当前位置:文档之家› 大学物理第二章 质点动力学习题解答

大学物理第二章 质点动力学习题解答

大学物理第二章 质点动力学习题解答
大学物理第二章 质点动力学习题解答

第二章 习题解答

2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:

'34265.0/?===arctg F arctgF x y α

2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:

j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F

2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可

伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:

②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ

①+②可求得:g m m g

m F a μμ-+-=

2

112

将a 代入①中,可求得:2

111)

2(m m g m F m T +-=

μ

2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2

的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律:

f 1 N 1 m 1

g T

a

F

N 2 m 2g

T

a

N 1 f 1 f 2

T'

m 1g

a T'

m 2g a

'2''2211T T a m T g m a m g m T ==-=-②① 由①②可求得:

2

12121212,2'm m g

m m T m m g m m T +=

+=

所以,天平右端的总重量应该等于T ,天平才能保持平衡。

2-21 一个机械装置如图所示,人的质量为m 1=60kg ,人所站的底板的质量为m 2=30kg 。设绳子和滑轮的质量以及滑轮轴承的摩擦力都可略去不计,若想使所站着的底板在空中静止不动,此人应以多大的力量拉绳子?此时人对升降机的压力是多大?

解:装置的各部分和人的受力如图所示,据题意有:

112233

2312

13231200

T T T T T T N N T T T T T T N m g T N m g ?'''===?

?''===?

'''+--=??

'+-=? 解方程组得:31

212

1()41(3)4

T m m g N m m g

?=+????=-??

代入数据得:3220.5367.5T N

N N =??=?,即人应以220。5N 的力量拉绳子?此时人对升降机的压

力是367.5N 。

2-22 桌面上有一质量m 1=1kg 的木板,板上放一个质量为m 2=2kg 的物体。已知物体和板之间的滑动摩擦系数μ2=0.4,静摩擦系数为μ0=0.5,板和桌面间的滑动摩擦系数μ1=0.3。

(1)今以水平力拉板,物体和板一起以加

速度a=1m/s 2运动,计算物体和板以及板和桌面间的相互作用力;

(2)若使板从物体下抽出,至少需用多大的力?

解:以地为参考系,隔离m 1、m 2,其受力与运动情况如图所示,

m 1g

f 1

N 1 a 1

a 2

x

y

(1)物体和板之间的最大静摩擦力可提供的最大加速度大于a=1m/s 2,所以它们之间无相对运动。

111

222

2

120

f m a f N N N m

g μ=??

=??--=?解方程组并代入数据得: 1212.94f N f N =??=? 所以物体和板以及板和桌面间的相互作用力分别为1N 和2.94N 。

(2)其中,N 1'=N 1,f 1'=f 1=μ0N 1,f 2=μ2N 2,选图示坐标系o-xy ,对m 1,m 2分别应用牛顿二定律,有

011111

012222212

00N m a N m g F N N m a N N m g μμμ=??-=??

--=?

?--=? 解方程组,得 ()1020121222/a g

a F m g m g m g m μμμμ==---

要把木板从下面抽出来,必须满足12a a >,即

01212220F m g m g m g m g

μμμμ--->()()()()02120.50.3129.8 2.352F m m g N μμ∴>++=+?+?= 即要把木板从下面抽出来,沿水平方向必须用大于2.352N 的力。

2.23沿铅直向上发射玩具火箭的推力随时间变化如图所示,火箭质量为2kg ,t=0时。

解:根据推力F-t 图像,可知F=4.9t (t ≤20),令F=mg 即4.9t=2×9.8,t=4s ,因此,火箭发射可分为三个阶段:为第一阶段,由于推力小于重力,火箭静止,v=0,y=0;t=4为第二阶段,火箭作变加速直线运动,设t=20s 时,y = y 1,;t ≥20s 为第三阶段,火箭只受重力作用,作竖直上抛运动,设达最大 高度时的坐标 y=y 2.

第二阶段的动力学方程为:F- mg = m dv/dt

/ 4.9/29.8dv F mdt gdt tdt dt =-=-

20

题图

()0

4

4

4.9/29.820v

t t

dv tdt dt

t =-≤?

??

()24.9/49.84 4.920v t t t =-+?≤

1

max 220

20

20

20

4

4

4

1(20)314/(4.9/49.84 4.9)4.9/49.84 4.91672y v v m s

dy vdt t t dt dy t dt tdt dt

y m

====-+?∴=-+?=????

第三阶段运动学方程

)2()20(9.4)20(314),1()20(8.931421---=---=t t y y t v

令v=0,由(1)求得达最大高度y 2时所用时间(t-20)=32,代入(2)中,得y 2-y 1=5030 y 2=y max =5030+1672=6702(m)

2.24汽车质量为1.2×10kN ,在半径为100m 的水平圆形弯道上行驶,公路内外侧倾斜15°,沿公路取自然坐标,汽车运动学方程为s=0.5t 3+20t (m),自t=5s 开始匀速运动,试求公路面作用于汽车与前进方向垂直的摩擦力的大小,并指出是由公路内侧指向外侧还是由外侧直向内侧?

