当前位置:文档之家› 贝叶斯网络的建造训练和特性

贝叶斯网络的建造训练和特性

贝叶斯网络的建造训练和特性
贝叶斯网络的建造训练和特性

贝叶斯网络建造

贝叶斯网络的建造是一个复杂的任务,需要知识工程师和领域专家的参与。在实际中可能是反复交叉进行而不断完善的。面向设备故障诊断应用的贝叶斯网络的建造所需要的信息来自多种渠道,如设备手册,生产过程,测试过程,维修资料以及专家经验等。首先将设备故障分为各个相互独立且完全包含的类别(各故障类别至少应该具有可以区分的界限),然后对各个故障类别分别建造贝叶斯网络模型,需要注意的是诊断模型只在发生故障时启动,因此无需对设备正常状态建模。通常设备故障由一个或几个原因造成的,这些原因又可能由一个或几个更低层次的原因造成。建立起网络的节点关系后,还需要进行概率估计。具体方法是假设在某故障原因出现的情况下,估计该故障原因的各个节点的条件概率,这种局部化概率估计的方法可以大大提高效率。

贝叶斯网络训练

使用贝叶斯网络必须知道各个状态之间相关的概率。得到这些参数的过程叫做训练。和训练马尔可夫模型一样,训练贝叶斯网络要用一些已知的数据。比如在训练上面的网络,需要知道一些心血管疾病和吸烟、家族病史等有关的情况。相比马尔可夫链,贝叶斯网络的训练比较复杂,从理论上讲,它是一个NP-complete 问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。

贝叶斯网络具有如下特性:

1。贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。

2。贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的,不完整的,不确定的信息条件下进行学习和推理。

3。贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。

目前对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用那种算法模型:

a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法;

b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。

在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你可能会认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你可能会认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。

贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于

医疗诊断、统计决策、专家系统,学习预测等领域。这些成功的应用,充分体现了贝叶斯网络技术是一种强有力的不确定性推理方法。

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。 因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5 贝叶斯网络的实例 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.doczj.com/doc/5b7405376.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

大数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

贝叶斯网络预测信用卡欺诈行为

贝叶斯网络预测信用卡欺诈行为 ——贝叶斯网络应用(1) 一、理论说明 1.贝叶斯网络的应用 使用贝叶斯网络,可以通过将观察到并记录下的数据与实际常识结合起来构建概率模型,以通过使用表面看上去不相关的属性确定发生的可能性,找出一个结果到底与哪些影响变量相关,或者说,究竟是什么因素影响了结果。 贝叶斯分类模型继承了贝叶斯网络的优点并具有良好的分类精度,正受到越来越多的关注,并广泛的应用在欺诈识别、客户管理、医学诊断上、互联网搜索上,比如,利用贝叶斯分类模型建立客户的等级分类,如信用等级、忠诚等级,当新客户出现时,即可以按该分类模型对其等级情况做出分类预测。又比如本文所例举的,根据信用卡用户的信用记录及相关信息建立用户的信用模型,并监测哪些用户会做出贷款拖欠的行为。 2.贝叶斯网络模型 (1)贝叶斯原理 统计学分成两派,一派是传统的频率学派,一派是贝叶斯派,能够在统计学界自成一派,可见其影响。贝叶斯的核心思想在于一个公式 P(A|X)=P(X|A)·P(A)/P(X) 其中A是随机变量,X是数据,P(X|A)是似然,P(A)是先验分布,P(A|X)是后验分布,P(X)是一个数。 这个公式的意义在于,我们可以通过一个经验的概率,加上数据的实践,来得出一个后验的概率,也就是说“经验+数据=结果”。那么将这个原理用在贝叶斯网络上,即将先验贝叶斯网络和数据相结合而得到一个后验贝叶斯网络。那么什么是贝叶斯网络? (2)贝叶斯网络模型概述 贝叶斯网络(Bayesian network),又叫概率因果网络、信任网络、知识图等,是一种有向无环图。一个贝叶斯网络由两个部分构成,一个是具有K个节点的有向无环图,图中有节点和连接节点的有向边,节点代表随机变量,有向边代表了节点间的相互关联关系。 另一个是与每个节点相关的条件概率表(Conditional Probabilities Table,CPT)P,它表示了节点和父节点之前的相关关系,这个关系就是条件概率。那么由这个图G和概率表P构成的网络就是贝叶斯网络,贝叶斯网络有如下假设(或者规定): 给定一个父节点,那么它的子节点独立于任何非这个子节点的后代节点和其构成的任何节点子集。即如果用A(V i)表示非V i后代节点构成的任何节点子集,用∏(V i)表示V i的直接双亲节点,则 p(Vi|A(Vi),∏(V i))=p(Vi|∏(Vi)) 在这个假定下,变量Vi的联合概率就是:给定每个节点的父节点情况下,每个节点条件概率只积,如图中的联合概率为 p(V1,V2,...,V6)=p(V6|V5)·p(V5|V2,V3)·p(V4|V2)·p(V3|V1)·p(V2|V1)·p(V1) 这就是贝叶斯网络和其网络的概率。我们可以让贝叶斯网络通过数据不断的学习修正,上次修正的贝叶斯网络又是下次学习的先验贝叶斯网络,持续的学习使得网络更能体现数据的意义,即,让数据来说话! (2)树增强朴素贝叶斯网络模型概述 尽管贝叶斯网络有良好的逻辑性、预测性、并在处理复杂问题上有很大的优势,但它的假

