

o b s e r v e d 222324252627t r e n d -2.0-1.00.01.0s e a s o n a l -1.5

-0.50.51.

51946

1948195019521954195619581960

r a n d o m

Time

Decomposition of additive time series

decompose 函数提供了additive 和multiplicative 2种方法来估算各分解项。本文主要分析additive 模型的分解步骤。

现在的已知条件:时间序列,包含了时间序列的频率(frequency ),起始时间(start )。

Step1:分解出趋势项。采用中心化移动平均值来计算趋势项,

)2

1

,21(

,...)2

1

(

1)2

1

(

)2

1

(

--+∈+++=

-++----f l f t f

x

x

x T f t f t f t t 当f 为奇数时采用上述计算方法

)2

,12(

,5.0...5.0)

2

(1

)2

(1

)2

()

2

(f l f t f

x

x x

x

T f t f t f t f

t t -+∈++++=

+-++-- 当f 为偶数时采用上述计算方法,其中Tt 为趋势项,f 为时间序列频率,l 为时间序列长度。结果为长度为l 的时间序列,为便于后续的向量计算,当t 超出上述下标的定义域时,其值为NA ,如T 1。

R 中提供filter 函数计算2个序列的线性滤波(卷积),上述时间序列xt 的权重恰好为一个对称序列,因此可以通过线性滤波函数实现中心化移动平均,见如下代码: > f<-frequency(birthsTS)

> Ts<-filter(birthsTS,c(0.5,rep(1,f-1),0.5)/f) > identical(Ts,birthsTSDecompose$trend) [1] TRUE

Step2:计算季节项。

1、 采用将原始时间序列减去趋势项

t t t T x S -=

2、 将各个周期内相同频率下的值平均化,得到季节项figure

l)(n,nf ,f l ,f),n

(/f,t S figure n

i i*f t t ≤=∈=∑=+max 10

即取整对

3、 将figure 中心化,得到中心化的季节项Figure ,代码可表述为

figure=figure-mean(figure)

最终得到的的长度为f 的季节项。

假设时间序列的频率为f ,长度为l,设x t -T t 为S t ,则上述算法可以表示为: 用表格可以表示为 - - - - S 1 S 2 … … … … …

S f

S f+1

… … … … S 2f+1 … … … … … … … … … … … … … … … … … … … S nf+1

… … - - - - - S l figure 1 fugure 2

… … … … …

figure f

注:-为NA 数据,其中St 序列本身或已包含了NA 数据。

Step3:计算周期性季节项Seasonal ,周期性季节项的计算则为将figure 重复至长度为l 的序列。

为取余运算其中%%,%%f t t figure Seasonal =

Step4:计算随机项Random ,随机项的计算方法为

t t t Seasonal T X Random --=

4 总结和展望

根据上述的分析可以看出R 内置的decompose 函数的核心为趋势项(step1)和季节项(step2)。关于趋势项的计算采用了中心化移动平均的方法。这种方法计算Ts 时采用的x 权重系数都是相同的,可以考虑采用自适应滤波的方法将各个权重系数做实时调整。主要流程如下:

x[1],x[2],…,x[n]

∑-=)

()(i k x W k y i 按step2计

算figure

W[1],W[2],…,W[m]

按step3计算随机项Random

否:调整权数W=W+2k*x*Random

误差是否收

结束

此外,若不采用自适应滤波法调整计算趋势项的x各项权重。可以考虑对误差开展时间序列分析,进一步分解误差。这个的讨论已经超出了本文的主题,后续将另作研究。

关于基本模型的设计方面,decompose采用了加法模型和乘法模型。另外可以考虑采用混合模型,如

x t=T t*S t+e t

基于上述模型建模,不在本篇讨论。

最后我们可以将分解的时间序列趋势项,季节项或者误差项作出预测。如Holt Winters算法和stl 算法均体现了时间序列分解在预测方面的应用。

【SPSS看统计学】之时间序列预测Word版

时间序列预测技术 下面看看如何采用SPSS软件进行时间序列的预测 我们通过案例来说明: 假设我们拿到一个时间序列数据集:某男装生产线销售额。一个产品分类销售公司会根据过去 10 年的销售数据来预测其男装生产线的月销售情况。 现在我们得到了10年120个历史销售数据,理论上讲,历史数据越多预测越稳定,一般也要24个历史数据才行! 大家看到,原则上讲数据中没有时间变量,实际上也不需要时间变量,但你必须知道时间的起点和时间间隔。