解:以地为参考系,把汽车视为质点,受力及运动情况如图示: v=ds/dt=1.5t 2+20,v| t=5 =1.5×52+20=57.5m/s ,a n =v 2/R=57.52/100=33 设摩擦力f 方向指向外侧,取图示坐标o-xy ,应用牛顿第二

律:

ααααααααcos sin cos sin sin cos sin cos f ma N ma f N f mg N mg f N n n

+==--==+

②/①得:)sin /()cos (αααf mg f ma tg n -+=

α

αααααααtg a gtg m f f ma tg f mgtg n n sin cos )

(,

cos sin +-=

+=-

0,043.3033158.9<∴<-=-?=-f tg a gtg n α ,说明摩擦力方向与我们事先假设方向相反,指向内侧。

2.25 一辆卡车能够沿着斜坡以15km/h 的速率向上行驶,斜坡与水平面夹角的正切tg α=0.02,所受阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,卡车的

速率是多少?

解:设卡车匀速上坡时,速率为v, 牵引力为F, 功率为N,由质点平衡方程有,F = (0.04+sin α)mg ,∴N = Fv = (0.04+sin α)mgv

设卡车匀速下坡时,速率为v ’,牵引力为F',功率为N', 由质点平衡方程有 F'+ mg sin α= 0.04mg, F'=(0.04-sin α)mg, ∴N'= (0.04-sin α)mgv'.

令N'= N, 即(0.04+sin α)mgv = (0.04-sin α)mgv',可求得:

v'= v(0.04+sin α)/(0.04-sin α). 利用三角函数关系式,可求得: sin α≈tg α=0.02 ,∴v'=3v =3×15×103/602 m/s = 12.5m/s.

2.26如图所示,质量为m=0.5kg 的木块可在水平光滑直杆上滑动,木块与一不可伸长的轻绳相连,绳跨过一固定的光滑小环,绳端作用着大小不变的力T=50N ,木块在A 点时具有向右的速率v 0=6m/s ,求力T 将木块从A 拉至B 点时的速度。 20.88/

m s

解:以A 为原点建立图示坐标o-x ,木块由A 到B ,只有拉力T 做功:

?

??+--===4

3)4()4(4

4

2

2cos x dx x x T dx T dx F A θJ

x x x d x T

100)35(50|9)4(50|]

9)4[(2]9)4[(]9)4[(402

2/1225040

22/

122

=-?

=+-=+-?-=+-+--=?- A

B

x

2.26题图

2.27题图

设木块到达B 时的速度为v ,由动能定理:2

021

221mv

mv A -= s m v m A v /88.2065.0/1002/222

0≈+?=+=,方向向右

2.27 如图所示,质量为1.2kg 的木块套在光滑铅直杆上,不可伸长的轻绳跨过固定的光滑小环,孔的直径远小于它到杆的距离。绳端作用以恒力F ,F=60N,木块在A 处有向上的速度v 0=2m/s,求木块被拉至B 时的速度。

3.86 m/s.

解:以地为参考系,建立图示坐标A-xy ,木块在由A 到B 的运动过程中受三个力的作用,各力做功分别是: A N = 0;A W = -mg(y B -y A )=-1.2

×9.8×0.5= -5.88J ;F 大小虽然不变,但方向在运动过程中

不断变化,因此是变力做功。

J

F y y d y y d y dy

F dy F dy F A F F F y y y F 43.12)12(605.0)12(5.0|]

)5.0(5.0[2])5.0(5.0[])5.0(5.0[)5.0(])5.0(5.0[cos 5.002/12225.00

222/12225.0022

/12225

.00

)5.0(5.05.05.00

5

.002

2=-?=-=-+?-=-+-+-=--+-====

???

??---+-θ 由动能定理:2

212

21A B F W N mv mv

A A A -=++ 代入数据,求得 v

B =3.86 m/s.

2.28 质量为m 的物体与轻弹簧相连,最初m 处于使弹簧既未压缩也未伸长的位置,

W

A A

x

并以速度v 0 向右运动,弹簧的劲度系数为k ,物体与支撑面间的滑动摩擦系数为μ求证物体能达到的最远距离l 为)11(22

0-+=

mg v k k

mg

l μμ

证明:质点m 由弹簧原长位 置运动到最远位置l ,弹力F 和滑 动摩擦力f 对质点做负功,导致质 点动能由mv 02/2变为0。根据动能定理: A F +A f =0 - mv 02/2 ……①

其中,mgl A kl ldl k A f l

F μ-=-=-=?,2

2

10, 代入①中,并整理,有:kl 2+2μmgl-m v 02=0. 这是一个关于l 的一元二次方程,其根为:

k

v m k g m g m l 24)2(22

02+±-=

μμ,负根显然不合题意,舍去,所以, )11()(222

02021

-+=

++

-

=g m v k g

m k g

m kmv g m l μμμμ

2.29 滑雪运动员自A 自由下落,经B 越过宽为d 的横沟到达平台C 时,其速度vc 刚好在水平方向,已知A 、B 两点的垂直距离为25m.坡道在B 点的切线方向与水平面成30o角,不计摩擦,求:⑴运动员离开B 处的速率v B ;⑵B 、C 的垂直高度差h 及沟宽d ;⑶运动员到达平台时的速率vc.