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks) 2010-09-18 22:50 by EricZhang(T2噬菌体), 2561 visits, 网摘, 收藏, 编辑 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。

朴素贝叶斯分类器应用

朴素贝叶斯分类器的应用 作者:阮一峰 日期:2013年12月16日 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。 一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状职业疾病 打喷嚏护士感冒 打喷嚏农夫过敏 头痛建筑工人脑震荡 头痛建筑工人感冒 打喷嚏教师感冒 头痛教师脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B)

可得 P(感冒|打喷嚏x建筑工人) = P(打喷嚏x建筑工人|感冒) x P(感冒) / P(打喷嚏x建筑工人) 假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了 P(感冒|打喷嚏x建筑工人) = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) / P(打喷嚏) x P(建筑工人) 这是可以计算的。 P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66 因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。 这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。 二、朴素贝叶斯分类器的公式 假设某个体有n项特征(Feature),分别为F1、F2、...、F n。现有m个类别(Category),分别为C1、C2、...、C m。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn) 由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求 P(F1F2...Fn|C)P(C) 的最大值。

基于贝叶斯网络技术的软件缺陷预测与故障诊断

Microcomputer Applications Vol. 25, No.11, 2009 技术交流 微型电脑应用 2009年第25卷第11期 ·31· 文章编号:1007-757X(2009)11-0031-03 基于贝叶斯网络技术的软件缺陷预测与故障诊断 王科欣,王胜利 摘 要:如何进一步地提高软件的可靠性和质量是我们十分关注的问题,而前期软件缺陷和后期软件故障的诊断都是控制质量的关键手段,由此我们提出了基于贝叶斯的神经网络。基于对贝叶斯网络和神经网络理论的分析,发现贝叶斯网络和神经网络各自的优点与不足,利用贝叶斯具有前向推理的优势进行故障诊断,利用神经网络学习算法能够处理更复杂网络结构的优势来积累专家知识,最后提出了贝叶斯网络与概率神经网络相结合的模型,该模型可以更好地兼顾软件缺陷与故障诊断两个方面。 关键词:贝叶斯;神经网络;测试;缺陷预测;故障诊断 中图分类号:TP311.5 文献标志码:A 0 引言 如何进一步提高软件的可靠性和质量是我们十分关注的问题,软件可能存在缺陷,我们在软件的整个生命周期中始终期望能及早发现重要错误,并及时诊断。这就告诉我们,在进行软件前期预测时,就应该重视和记录重要缺陷,以便在故障发生时能通过早期预测的记录表找到故障原因。