当我们现在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记! 这时候你要决定你的时间序列数据的开始时间,时间间隔,周期!在我们这个案例中,你要决定季度是否是你考虑周期性或季节性的影响因素,软件能够侦测到你的数据的季节性变化因子。

定义了时间序列的时间标记后,数据集自动生成四个新的变量:YEAR、QUARTER、MONTH和DATE(时间标签)。 接下来:为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点: ?此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝? ?此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在?

这时候我们就可以看到时间序列图了! 我们看到:此序列显示整体上升趋势,即序列值随时间而增加。上升趋势似乎将持续,即为线性趋势。此序列还有一个明显的季节特征,即年度高点在十二月。季节变化显示随上升序列而增长的趋势,表明是乘法季节模型而不是加法季节模型。 此时,我们对时间序列的特征有了大致的了解,便可以开始尝试构建预测模型。时间序列预测模型的建立是一个不断尝试和选择的过程。 了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA

时间序列分析报告word版

第2章 时间序列的预处理 拿到一个观察值序列之后,首先要对它的平稳性和纯随机性进行检验,这两个重要的检验称为序列的预处理。根据检验的结果可以将序列分为不同的类型,对不同类型的序列我们会采用不同的分析方法。 2.1 平稳性检验 2.1.1 特征统计量 平稳性是某些时间序列具有的一种统计特征。要描述清楚这个特征,我们必须借助如下统计工具。 一、概率分布 数理统计的基础知识告诉我们分布函数或密度函数能够完整地描述一个随 机变量的统计特征。同样,一个随机 变量族的统计特性也完全由它们的联 合分布函数或联合密度函数决定。 对于时间序列{t X ,t ∈T },这样来定义它的概率分布: 任取正整数m ,任取m t t t ,, ,?21∈T ,则m 维随机向量(m t t t X X X ,,,?21)’的联合概率分布记为),,,(m t t t x x x F m ??21,,,21,由这些有限维分布函数构成的全体。 {),,,(m t t t x x x F m ??21,,,21,?m ∈正整数,?m t t t ,,,?21∈T } 就称为序列{t X }的概率分布族。 概率分布族是极其重要的统计特征描述工具,因为序列的所有统计性质理论上都可以通过 概率分布推测出来,但是概率分布族的重要 性也就停留在这样的理论意义上。在实际应 用中,要得到序列的联合概率分布几乎是不 可能的,而且联合概率分布通常涉及非常复 杂的数学运算,这些原因使我们很少直接使 用联合概率分布进行时间序列分析。 二、特征统计量 一个更简单、更实用的描述时间序列统计特征的方法是研究该序列的低阶矩,特别是均值、方差、自协方差和自相关系数,它们也被称为特征统计量。 尽管这些特征统计量不能描述随机序列全部的统计性质,但由于它们概率意义明显,易于计算,而且往往能代表随机 序列的主要概率特征,所以我们对时间序列进行分析,主要就是通过分析这些统计量的统计特性,推断出随机序列的性质。 1.均值 对时间序列{t X ,t ∈T }而言,任意时刻的序列值t X 都是一个随机变量,都有它自己的概率分布,不妨记为)(x F t 。只要满足条件 ∞

时间序列分析_最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!

Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。 好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 ?描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。