解:运动员在整个运动过程中,只有重力做功,故机械能守恒,取B 点为势能零点。

∵mgH = mv B 2/2

∴s m gH v B /1.22258.922=??==

运动员由B 到C 作斜抛运动,据题意,C 点即为最高点。由斜抛运动规律可知,v c = v B cos30o = 19.1m/s

∵mv B 2/2 = m v c 2/2+mgh ∴h = (v B 2-v c 2)/2g = 6.3m ;由竖直方向的速度公式可求跨越时间:∵0 = v B sin30o-gt ∴t = v B /2g =1.13s

,由水平方向的位移公式可求得跨越距

离 d = v B cos30ot = 21.6m.

2.30 装置如图所示,球的质量为5kg ,杆AB 长1m ,AC 长0.1m ,A 点距O 点0.5m ,弹簧的劲度系数为800N/m ,杆AB 在水平位置时恰为弹簧自由状态,此时释放小球,小球由静止开始运动,求小球到铅垂位置时的速度,不计弹簧质量及杆的质量,不计摩擦。

解:取小球在水平位置时,势能为零,小球运动到竖直位置时的速度为v ,弹簧原长:51.01.05.0220=+=l ,在小球从水平位置运动到竖直位置的过程中,只有保守内力做功,因而机械能守恒:

20121)(0l AC OA k AB mg mv -++-=,可求得: s m m

l AC OA k AB g v /28.45/)51.01.05.0(80018.92/)(22

20=-+-??=-+-=

2.31 卢瑟福在一篇文章中写道:可以预言,当α粒子和氢原子相碰时,可使之迅速运动起来.按正碰考虑很容易证明,氢原子速度可达α粒子碰撞前速度的1.6倍,即占入射α粒子能量的64%。试证明此结论(碰撞是完全弹性的,且α粒子质量接近氢原子质量的四倍)。

证明: 设氢原子质量为m,碰前速度为零,碰后速度v H ',α粒子质量为4m,碰前速度为v α,碰后速度为v α'.根据完全弹性碰撞基本公式:

??

?-=+='''

'44αα

ααv v v mv mv mv H H 即 , )2('')1(''44ααααv v v v v v H H -=+= ⑴+⑵×4,得 8 v α= 5v H ', ∴ v H '= 8 v α/5 = 1.6 v α

64.02

2224)6.1(2

/42/'==

=

αααα

v v v m v m E E H H

2.32 m 为静止车厢的质量,质量为M 的机车在水平轨道上自右方以速率v 滑行并与m 碰撞挂钩.挂钩

后前进了距离s 然后静止。求轨道作用于车的阻力。

解:整个过程可分为两个阶段:第一阶段,机车与车厢发生完全非弹性碰撞而获得共同速度v ’,由于轨道阻力远小于冲力,可认为质点系动量守恒,

Mv=(M+m)v ’,v ’=Mv/(M+m)

第二阶段,机车与车厢挂钩后,在摩擦阻力的作用下向前移动了s ,速度由v ’变为零,由动能定理,有

– fs = 0 - (M+m) v ’2 /2, 将v ’代入,可求得 )

(222m M s v M f +=

2.33如图所示, 质量为2g 的子弹以500m/s 的速度射向质量为1kg ,用l =1m 长的绳子悬挂着的摆,子弹穿过摆后仍然有100m/s 的速度,问摆沿铅直方向升起若干?

解:用v 0,v 分别表示子弹穿过摆前后的速度,u 表示子弹穿过摆后摆的速度,设摆升起的最大高度为h

由动量守恒:MV mv mv +=0,可得

8.0)100500(002.0)(0=-=-=

v v V M m

由能量守恒:Mgh MV =22

1 m g V h 033.0)8.92/(8.02/22=?==

2.34如图所示一质量为200g 的框架,用一弹簧悬挂起来,使弹簧伸长10cm ,今有一质量为200g 的铅快在高30cm 处从静止开始落进框架,求此框架向下移动的最大距离,弹簧质量不计,空气阻力不计。

解:框架静止时,弹簧伸长Δl =0.1m ,由平衡条件mg=k Δl ,求得:k=mg/Δl =0.2×9.8/0.1=19.6N/m

铅块落下h=30cm 后的速度v 0,可由能量守恒方程求出:2

021mv

mgh = s m gh v /42.23.08.9220=??==

设铅快与框架碰后的共同速度为v ,由动量守恒:

s m v v mv mv /21.12/42.2,20210==== 设框架下落的最大距离为x ,由机械能守恒:

mgx

x l k l k v m m 2)()(221

22122

1-+?=?++,进行整理并代入数据,可得x 的一元二次方程:m x x x 3.0,003.02.02==--

2.35 如图所示,质量为m 1=0.790kg 和m 2=0.800kg

的物体以劲度系数为10N/m 的轻弹簧相连,置于光滑水平桌面上,最初弹簧自由伸张。质量为m 0=0.01kg 的子弹以速率v 0=100m/s 沿水平方向射于m 1内,问弹簧最多压缩了多少?