这就说明软件缺陷预测和故障诊断不应该是两个独立的过程,而应该有所联系。本文就通过贝叶斯网络和模糊神经网络对两项工作进行了整合。通过贝叶斯的在推理规则上的优势,尤其是前向推理的特点进行故障诊断,利用神经网络学习和训练函数的复杂多样性,可以更好地拟合复杂情况。 1 软件缺陷预测与故障诊断 1.1 软件缺陷预测的两个方面 1.1.1 对于软件可靠性早期预测 对于开发者而言,在开发软件之前或者设计软件中,主要作用是进行风险控制,验证其设计可行性。由于贝叶斯网络可以在信息不完全的情形下进行不确定性和概率性事件的推理,所以对于复杂软件的早期预测具有先天的优势。软件缺陷数量属于动态度量元素,需要通过对软件产品进行完整的测试后才能获得。针对特定模块进行完整测试成本比较高,并且必须在软件开发完成之后才能进行集成测试,这样在前期很难控制软件产品缺陷数量。为了更好地提高软件质量,对软件模块中包含的缺陷进行预测是一个可行的方法。软件缺陷预测方法的前提假设是软件的复杂度和软件的缺陷数量有密切关联。复杂度高的软件模块产生的缺陷比复杂度低的模块产生的缺陷多。软件缺陷预测的思路是使用静态度量元素表征软件的复杂度,然后预测软件模块可能的缺陷数量或者发生缺陷的可能性。通过进行软件缺陷预测,能够以较低的成本在项目开发的早期预测产品的缺陷分布状况,可以更好的调整有限的资源,集中处理可能出现较多缺陷的高风险模块,从而从整体上提高软件产品的质量。 1.1.2 对于软件残留缺陷的预测 对于测试者而言,通过质量预测,可将软件的各个组成部分按预测的质量水平进行分类,明确测试的重点,避免在进行测试时同等对待,而是有所侧重,这对节约有限资源和缩短开发周期都有着十分重要的意义。软件的测试和修改是一个螺旋式上升的过程。由于资源和时间的有限投入,什么时候软件达到了要求的质量水平从而能够投入实际使用是一个十分关键的问题。对残留缺陷进行预测,目的就是为了确保代码中的缺陷数量维持在一个安全水平。对测试经理来说,估计目前软件的测试到了哪个阶段、还应该继续做到什么样水平,这都是尤其重要的。从软件经济学的观点上来看,它关系到产业界的投入产出比、测试过度,不能再检查出太 多错误,或者说检查耗费很长的时间和很多的人力,但最终是一个细微的错误,这是不经济的;但是如果残留缺陷还比较多,就停止测试工作,那么会使得这些缺陷在未排除的情 况下交付给用户,等到用户发现错误时,维护的成本就会更 高。因此,正确预测软件残留缺陷对于交付使用后的软件维护也具有重要意义。 1.2 软件故障诊断技术 软件故障诊断是根据软件的静态表现形式和动态信息查找故障源,并进行分析,给出相应的决策。其中静态形式包括程序、数据和文档,动态信息包括程序运行过程中的一系列状态,人在参与软件生存周期的各个阶段工作时,都有可能由于各种疏忽和不可预料的因素,出现各种各样的错误。因而,从广义上说,软件故障诊断的工作涉及到软件的整个生命周期——需求分析、设计、编码、测试、使用、维护等各阶段所造成的缺陷。 软件故障诊断,“诊”的主要工作是对状态检测,包括使用各种度量和分析方法;“断”的工作则更为具体,它需要确定:(1)软件故障特性;(2)软件故障模式;(3)软件故障发生的模块和部位;(4)说明软件故障产生的原因,并且提出相应的纠正措施和避免下一次再发生该类错误的措——————————— 作者简介:王科欣(1982-) ,男,湖南长沙人,暨南大学计算机科学系,硕士研究生,软件设计师,广东体育职业技术学院助教,主要研究方向为软件工程、数据库与知识工程,广东 广州,510632;王胜利(1984-),男,湖南衡阳人,暨南大学计算机科学系,硕士 研究生,研究方向为软件工程、数据挖掘,广东 广州,510632