(完整word版)时间序列分析考试卷及答案

1 页(共 4 页) 考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟 注:B 为延迟算子,使得1-=t t Y BY ;?为差分算子,1--=?t t t Y Y Y 。 一、单项选择题(每小题3 分,共24 分。) 1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。 A. MA(2) B.ARMA(1,1) C.AR(2) D.MA(1) 2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。 A. )1(MA B.)1(AR C.)1,1(ARMA D.)2(MA 3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。 (A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ, 4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。 A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1) 5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。 A.0 B.64.0 C. 1 6.0 D. 2.0 6.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。 A.5.0- B. 25.0 C. 4.0- D. 8.0 7. 若零均值平稳序列{}t X ?,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。 A. MA(2) B.)2,1(IMA C.)1,2(ARI D.ARIMA(2,1,2) 8. 记?为差分算子,则下列不正确的是( C )。 A. 12-?-?=?t t t Y Y Y B. 212 2--+-=?t t t t Y Y Y Y C. k t t t k Y Y Y --=? D. t t t t Y X Y X ?+?=+?) ( 二、填空题(每题3分,共24分); 1. 若{}t Y 满足: 1312112---Θ-Θ--=??t t t t t e e e e Y θθ, 则该模型为一个季节周期为=s __12____的乘法季节s ARIMA )1,1_,0(_)1_,1_,0(?模型。

平稳时间序列预测法

第七章 平稳时间序列预测法 基本内容 一、概述 1、 时间序列{}t y 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称 过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。 2、 宽平稳时间序列的定义:设时间序列{}t y ,对于任意的t ,k 和m ,满足: ()()m t t y E y E += ()()k m t m t k t t y y y y ++++=,cov ,cov 则称{}t y 宽平稳。 3、Box-Jenkins 方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA 模型识别、估计和诊断的系统方法。使ARMA 模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。 4、ARMA 模型三种基本形式:自回归模型(AR :Auto-regressive ),移动平均模型(MA : Moving-Average )和混合模型(ARMA :Auto-regressive Moving-Average )。 (1) 自回归模型AR(p):如果时间序列{}t y 满足t p t p t t y y y εφφ+++=-- (11) 其中{}t ε是独立同分布的随机变量序列,且满足: ()0=t E ε,()02>=εσεt Var 则称时间序列{}t y 服从p 阶自回归模型。或者记为()k t t y y B -=φ。 平稳条件:滞后算子多项式()p p B B B φφφ++-=...11的根均在单位圆外,即 ()0=B φ的根大于1。 (2) 移动平均模型MA(q):如果时间序列{}t y 满足q t q t t t y -----=εθεθε...11 则称时间序列{}t y 服从q 阶移动平均模型。或者记为()t t B y εθ=。 平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列{}t y 满足 q t q t t p t p t t y y y -------+++=εθεθεφφ (1111) 则称时间序列{}t y 服从(p,q)阶自回归移动平均模型。或者记为()()t t B y B εθφ=。

多元时间序列建模分析(DOC)

应用时间序列分析实验报告

实验过程记录(含程序、数据记录及分析和实验结果等):时序图如下: 单位根检验输出结果如下: 序列x的单位根检验结果: 序列y的单位根检验结果: 序列y和序列x之间的相关图如下:

残差序列自相关图: 自相关图显示。延迟6阶之后自相关系数都在2倍标准差范围之内,可以认为残差序列平稳。 对残差序列进行2阶自相关单位根检验,检验结果显示残差序列显著平稳,如下图:残差序列单位根检验结果: 残差序列平稳,说明序列Y与序列X之间具有协整关系,我可以大胆的在这两个

序列之间建立回归模型而不必担心虚假回归问题。 考察残差序列白噪声检验结果,如下图: 残差序列白噪声检验结果: 输出结果显示,延迟各阶LB 统计量的P 值都大于显著水平0.05,可以认为残差序列为白噪声检验结果,结束分析。 出口序列拟合的模型为:lnx t ~ARIMA(1,1,0),具体口径为: 1 ln 0.1468910.38845t t x B ε?=+- 进口序列拟合的模型为 lny t ~ARIMA(1,1,0) ,具体口径为: 1 ln 0.1467210.36364 t t y ε?=+- lny t 和lnx t 具有协整关系。 协整模型为: 1ln 0.99179ln 0.69938t t t t y x εε-=+- 误差修正模型为: 1ln 0.9786ln 0.22395t t t y x ECM -?=?- SAS 程序如下: data example6_4; input x y@@; t=_n_; cards ; 1950 20.0 21.3 1951 24.2 35.3 1952 27.1 37.5 1953 34.8 46.1 1954 40.0 44.7 1955 48.7 61.1 1956 55.7 53.0 1957 54.5 50.0 1958 67.0 61.7 1959 78.1 71.2 1960 63.3 65.1 1961 47.7 43.0 1962 47.1 33.8 1963 50.0 35.7 1964 55.4 42.1 1965 63.1 55.3 1966 66.0 61.1