解:整个过程可分为两个阶段处理。第一阶段:子弹射入m 1内,发生完全非弹性碰撞,动量守恒,设子弹质量为m 0,子弹与m 1获得的共同速度为v ,则有

m 0v 0 = (m 1+m 0) v ∴v = v 0m 0 / (m 1+m 0) (1)

第二阶段:子弹与m 1以共同速度v 开始压缩弹簧至m 1与m 2有相同的速度V ,压缩结束;在此过程中,由m 0,m 1,m 2组成的质点系,其动量、能量均守恒,设弹簧最大压缩量为l .由动量守恒,有:

)

2()()(0

210

00210102101m m m v m v m m m m m V V m m m v m m ++=

+++=∴++=+

由能量守恒:)3()()(21

202112011

kl

V m m m v m m +++=+

将⑴、⑵代入⑶中,可求得:

m m m m m m k v m l 25.0)11(10

210100≈++-+=

2.36 一10g 的子弹沿水平方向以速率110m/s 击中并嵌入质量为100g 的小鸟体内,小鸟原来站在离地面4.9m 高的树枝上,求小鸟落地处与树枝的水平距离。

解:设鸟被子弹击中后与子弹共有的速度为v ,由动量守恒:

v m m v m )(2101+=

s m v m m v m /101.001.011001.02

10

1==

=

+?+

由平抛运动公式2

2

1gt h =,可求得子弹落地时间: s g h t 18.9/9.42/2=?==,所以,水平距离S=vt=10×1=10m

2.37棒球质量为0.14kg ,用棒击棒球的力随时间的变化如图所示,设棒球被击前后速度增量大小为70m/s ,求力的最大值,打击时,不计重力。

解:由F —t 图可知:

max 03

.008.0max

08.005.005.00F F t F F t t t -=

≤≤=

≤≤时,当时,当

[斜截式方程y=kx+b ,两点式方程 (y-y 1)/(x-x 1)=(y 2-y 1)/(x 2-x 1)]

由动量定理:?

?

?-+

==?08

.005

.003.005

.00

05.008

.00

)08.0(max max dt t tdt Fdt v m F F

可求得F max = 245N

2.38地球质量为6.0×1024kg ,地球与太阳相距149×106km ,视地球为质点,它绕太

阳做圆周运动,求地球对于圆轨道中心的角动量。 402

2.6510/kgm s ?

解:60

6024365)10149(2100.62

924

2

??????===πωr m mvr L

s kgm /1065.21060

602436514920.6240422?=??????=π 2.39 一个质量为m 的质点在o-xy 平面内运动,其位置矢量为j t b i t a r ?sin ?cos ωω+= ,

其中a 、b 和ω是正常数,试以运动学和动力学观点证明该质点对于坐标原点角动量守恒。

证明:

r

j t b i t a dt v d a j

t b i t a dt r d v 222?sin ?cos /?cos ?sin /ωωωωωωωωω-=--==+-== ⑴运动学观点:

k mab k t mab k t mab L k i

j j i j j i i j t b i t a m j t b i t a v m r L ??sin ?cos ?)?(???,0????)

?cos ?sin ()?sin ?cos (22ωωωωωωωωωωω=+=∴=-?=?=?=?+-?+=?=

显然与时间t 无关,是个守恒量。

⑵动力学观点:

∵0)(22=?-=-?=?=?=r r m r m r a m r F r

ωωτ,∴该质点角动量守恒。

2.40 质量为200g 的小球B 以弹性绳在光滑水平

面上与固定点A 相连。弹性绳的劲度系数为8 N/m ,其自由伸展长度为600mm.最初小球的位置及速度v 0如图所示。当小球的速率变为v 时,它与A 点的距离最大,且等于800mm ,求此时的速率v 及初速率v 0.

解:设小球B 的质量m=0.2kg,原来与固定点A 的距离r 0=0.4m,当速率为v 时,与A 点距离r =0.8m,弹性绳自由伸展的长度为d =0.6m.

小球B 的速率由v 0→v 的过程中,作用在小球B 上的力对过A 点轴的力矩之和始终为零,因而小球对A 点的角动量守恒,有

r 0mv 0sin30o= rmv (最大距离时,)v r

⊥ (1)

另外,在此过程中,只有保守内力(绳的弹力)做功,因而能量守恒,

)2()(22

1

2212

02

1mv d r k mv +-=

为求解方便,将⑴⑵化简,并代入已知数据可得:

)'2(6.1)'

1(42

2

00v v v v +==

解此方程组,求得:v 0 ≈1.3 m/s v ≈0.33 m/s

2.41两个滑冰运动员的质量各为70kg ,以6.5m/s 的速率沿相反方向滑行,滑行路线间的垂直距离为10m ,当彼此交错时,各抓住10m 绳索的一端,然后相对旋转。⑴在抓住绳索一端之前,各自对绳索中心的角动量是多少?抓住之后是多少?⑵它们各自收拢绳索,到绳长为5m 时,各自的速率如何?⑶绳长为5m 时,绳内张力多大?⑷二人在收拢绳索时,各自做了多少功〉⑸总动能如何变化?