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

Python实现贝叶斯分类器

关于朴素贝叶斯 朴素贝叶斯算法是一个直观的方法,使用每个属性归属于某个类的概率来做预测。你可以使用这种监督性学习方法,对一个预测性建模问题进行概率建模。 给定一个类,朴素贝叶斯假设每个属性归属于此类的概率独立于其余所有属性,从而简化了概率的计算。这种强假定产生了一个快速、有效的方法。 给定一个属性值,其属于某个类的概率叫做条件概率。对于一个给定的类值,将每个属性的条件概率相乘,便得到一个数据样本属于某个类的概率。 我们可以通过计算样本归属于每个类的概率,然后选择具有最高概率的类来做预测。 通常,我们使用分类数据来描述朴素贝叶斯,因为这样容易通过比率来描述、计算。一个符合我们目的、比较有用的算法需要支持数值属性,同时假设每一个数值属性服从正态分布(分布在一个钟形曲线上),这又是一个强假设,但是依然能够给出一个健壮的结果。 预测糖尿病的发生 本文使用的测试问题是“皮马印第安人糖尿病问题”。 这个问题包括768个对于皮马印第安患者的医疗观测细节,记录所描述的瞬时测量取自诸如患者的年纪,怀孕和血液检查的次数。所有患者都是21岁以上(含21岁)的女性,所有属性都是数值型,而且属性的单位各不相同。 每一个记录归属于一个类,这个类指明以测量时间为止,患者是否是在5年之内感染的糖尿病。如果是,则为1,否则为0。 机器学习文献中已经多次研究了这个标准数据集,好的预测精度为70%-76%。 下面是pima-indians.data.csv文件中的一个样本,了解一下我们将要使用的数据。 注意:下载文件,然后以.csv扩展名保存(如:pima-indians-diabetes.data.csv)。查看文件中所有属性的描述。 Python 1 2 3 4 5 6,148,72,35,0,33.6,0.627,50,1 1,85,66,29,0,26.6,0.351,31,0 8,183,64,0,0,23.3,0.672,32,1 1,89,66,23,94,28.1,0.167,21,0 0,137,40,35,168,43.1,2.288,33,1 朴素贝叶斯算法教程 教程分为如下几步: 1.处理数据:从CSV文件中载入数据,然后划分为训练集和测试集。 2.提取数据特征:提取训练数据集的属性特征,以便我们计算概率并做出预测。 3.单一预测:使用数据集的特征生成单个预测。 4.多重预测:基于给定测试数据集和一个已提取特征的训练数据集生成预测。 5.评估精度:评估对于测试数据集的预测精度作为预测正确率。 6.合并代码:使用所有代码呈现一个完整的、独立的朴素贝叶斯算法的实现。 1.处理数据

分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训

https://www.doczj.com/doc/5b7405376.html, 分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下:

https://www.doczj.com/doc/5b7405376.html, 及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。 上述假设更接近实际情况,但问题随之也来了,由于特征属性间存在依赖关系,使得朴素贝叶斯分类不适用了。既然这样,我去寻找另外的解决方案。 下图表示特征属性之间的关联: 上图是一个有向无环图,其中每个节点代表一个随机变量,而弧则表示两个随机变量之间的联系,表示指向结点影响被指向结点。不过仅有这个图的话,只能定性给出随机变量间的关系,如果要定量,还需要一些数据,这些数据就是每个节点对其直接前驱节点的条件概率,而没有前驱节点的节点则使用先验概率表示。 例如,通过对训练数据集的统计,得到下表(R表示账号真实性,H表示头像真实性): 纵向表头表示条件变量,横向表头表示随机变量。上表为真实账号和非真实账号的概率,而下表为头像真实性对于账号真实性的概率。这两张表分别为“账号是否真实”和“头像是否真实”的条件概率表。有了这些数据,不但能顺向推断,还能通过贝叶斯定理进行逆向推断。例如,现随机抽取一个账户,已知其头像为假,求其账号也为假的概率:

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

基于动态贝叶斯网络预测

4. 1 影响威胁等级的因素分析 对空袭目标威胁程度的判断基本目的是区分目标对我方威胁程度的大小和次序,以便指挥员迅速、正确地做出相应决策。因此,对空袭目标威胁程度的判断及排序结果将直接影响着对空防御的整体作战效果。当采用贝叶斯网络进行威胁估计时,必须确定来袭威胁目标的各个组成要素的关系,按照要素间的关系建立对应的贝叶斯网络模型,然后确定网络模型中各节点的先验概率和条件概率,最后选择合适的推理算法进行推理。空中目标的威胁程度是由多种因素决定的,总的来说主要包括目标速度、距离、加速度、方位、高度、航向、航路捷径、目标类型、攻击企图、电子干扰、毁伤能力等。这些因素之间相互影响、相互关联,构成了对编队的攻击企图和威胁程度。文中选取了能够明显反映来袭目标攻击威胁的相关目标属性( 目标类型、距离、速度、高度以及航路捷径) 因素进行研究。根据以上特征因素,结合编队防空作战的指挥控制结构化事件循环周期,将作战过程中的威胁判断和拦截排序分为多个时间片。各个时间片的循环周期一般与传感器目标数据更新周期或防空武器射击周期一致。因此建立威胁评估的动态贝叶斯网络模型见图2。

图2 威胁估计的贝叶斯网络模型 模型中各个变量状态集合为: 目标类型: ID = {导弹,歼击机,电子战飞机}; 速度: V = { 高速; 中速; 低速};距离: R = { 远; 中; 近}; 高度: H = { 低空; 中; 高空}; 航路捷径: P = { 范围内; 边缘; 范围外} 。4. 2 模型参数确定上述的变量状态集合反映的是领域专家的经验知识。如高度,超低空飞行的一般是反舰导弹,低空飞行一般为直升机或巡航导弹,轰炸机要实施准确轰炸,需要俯冲降低到中等高度,而电子干扰机和预警机高度都比较高。依据领域专家知识得到的主要节点条件概率如表1、表2 所示。表1 动态贝叶斯网络状态转移概率表 表2 威胁评估模型条件概率表

iris数据集的贝叶斯分类

IRIS 数据集的Bayes 分类实验 一、 实验原理 1) 概述 模式识别中的分类问题是根据对象特征的观察值将对象分到某个类别中去。统计决策理论是处理模式分类问题的基本理论之一,它对模式分析和分类器的设计有着实际的指导意义。 贝叶斯(Bayes )决策理论方法是统计模式识别的一个基本方法,用这个方法进行分类时需要具备以下条件: 各类别总体的分布情况是已知的。 要决策分类的类别数是一定的。 其基本思想是:以Bayes 公式为基础,利用测量到的对象特征配合必要的先验信息,求出各种可能决策情况(分类情况)的后验概率,选取后验概率最大的,或者决策风险最小的决策方式(分类方式)作为决策(分类)的结果。也就是说选取最有可能使得对象具有现在所测得特性的那种假设,作为判别的结果。 常用的Bayes 判别决策准则有最大后验概率准则(MAP ),极大似然比准则(ML ),最小风险Bayes 准则,Neyman-Pearson 准则(N-P )等。 2) 分类器的设计 对于一个一般的c 类分类问题,其分类空间: {}c w w w ,,,21 =Ω 表特性的向量为: ()T d x x x x ,,,21 = 其判别函数有以下几种等价形式: a) ()()i j i w w i j c j w w x w P x w P ∈→≠=∈→>,且,,,2,11 , b) ()()() ()i j j i w w i j c j w P w x p w P w x p ∈→≠=>,且,,,2,1i c) ()() () ()()i i j j i w w i j c j w P w P w x p w x p x l ∈→≠=>=,且,,,2,1 d) ()()() ()i j j i i w w i j c j w P w x np w P w x p ∈→≠=+>+,且,,,2,1ln ln ln 3) IRIS 数据分类实验的设计