(完整word版)时间序列分析考试卷及答案 (2)

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟 注:B 为延迟算子,使得1-=t t Y BY ;?为差分算子,。 一、单项选择题(每小题3 分,共24 分。) 1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。 A. MA(2) B.ARMA(1,1) C.AR(2) D.MA(1) 2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。 A. )1(MA B.)1(AR C.)1,1(ARMA D.)2(MA 3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。 (A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ, 4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。 A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1) 5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。 A.0 B.64.0 C. 1 6.0 D. 2.0 6.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。 A.5.0- B. 25.0 C. 4.0- D. 8.0 7. 若零均值平稳序列{}t X ?,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。 A. MA(2) B.)2,1(IMA C.)1,2(ARI D.ARIMA(2,1,2) 8. 记?为差分算子,则下列不正确的是( C )。 A. 12-?-?=?t t t Y Y Y B. 212 2--+-=?t t t t Y Y Y Y C. k t t t k Y Y Y --=? D. t t t t Y X Y X ?+?=+?) ( 二、填空题(每题3分,共24分);

(整理)Excel时间序列预测操作.

时间序列分析预测EXCEL操作 一、长期趋势(T)的测定预测方法 线性趋势→:: 用回归法 非线性趋势中的“指数曲线”:用指数函数LOGEST、增长函数GROWTH(针对指数曲线) 多阶曲线(多项式):用回归法 (一)回归模型法-------长期趋势(线性或非线性)模型法: 具体操作过程:在EXCEL中点击“工具”→“数据分析”→“回归”→分别在“Y值输入区域”和“X值输入区域”输人数据和列序号的单元格区域一选择需要的输出项目,如“线性拟合图”。回归分析工具的输出解释: 计算结果共分为三个模块: 1)回归统计表: Multiple R(复相关系数R):R2的平方根,又称为相关系数,它用来衡量变量xy之间相关程度的大小。R Square(复测定系数R2 ):用来说明用自变量解释因变量变差的程度,以测量同因变量y的拟合效果。Adjusted R Square (调整复测定系数R2):仅用于多元回归才有意义,它用于衡量加入独立变量后模型的拟合程度。当有新的独立变量加入后,即使这一变量同因变量之间不相关,未经修正的R2也要增大,修正的R2仅用于比较含有同一个因变量的各种模型。 标准误差:又称为标准回归误差或叫估计标准误差,它用来衡量拟合程度的大小,也用于计算与回归有

关的其他统计量,此值越小,说明拟合程度越好。 2)方差分析表:方差分析表的主要作用是通过F检验来判断回归模型的回归效果。 3)回归参数:回归参数表是表中最后一个部分: ?Intercept:截距a ?第二、三行:a (截距) 和b (斜率)的各项指标。 ?第二列:回归系数a (截距)和b (斜率)的值。 ?第三列:回归系数的标准误差 ?第四列:根据原假设Ho:a=b=0计算的样本统计量t的值。 第五列:各个回归系数的p值(双侧) 第六列:a和b 95%的置信区间的上下限。 (二)使用指数函数LOGEST和增长函数GROWTH进行非线性预测 在Excel中,有一个专用于指数曲线回归分析的LOGEST函数,其线性化的全部计算过程都是自动完成的。如果因变量随自变量的增加而相应增加,且增加的幅度逐渐加大;或者因变量随自变量的增加而相应减少,且减少的幅度逐渐缩小,就可以断定其为指数曲线类型。 具体操作过程: 1.使用LOGEST函数计算回归统计量 ①打开“第3章时间数列分析与预测.xls”工作簿,选择“增长曲线”工作表如下图所示。 ②选择E2:F6区域,单击工具栏中的“粘贴函数”快捷键,弹出“粘贴函数”对话框,在“函数分类”中选择 “统计”,在“函数名”中选择“LOGEST”函数,则打开LOGEST对话框,如下图11.20所示。