解:设每个运动员的质量为m=70kg ,收绳前相对绳中心O 的距离为d = d 1= 5m ,速率为v=v 1=6.5m/s ;当把绳收拢为d = d 2= 2.5m 时, 速率v=v 2

⑴对绳中心o 点的角动量各为

L=mv 1d 1=70×6.5×5=2275kgm 2/s (抓住绳索前后角动量相同)

⑵把两个运动员视为一个质点系,在收绳过程中,质点系对o 轴的角动量守恒,有

2m v 1d 1 = 2m v 2 d 2∴v 2 = v 1d 1/d 2 = 6.5×5/2.5 =13 m/s

⑶把某一运动员视为质点,作为研究对象,由牛顿第二定律,绳中张力F = m v 22/d 2 = 70×132 /2.5 = 4732 N

⑷由质点动能定理,每人所做的功均为:

J

v v v v m mv

mv A 4436)5.613)(5.613(70))((1

1212212

1212

221=+-?=+-=-=

⑸总动能增大了ΔE k = 2×4436 = 8872 J

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课 后习题及答案质点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

题1.1:已知质点沿x 轴作直线运动,其运动方程为 3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小; (2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--= t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有

2002 1at t v x x + += 由此,可计算在0~2和4~6 s 时间间隔内各时刻的位置分别为 t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m 5.7- 10- 5.7- 0 40 48.7 55 58.7 60 用描数据点的作图方法,由表中数据可作0~2 s 和4~6 s 时间内的x -t 图。在2~4 s 时间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少? 题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为 ()i i i r v t r r h h r t t t x t d d 1d d d d d d 2 /12 2 2 2 -??? ? ? ?-=-= ==' 而收绳的速率t r v d d - =,且因vt l r -=0,故 ()i v 2 /12 021-??? ? ? ?-- -='vt l h v 题1.3解2:取图所示的极坐标(r ,θ),则 θr r r d d d d d d d d d d e e e e r v t r t r t r t r t θ+=+== ' r d d e t r 是船的径向速度,θd d e t r θ是船的横向速度,而 t r d d 是收绳的速率。由于船速v '与径向速度之间夹角位θ ,所以

大学物理质点动力学习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4 一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解] 卫星所受的向心力即是卫星和地球之间的引力 由上面两式得() () () N 1082.710 85.110 63781063788.9132732 63 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 h R v m f +=e 2

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

质点动力学习题解答1

作业05(质点动力学3) 1..21t t >。 2. 人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B ,用L 和K E 分别表示卫星对地心的角动量及动能,则应有[ ]。 A . K B KA B A E E L L >>, B. KB KA B A E E L L >=, C. KB KA B A E E L L <=, D. KB KA B A E E L L <<, 答:[B ] 解:人造地球卫星绕地球做椭圆轨道运动时,它们之间的引力沿着径向,因此角动量守恒 B A L L = 同时,由角动量的定义 B B A A v r v r = 由于B A r r <,所以B A v v > 因此 KB B A KA E mv mv E =>=222 121 3. 体重相同的甲乙两人,分别用双手握住跨过无摩擦滑轮绳子两端。忽略滑轮和绳子的质量。当它们由同一高度向上爬时,相对于绳子,甲的速率是乙的两倍,则到达顶点的情况是 [ ]。 A . 甲先到达 B. 乙先到达 C. 同时到达 答:[C ] 解:由于此二人受到的力相同,质量相同,则加速度就相同。同时到达。 4. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F +=作用在质点上,该质点从坐标原点运动到)2,0(R 位置的过程中,此力F 对它做的功为_____。 答: 2 02R F A = 解:如图首先进行坐标变换,即将坐标原点移到圆周轨道的圆心/o 处,实际上,就是将x 轴平移R 。在新的坐标系中,圆周轨道θ角处(矢径r ),质点受到的力为 ] )1(sin [cos ])([)(0//00j i R F j R y i x F j y i x F F ++=++=+=θθ 在新的坐标系中,矢径为 j R i R r θθsin cos += θθθRd j i r d )cos sin ( +-= 元功表示为 θ θθθθθθd R F Rd j i j i R F r d F dA cos )cos sin (])1(sin [cos 200=+-?++=?= 所以,质点从坐标原点运动到)2,0(R 位置的过程中,F 对它做的功为 2022 /2/02cos R F d R F dA A ===??-θθππ 5. 一个半径为R 的水平圆盘以恒定角速度ω作匀速转动,一质量为m 的人要从圆盘边缘走到圆盘中心处,圆盘对他做的功为_______。