贝叶斯分类器工作原理

贝叶斯分类器工作原理原理 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一 种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简 单很多。我们甚至可以把它归结为一个如下所示的公式: 其中实例用T{X0,X1,…,Xn-1}表示,类别用C 表示,AXi 表示Xi 的 父节点集合。 选取其中后验概率最大的c ,即分类结果,可用如下公式表示 () ()()() ()( ) 0011111 00011111 0|,, ,|,,, ,C c |,i i n n n i i X i n n n i i X i P C c X x X x X x P C c P X x A C c P X x X x X x P P X x A C c ---=---========= ===∝===∏∏()() 1 0arg max |A ,i n c C i i X i c P C c P X x C c -∈=====∏

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。6.选取其中后验概率最大的类c,即预测结果。 其流程图如下所示:

贝叶斯网络

摘要 常用的数据挖掘方法有很多,贝叶斯网络方法在数据挖掘中的应用是当前研究的热点问题,具有广阔的应用前景。数据挖掘的主要任务就是对数据进行分析处理,从而获得其中隐含的、实现未知的而又有用的知识。他的最终目的就是发现隐藏在数据内部的规律和数据之间的特征,从而服务于管理和决策。贝叶斯网络作为在上个世纪末提出的一种崭新的数据处理工具,在进行不确定性推理和知识表示等方面已经表现出来它的独到之处,特别是当它与统计方法结合使用时,显示出许多关于数据处理优势。 本文致力于贝叶斯网络在数据挖掘中的应用研究,首先介绍了贝叶斯网络相关理论,贝叶斯网络的学习是数据挖掘中非常重要的一个环节,本文比较详细的讨论了网络图结构问题,为利用贝叶斯网络解决实际问题,建立样本数据结构和依赖关系奠定了基础。其次介绍了数据挖掘的相关问题以及主流的数据挖掘算法,并分析了各类算法的优缺点。针对目前还没有一种完整的在数据挖掘中构建贝叶斯网络的算法步骤,本文探讨性的提出了一种启发式的在数据挖掘中利用样本数据构建贝叶斯网络的算法思想。最后进行了实验分析,利用本文提出的算法,建立了大学生考研模型和农户信用等级评定模型,进行了较为详细的实验,并分别与决策树方法和传统的信用评分方法进行了比较,实验结果表明文本提出的算法设计简单、方法实用、应用有效,与其他算法相比还有精度比较高的特点,同时也表现出了该算法在数据挖掘方面的优势,利于实际中的管理、分析、预测和决策等。 贝叶斯网络的相关理论 本章对贝叶斯网络的相关理论进行了系统的论述与分析,并用一个简单的疾病诊断模型对贝叶斯网络的定义以及网络构成进行了介绍。结合信息论的有关知识,讨论了贝叶斯网络中重要的条件独立研究,并学习和研究了贝叶斯网络在完备数据和不完备数据两种情况下的结构学习和参数学习方法。结构学习是利用训练样本集,尽可能的结合先验知识,确定贝叶斯网络的拓扑结构;参数学习是在给定的网络结构的情况下,确定贝叶斯网络中各变量的条件概率表。其中结构学习是贝叶斯网络学习的核心,有效的结构学习方法是构建最优贝叶斯网络结构的前提。 预备知识 贝叶斯网络是一种关于变量集合中概率性联系的图解模型,接近于概率和统计,它的理论依据是概率统计,并以图论的形式来表达和描述数据实例中的关联和因果关系。 条件概率:条件概率是概率论中一个重要而实用的概念。所考虑的是事件A已经发生的条件下事件B发生的概率。 定义:设A、B是两个事件,且P(A)>0,称: 为在事件A发生的条件下事件B发生的概率。 显然条件概率符合概率定义中的三个条件,即:

相关主题
文本预览
相关文档 最新文档