平稳时间序列预测法

7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录 7.1 概述 时间序列取自某一个随机过程,则称: 一、平稳时间序列 过程是平稳的――随机过程的随机特征不随时间变化而变化过程是非平稳的――随机过程的随机特征随时间变化而变化回总目录 回本章目录 宽平稳时间序列的定义: 设时间序列 ,对于任意的t,k和m,满足: 则称宽平稳。 回总目录

回本章目录 Box-Jenkins方法是一种理论较为完善的统计预测方法。 他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方 法。使ARMA模型的建立有了一套完整、正规、结构 化的建模方法,并且具有统计上的完善性和牢固的理 论基础。 ARMA模型是描述平稳随机序列的最常用的一种模型; 回总目录 回本章目录 ARMA模型三种基本形式: 自回归模型(AR:Auto-regressive); 移动平均模型(MA:Moving-Average); 混合模型(ARMA:Auto-regressive Moving-Average)。回总目录 回本章目录 如果时间序列满足 其中是独立同分布的随机变量序列,且满足:

则称时间序列服从p阶自回归模型。 二、自回归模型 回总目录 回本章目录 自回归模型的平稳条件: 滞后算子多项式 的根均在单位圆外,即 的根大于1。 回总目录 回本章目录 如果时间序列满足 则称时间序列服从q阶移动平均模型。或者记为。 平稳条件:任何条件下都平稳。

三、移动平均模型MA(q) 回总目录 回本章目录 四、ARMA(p,q)模型 如果时间序列 满足: 则称时间序列服从(p,q)阶自回归移动平均模型。 或者记为: 回总目录 回本章目录 q=0,模型即为AR(p); p=0,模型即为MA(q)。 ARMA(p,q)模型特殊情况: 回总目录 回本章目录 例题分析 设 ,其中A与B 为两个独立的零均值随机变量,方差为1;

时间序列分析课程设计(最终版)

《时间序列分析》 课程设计报告 学院 专业 姓名 学号 评语: 分数 二○一二年十一月

目录 1.平稳序列分析(选用数据:国内工业同比增长率)-------------------------3 1.1 序列分析--------------------------------------------------------------3 1.2 附录(程序代码)------------------------------------------------------7 2.非平稳序列分析I(选用数据:国家财政预算支出)-------------------------8 2.1 使用ARIMA进行拟合-------------------------------------------------8 2.2 使用残差自回归进行拟合---------------------------------------------11 2.3 附录(程序代码)-----------------------------------------------------12 3.非平稳序列分析II(选用数据:美国月度进出口额)------------------------13 3.1序列分析--------------------------------------------------------------13 3.2附录(程序代码)------------------------------------------------------18

一、平稳序列分析(选用数据:国内工业同比增长率,2005年01月-2012年5月)绘制时序图 rate 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 01JAN0501JUL0501JAN0601JUL0601JAN0701JUL0701JAN0801JUL0801JAN0901JUL0901JAN1001JUL1001JAN1101JUL1101JAN1201JUL12 time 图1-1 国内工业月度同比增长率序列时序图 的趋势以及周期性,波动稳定,可以初步判定为平稳序列。下面进一步考察序列的自相关图。 图1-2 国内工业月度同比增长率序列的样本自相关图 认为该序列平稳。下面对序列进行白噪声检验。

什么是时间序列预测法

什么是时间序列预测法? 一种历史资料延伸预测,也称历史引伸预测法。是以所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。 时间序列,也叫时间数列、历史复数或。它是将某种的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。 时间序列预测法的步骤 第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3);(4)不规则变动。 第二步分析时间序列。时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。 第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。 第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的值T和季节变动值s,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y: 加法模式T+S+I=Y 乘法模式T×S×I=Y 如果不规则变动的预测值难以求得,就只求和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的在按时间顺序的观察方面所起的作用,本质上也只是一个的作用,实际值将围绕着它上下波动。 []

时间序列分析作业.doc

时间序列分析作业 1、数据收集 通过长江证券金长江网上交易软件收集中信证券(600030)股价数据(2010-7-1~2011-5-9,共200组),保存文件,命名为“股价数据”。 2、工作表建立 打开eviews,点击file下拉菜单中的new项选择workfile项,弹出窗口如下: (1)、在datespecification中选择integer date。 (2)、在start和end中分别输入“1”“200” (3)、在wf项后面的框中输入工作表名称hr,点击ok。 窗口如下: 3、数据导入 在hr工作文件的菜单选项中选择pro,在弹出的下拉菜单中选择import,然后再下拉二级菜单中选择read text-lotus-excell,找到数据,双击弹出如下对话框:

默认date order,选择右边upper-left data cell下面的空格填写,输入excel中第一个有效数据单元格地址B6,在names for series or number if named in file 中输入序列名称,不妨设为s,点击ok,导入数据。 4、平稳性检验 点击s序列,选择菜单view/correlogram,弹出correlogram specification对话框,如下图,在对话框中默认level,lags to include 改为20(200/10),可得下图:

序列的自相关系数没有很快的趋近0,说明原序列是非平稳的序列。 5、对原序列做对数差分处理 A、在主窗口输入smpl 2 200,对样本数据进行选取, B、在主命令窗口输入series is=log(s)-log(s(-1)) 可以得到新的序列is 对is序列做同上的平稳性检验可以得到如下图:

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

eviews时间序列分析实验Word版

实验一ARMA模型建模 一、实验目的 学会检验序列平稳性、随机性。学会分析时序图与自相关图。学会利用最小二乘法等方法对ARMA模型进行估计,以及掌握利用ARMA模型进行预测的方法。学会运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。 二、基本概念 1平稳时间序列: 定义:时间序列{zt}是平稳的。如果{zt}有有穷的二阶中心矩,而且满足: (a) ut= Ezt =c; (b) r (t, s) = E[(zt~c) (zs-c)] = r (t~s, 0) 则称{zt}是平稳的。 2AR模型: AR模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的F扰值的线性组合预测。具有如下结构的模型称为P阶自回归模型,简记为AR(P)。 氓=% +忖“ + @耳-2 +…+忙耳“ + S t 忙工0 = 0, Var{s t) =(7;, E{s z£s) = 0, s H 上 Ex s s t = 0, Vs < t 3MA模型: MA模型也称为滑动平均模型。它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。具有如下结构的模型称为Q阶移动平均回归模型,简记为MA (q) o 兀二“ +吕—叽-&耳2_???-恥r 七H0 E(£)= 0, Var(£t) =(j~,= 0,sH7 4ARMA模型: ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA。具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)°

x< = 00 + 欣-1 + …++ 6 —一…一臥 7 0, H 0, Q H 0 E(s t) = 0, Var{s t) = crj, E(8t£s) = 0, s H r E XS T = 0, Vs < t ?O' 三、实验内容及要求 1实验内容: (1)根据时序图判断序列的平稳性; (2)观察相关图,初步确定移动平均阶数q和自回归阶数P: 2实验要求: (1)深刻理解平稳性的要求以及ARMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及苴图形,利用最小二乘法,以及信息准则建立合适的ARMA模型;如何利用ARMA模型进行预测: (3)熟练掌握相关Eviews操作,读懂模型参数估il?结果。 四、实验指导 1数据录入 首先用命令series x = nrnd生成一个500个白噪声序列。然后利用excel生成一个平稳序 列如图1所示,其中设定方程为X(t) = -0?5*X(t-l)+0? 4*X(t-2)+£ (t)o Series: Y Workfile: RAN::Untitled\ View Proc Object Properties Print Name Freeze Defeult v Sort Edi Last updated: 12/21/12-21:52 1 3.871776 2 2.721548 3 ?0.394538 4 1.771239 5 -0.557231 6 1.037903 7 0.139982 80.723313 9 1.959045 10 -0.098984 11 2.150510 1 2绘制序列时序图 双击打开series y ?选择View—Graph—Line & Symbol。得到的时序图如下所示:

(完整word版)《时间序列》试卷

《时间序列分析》试卷 注意:请将答案直接写在试卷上 一、填空题(1分*20空=20分) 1. 德国药剂师、业余天文学家施瓦尔发现太阳黑子的活动具有 11年周期依靠的是 时序分析方法。 2. 时间序列预处理包括 和 。 3. 平稳时间序列有两种定义,根据限制条件的严格程度,分为 和 。使用序列的特征统计量来定义的平稳性属于 。 4. 统计时序分析方法分为 和 。 5. 为了判断一个平稳的序列中是否含有信息,即是否可以继续分析,需对该序 列进行 检验,该检验用到的统计量服从 分布;原假设和备择假设分别是 和 。 6. 图1为2000年1月——2007年12月中国社会消费品零售总额时间序列图, 据此判断,该序列{}t X 是否平稳(填“是”或 者“否”) ;要使其平稳化,应该对原序列进行 和 差分处理。用Eviews 软件对该序列做差分运算的表达式是 。 7. ARIMA 模型的实质 是和 的结合。 8. 差分运算的实质是使用的 方式提取确定性信息。 9. 用延迟算子表示中心化的AR(P)模型是 。 二、不定项选择题(下列每小题至少有一个答案是正确的,请将正确答 班级 姓名 学号 500 1000150020002500300035004000 93 94 95 96 97 98 99 00 图1

案代码填入相应括号内,2分*5题=10分) 1.下列属于白噪声序列{}t ε所满足的条件的是( ) A. 任取T t ∈,有με=)(t E (μ为常数) B. 任取T t ∈,有0)(=t E ε C.)(0),(s t Cov s t ≠?=εε D. 2 )(εσε=t Var (2 εσ为常数) 2.使用n 期中心移动平均法对序列{}t x 进行平滑时,下列表达式正确的是( ) A.n x x x x x n x n t n t t n t n t t ),(1 ~ 211211212 1-+--++----++++++=ΛΛ为奇数; B. n x x x x x n x n t n t t n t n t t ),(1 ~ 2 12122 +-++--++++++=ΛΛ为偶数; C. )(1 ~11+--+++= n t t t t x x x n x Λ; D. n x x x x x n x n t n t t n t n t t ),21 21(1~ 212 122+-++--++++++=ΛΛ为偶数。 3.关于延迟算子的性质,下列表示中正确的有 ( ) A.10=B B.n t t n x x B -= C.∑=-= -n i n i n n n B C B 0 ) 1()1( D.对任意两个序列{}t x 和{}t y ,有11)(--+=+t t t t y x y x B 4.下列选项不属于平稳时间序列的统计性质的是 ( ) A.均值为常数 B 均值为零 C.方差为常数 D.自协方差函数和自相关系数只依赖于时间的平移长度,而与时间的起止点无关。 5.ARMA 模型平稳性条件是() A.0=Φt x B )(的特征根都在单位圆内; B. 0=Φt x B )(的根都在单位圆内; C.0=Θt B ε)(的特征根都在单位圆内; D. 0=Φ)(B 的根都在单位圆外。 三、判断并说明理由(10分) 1.模型的有效性检验是指检验模型能否能够有效地提取序列中的信息,即对残差进行平稳性检验。 2.ARIMA (p,d,q )模型具有方差齐次性。 四、简答题:(第1小题15分,第2小题5分,本题共20分)

时间序列分析法缺点

时间序列分析预测法有两个特点: ①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。 时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。市场现象过去和现在的发展变化规律和发展水平,会影响到市场现象未来的发展变化规律和规模水平;市场现象未来的变化规律和水平,是市场现象过去和现在变化规律和发展水平的结果。 需要指出,由于事物的发展不仅有连续性的特点,而且又是复杂多样的。因此,在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。随着市场现象的发展,它还会出现一些新的特点。因此,在时间序列分析预测中,决不能机械地按市场现象过去和现在的规律向外延伸。必须要研究分析市场现象变化的新特点,新表现,并且将这些新特点和新表现充分考虑在预测值内。这样才能对市场现象做出既延续其历史变化规律,又符合其现实表现的可靠的预测结果。 ②时间序列分析预测法突出了时间因素在预测中的作用,暂不考虑外界具体因素的影响。时间序列在时间序列分析预测法处于核心位置,没有时间序列,就没有这一方法的存在。虽然,预测对象的发展变化是受很多因素影响的。但是,运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然起作用,并未去分析探讨预测对象和影响因素之间的因果关系。因此,为了求得能反映市场未来发展变化的精确预测值,在运用时间序列分析法进行预测时,必须将量的分析方法和质的分析方法结合起来,从质的方面充分研究各种因素与市场的关系,在充分分析研究影响市场变化的各种因素的基础上确定预测值。 需要指出的是,时间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差,时间序列预测法对于中短期预测的效果要比长期预测的效果好。因为客观事物,尤其是经济现象,在一个较长时间内发生外界因素变化的可能性加大,它们对市场经济现象必定要产生重大影响。如果出现这种情况,进行预测时,只考虑时间因素不考虑外界因素对预测对象的影响,其预测结果就会与实际状况严重不符。