大学物理第二章(质点动力学)习题答案

习题二 2-1 质量为m得子弹以速率水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹得重力,求:(1)子弹射入沙土后,速度大小随时间得变化关系; (2)子弹射入沙土得最大深度。 [解] 设任意时刻子弹得速度为v,子弹进入沙土得最大深度为s,由题意知,子弹所受得阻力f= - kv (1) 由牛顿第二定律 即 所以 对等式两边积分 得 因此 (2) 由牛顿第二定律 即 所以 对上式两边积分 得到 即 2-2 质量为m得小球,在水中受到得浮力为F,当它从静止开始沉降时,受到水得粘滞阻力为f=kv(k为常数)。若从沉降开始计时,试证明小球在水中竖直沉降得速率v与时间得关系为 [证明] 任意时刻t小球得受力如图所示,取向下为y轴得正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 整理得 对上式两边积分 得 即 2-3 跳伞运动员与装备得质量共为m,从伞塔上跳出后立即张伞,受空气得阻力与速率得平方成正比,即。求跳伞员得运动速率v随时间t变化得规律与极限速率。 [解] 设运动员在任一时刻得速率为v,极限速率为,当运动员受得空气阻力等于运动员及装备得重力时,速率达到极限。 此时 即 有牛顿第二定律 整理得 对上式两边积分 得 整理得 2-4 一人造地球卫星质量m=1327kg,在离地面m得高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f得大小;(2)卫星得速率v;(3)卫星得转动周期T。 [解] 卫星所受得向心力即就是卫星与地球之间得引力

由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 ()() s m 1096.61327 1085.11063781082.736 33e ?=?+???=+= m h R f v (3) 卫星得运转周期 ()() 2h3min50s s 1043.710 96.61085.1106378223 3 63e =?=??+?=+=ππv h R T 2-5 试求赤道上方得地球同步卫星距地面得高度。 [解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 代入第一式中 解得 2-6 两个质量都就是m 得星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。已知轨道半径为R ,求:(1)每个星球所受到得合力;(2)每个星球得运行周期。 [解] 因为两个星球在同一轨道上作圆周运动,因此,她们受到得合力必须指向圆形轨道得圆心,又因星球不受其她星球得作用,因此,只有这两个星球间得万有引力提供向心力。所以两个星球必须分布在直径得两个端点上,且其运行得速度周期均相同 (1)每个星球所受得合力 (2) 设运动周期为T 联立上述三式得 所以,每个星球得运行周期 2-7 2-8 2-9 一根线密度为得均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面得瞬时作用力。 [解] 链条对桌面得作用力由两部分构成:一就是已下落得s 段对桌面得压力,另一部分就是正在下落得段对桌面得冲力,桌面对段得作用力为。显然 时刻,下落桌面部分长s 。设再经过,有落在桌面上。取下落得段链条为研究对象,它在时

大学物理习题精选-答案解析-第2章质点动力学

质点动力学习题答案 2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向 与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行 斜面与X 轴垂直方向为Y 轴.如图2-1. 图2-1 X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v 2sin 2 1 t g y α= 由①、②式消去t ,得 22 sin 21 x g v y ?= α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为 常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m ⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律: 合力:f P F += a m f P =+ y 分量:dt dV m KV mg =-- dt KV mg mdV -=+? 即 dt m KV mg dV 1 -=+ ??-=+t v v dt m KV mg dV 01

dt m KV mg KV mg K 1ln 10-=++ )(0KV mg e KV mg t m K +?=+- mg K e KV mg K V t m K 1 )(10-+=?- ① 0=V 时,物体达到了最高点,可有0t 为 )1ln(ln 000mg KV K m mg KV mg K m t +=+= ② ∵ dt dy V = ∴ Vdt dy = dt mg K e KV mg K Vdt dy t t m K t y ??? ?? ????-+==-0000 1)(1 mgt K e KV mg K m y t m K 11)(02-??????-+-=- 021 ()1K t m m mg KV e mgt K K -+--??=???? ③ 0t t = 时,max y y =, )1ln(11)(0)1ln(02max 0mg KV K m mg K e KV mg K m y mg KV K m m K + ?-????????-+=+?- )1ln(1 1)(0 22 02mg KV g K m mg KV mg KV mg K m +-?? ??? ? ?????? +-+= )1ln()(022 0002mg KV g K m KV mg KV KV mg K m +-++= )1ln(0 220mg KV g K m K mV +-= 2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一 段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度.

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

大学物理习题精选-答案——第2章 质点动力学之欧阳语创编

质点 动力学习题答案 2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α) 上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1. 图2-1 X 方向: 0=x F t v x 0=① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v 由①、②式消去t ,得 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点 时所用时间及上升的最大高度. 解:⑴研究对象:m ⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律: 合力:f P F += y 分量:dt dV m KV mg =-- 即dt m KV mg dV 1-=+ mg K e KV mg K V t m K 1)(10-+=?-①

0=V 时,物体达到了最高点,可有0t 为 )1ln(ln 000mg KV K m mg KV mg K m t +=+=② ∵dt dy V = ∴Vdt dy = 021()1K t m m mg KV e mgt K K -+--??=????③ 0t t =时,max y y =, 2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平 桌面,链子的一端由极小的一段长度被推出桌子边 缘,在重力作用下开始下落,试求链条刚刚离开桌 面时的速度. 解:链条在运动过程中,其部分的速度、加速度均相同, 沿链条方向,受力为 m xg l ,根据牛顿定律,有 图2-4 通过变量替换有 m dv xg mv l dx = 0,0x v ==,积分00 l v m xg mvdv l =?? 由上式可得链条刚离开桌面时的速度为v gl = 2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用 细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a = 12 g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和 2m 的加速度各为多少? 解: 分别以1m ,2m 为研究对象,其受力图如图所示. (1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速

反应动力学习题及答案

反应动力学习题 一、 判断题: 1催化剂只能改变反应的活化能,不能改变反应的热效应。 ............. () 2、 质量作用定律适用于任何化学反应 ........................... () 3、 反应速率常数取决于反应温度,与反应物、生成物的浓度无关。 ........ () 二、 选择题: 1?若反应:A + B T C 对A 和B 来说都是一级的,下列叙述中正确的 ^是????( )。 (A)此反应为一 级反应; (B)两种反应物 中,当其中任一种的浓度增大2倍,都将使反应速 率增大2倍; (C)两种反应物 的浓度同时减半,则反应速率也将减半; (D)该反应速率 系数的单位为s -1。 2.反应 A + B T 3D 的 E a (正)=m kJ mol -1, E a (逆)=n kJ mol -1 ,则反应 的厶r H m = ....... ( )) 1 1 1 1 (A) ( m^n) kJ md ; (B) (n-m) kJ mol ; (C) (m-3n) kJ mol ; (D) (3 n-m) kJ mol 。 3. 下? 列关于讣 催化齐U 的 叙述中,错 误的是 ....................... .......... ()。 (A) 在 几 个 反 应 中,某 催化剂可选择地加快其中某- 「反应的反应 速 率; (B) 催 化 剂 使 正、 逆反 应速率增大 的倍数相同; (C) 催 化 剂 不 能 改变反应的始态和 终态; (D) 催 化 剂 可 改 变某一 -反应的正向 与逆向的反应速 率之比。 4. 当速率常数的单位为 mol -1 dm 3 s -1时,反应级数为 ........................... () (A ) 一级; (B )二级; (C )零级; (D )三级 5. 对于反应2A + 2B T C 下列所示的速率表达式正确的是 ....................... ( ) (C) 6. 反应2A + B T D 的有关 实验数据在表中给出,此反应的速率常数 k/mol -2dm 6min -1约 为 ...................................................................... ( ) 初始浓度 最初速率 -3 -3 -3 -1 [A] /mol dm [B]/mol dm v/mol dm min -2 0.05 0.05 4.2 >102 -2 0.10 0.05 8.4 10 -1 0.10 0.10 3.4 10 2 2 3 3 (A) 3.4 11 (B) 6.7 11 (C) 3.4 11 (D) 6.7 11 7. 催化剂是通过改变反应进行的历程来加速反应速率。这一历程影响 .......... ( ) (A )增大碰撞频率; (B )降低活化能; (C )减小速率常数; (D )增大平衡常数值。 8. ................................................................................................................................................ 下列叙 述中正确的是 ................................................................... ( ) (A) _2 " [B] =3 " t (D)

大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。 解:此沟的宽度为 m 345m 10 60sin 302sin 220=??==g R θv 1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,229t y -=得 2=x m ,7=y m s t 1=故时质点的位置矢量为 j i r 72+=(m ) 由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为 m/s 2d d ==t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为 j i 82-=v (m/s ) 质点在任意时刻的加速度为 0d d ==t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。

第2章 质点动力学习题解答

第2章质点动力学习题解答 2-1 如图所示,电梯作加速度大小为a 运动。物体质量为m ,弹簧的弹性系数为k ,?求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。 解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F += 2-2 如图所示,质量为10kg 物体,?所受拉力为变力2132+=t F (SI ) ,0=t 时物体静止。该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2, 求1=t s 时,物体的速度和加速度。 解:最大静摩擦力 )(20max N mg f s ==μ max f F >,0=t 时物体开始运动。 ma mg F =-μ,1.13.02+=-= t m mg F a μ 1=t s 时,)/(4.12s m a = dt dv a = ,adt dv =,??+=t v dt t dv 02 01.13.0 t t v 1.11.03+= 1=t s 时,)/(2.1s m v =

2-3 一质点质量为2.0kg ,在O x y 平面内运动, ?其所受合力j t i t F 232+=(SI ) ,0=t 时,速度j v 20=(SI ),位矢i r 20=。求:(1)1=t s 时,质点加速度的大小及方向;(2) 1=t s 时质点的速度和位矢。 解:j t i t m F a +== 22 3 22 3 t a x =,00=x v ,20=x ?? =t v x dt t dv x 020 23,2 3 t v x = ???==t x t x dt t dt v dx 03 202,284+=t x t a y =,20=y v ,00=y ? ? =t v y tdt dv y 02 ,22 2 +=t v y ???+==t y t y dt t dt v dy 02 00)22(,t t y 263+= (1)1=t s 时,)/(2 32 s m j i a += (2)j t i t v )22(22 3++= ,1=t s 时,j i v 2521+= j t t i t r )26 ()28(34 +++=,1=t s 时,j i r 613817+= 2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。