时间序列分解Decompose

时间序列分解算法和d ecompose函数实现 李思亮 55531469@https://www.doczj.com/doc/554770914.html, 目录 时间序列分解算法和decompose函数实现 (1) 1 数据读入并生成时间序列 (2) 2 数据可视化 (4) 3 时间序列分解 (7)

在时间序列分析的过程中,往往需要对时间序列作出初步分析,本文主要采用R语言作为分析平台,从数据的读入,可视化图,分解(decompose)为趋势项,季节项,随机波动等角度对数据开展分析的几个案例。最后对分解算法作出初步描述并探讨其预测预报中的潜在应用。本文的数据和部分内容主要采用https://www.doczj.com/doc/554770914.html,/en/latest/中的内容,感兴趣的读者可以参考。 1 数据读入并生成时间序列 对于数据分析来讲,数据读入是一个比较关键的步骤。常用的数据读入函数有scan,read.table 等。下面列举了几种常见的数据。 首先是https://www.doczj.com/doc/554770914.html,/tsdldata/misc/kings.dat,中包含了英国国王的寿命从William开始,数据来源(Hipel and Mcleod, 1994)。 > kings <- scan("https://www.doczj.com/doc/554770914.html,/tsdldata/misc/kings.dat",skip=3) Read 42 items > kings [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 上述例子中,读入了连续42个公国国王的寿命并将其赋给变量‘kings’ 如果我们希望对读入数据开展分析,下一步就是将其转化为时间序列对象(时间序列类),R提供了很多函数用于分析时间序列类数据。可以使用ts函数将变量转化为时间序列类。 > kingsts <- ts(kings) > kingsts Time Series: Start = 1 End = 42 Frequency = 1 [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 对于上述数据操作的好处是将数据转化为特定的“时间序列类”便于我们使用R中的函数分析数据。 有时候我们会按照一定的时间周期来收集数据,这个周期可能是季度,月,日,小时,分。在大数据时代,有些情况下的数据是按照秒来采集收集。这种情况下,我们需要对数据的周期或频率进行设置。这里采用ts函数中的frequency参数可以实现这种功能。比方说,若按1年为一个周期,我们的月度时间

完整word版时间序列分析试卷及答案

第1 页共7 页 时间序列分析试卷1 一、填空题(每小题2分,共计20分) 1.ARMA(p, q)模型_________________________________,其中模型参数为 ____________________。 ??X,则其一阶差分为_________________________2.设时间序列。t3.设ARMA (2, 1): ??0.3??0.5X?0.4XX?1t?1t?tt?2t则所对应的特征方程为_______________________。 ???+XX?10,其特征根为4.对于一阶自回归模型AR(1): _________,平稳域是 t1tt?_______________________。 ??0.1?X?aX?X?0.5,当a满足_________时,模型平稳。5.设ARMA(2, 1): 1tt?1t?tt?2??0.3?X?,其自相关函数回6.对于一阶自归模型MA(1): 为1ttt?。______________________:7.对于二阶自回归模型AR(2)??XX?0.2X?0.5t?t12tt?则模型所满足的Yule-Walker方程是______________________。 ??X为来自ARMA(p,q)8.设时间序列模型:t????????L??X?L?X??X qt?11ttp1?t?p1tqt?则预测方差为___________________。 ????dX~XI。,则对于时间序列9.,如果___________________tt??X为来自GARCH(p,q) 模型,则其模型结构可写为_____________。10.设时间序列t ????2,1XARMA来自二、(10分)设时间序列过程,满足得分 t????2?B1?0.40.51?B?B?X , tt??????2?????Var0,?E是白噪声序列,并且。其中ttt 第2 页共7 页 ??2,1ARMA模型的平稳性。(判断5分)(1)G,G,G。(5分)(2)利用递推法计算前

相关主题
文本预览
相关文档 最新文档