大学物理-质点运动学(答案)

大学物理-质点运动学 (答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 力和运动 (质点运动学) 一. 选择题: [ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. (1 2.5)22(21)122()x m =+?÷-+?÷=提示: [ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米, 222l h x =+ 22dl dx l x dt dt = 22dx l dl x h dl dt x dt x dt +== 0dl v dt =- 22 0dx h x v i v i dt x +==- 2203v h dv dv dx a i dt dx dt x ==?=- [ D ]3、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x 1 4.54 32.52 -1 12t (s) v (m/s) v x o

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1) 22 mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302 mv f s mgh f s mgs -=-?-=-?- 20 (2) (31) s g u ∴= - 把式(2)代入式(1)得, () 22 2 20 0.198 3u v v = + 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取

如图所示的自然坐标系,由牛顿定律得 2 2 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-= 由,,1ds rd rd v dt dt dt v αα = ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 90 2 n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g r r v mg mg r mg α αα αωααα α=-===+==-=-? ?得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向 2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放 一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止, 求斜面的加速度a 应满足的条件。 解:如图所示

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体血药浓度是多少?(已知k=0.01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0.5g,4小时测得血药浓度为 4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss C max (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

大学物理-质点运动学(答案)

第一章 力和运动 (质点运动学) 一. 选择题: [ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = s 时, 质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) 2 m . (E) 5 m. (1 2.5)22(21)122()x m =+?÷-+?÷=提示: [ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖 中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边 x 米, 222l h x =+ 22dl dx l x dt dt = 22 dx l dl x h dl dt x dt x dt +== 0dl v dt =- 220dx h x v i v i dt x +==-r r r 2203v h dv dv dx a i dt dx dt x ==?=-r r r r [ D ]3、一运动质点在某瞬时位于矢径()y x r ,? 的端点处, 其速度大小为 1 4.5432.52-112 t (s) v (m/s) v ? x o

(A) t r d d (B) t r d d ? (C) t r d d ? (D) 2 2 d d d d ?? ? ??+??? ??t y t x 提示:22 , dx dy dx dy v i j v dt dt dt dt ??????=+ ∴=+ ? ? ???????r r v [ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为 (A) 2R /T , 2R/T . (B) 0 , 2R /T (C) 0 , 0. (D) 2R /T , 0. 提示:平均速度大小:0r v t ?==?v r 平均速率:2s R v t T ?= =?π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ?、j ? 表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为 (A) 2i ?+2j ?. (B) 2i ?+2j ?. (C) -2i ?-2j ?. (D) 2i ?-2j ? . 提示:2(2)B A B A v v v j i →→→=+=+-r r r r r 地地 [ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o 方向 吹来,人感到风从哪个方向吹来 (A)北偏东30 (B)北偏西60 (C) 北偏东60 (D) 北偏西30 提示:根据v r 风对人=v r 风对地+v r 地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。 二. 填空题 v r 风对人 v r 地对人 v r 风对地

质点动力学习题解答

第2章 质点动力学 2-1. 如附图所示,质量均为m 的两木块A 、B 分别固定在弹簧的两端,竖直的放在水平的支持面C 上。若突然撤去支持面C ,问在撤去支持面瞬间,木块A 和B 的加速度为多大? 解:在撤去支持面之前,A 受重力和弹簧压力平衡, F mg =弹,B 受支持面压力向上为2mg ,与重力和弹簧压 力平衡,撤去支持面后,弹簧压力不变,则 A :平衡,0A a =; B :不平衡,22B F mg a g =?=合。 2-2 判断下列说法是否正确?说明理由。 (1) 质点做圆周运动时收到的作用力中,指向圆心的力便是向心力,不指向圆心的力不 是向心力。 (2) 质点做圆周运动时,所受的合外力一定指向圆心。 解:(1)不正确。不指向圆心的力的分量可为向心力。 (2)不正确。合外力为切向和法向的合成,而圆心力只是法向分量。 2-3 如附图所示,一根绳子悬挂着的物体在水平面内做匀速圆周运动(称为圆锥摆),有人在重力的方向上求合力,写出cos 0T G θ-=。另有沿绳子拉力T 的方向求合力,写出cos 0T G θ-=。显然两者不能同时成立,指出哪一个式子是错误的 ,为什么? 解:cos 0T G θ-=正确,因物体在竖直方向上受力平 衡,物体速度竖直分量为0,只在水平面内运动。 cos 0T G θ-=不正确, 因沿T 方向,物体运动有分量,必须考虑其中的一部分提供向心力。应为: 2cos sin T G m r θωθ-=?。 2-4 已知一质量为m 的质点在x 轴上运动,质点只受到 指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2k f x =-,k 为比例常数。设质点在x A =时的速度为零,求4A x = 处的速度的大小。 解:由牛顿第二定律:F ma =,dv F m dt =。寻求v 与x 的关系,换元: 2k dv dx dv m m v x dx dt dx -=?=?,

相关主题
文本预览
相关文档 最新文档