当前位置:文档之家› 参数方程的概念

参数方程的概念

参数方程的概念
参数方程的概念

曲线的参数方程

1.参数方程的概念

(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个

变数t 的函数:?

????x =f (t )

y =g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )

都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.

(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.

2.参数方程与普通方程的区别与联系

(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y 两个变量;参数方程???

?

?x =f (t )y =g (t )

(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关

系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.

(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.

这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.

1.下列方程中可以看作参数方程的是( )

A .x -y -t =0

B .x 2

+y 2

-2ax -9=0

C.?????x 2

=t 2

y =2t -1 D .?????x =sin θ

y =cos θ

解析:选D.对于A :虽然含有参数t ,但它表示的是直线系方程,直接给出了x ,y 之间的关系,是普通方程;对于B :虽然含有参数a ,但它表示的图象方程也是普通方程;对于C :x 2

=t 2

不能把x 表示成参数t 的函数,也不是参数方程,只有D 选项满足参数方程的定义.

2.点M (2,y 0)在曲线C :???

?

?x =2t y =t 2

-1

,(t 为参数)上,则y 0=________.

解析:将M (2,y 0)代入参数方程得?????2=2t y 0=t 2

-1, 解得?

????t =1

y 0=0.

答案:0

3.已知曲线C 的参数方程为?

????x =2cos θ

y =3sin θ,(θ为参数,0≤θ<2π),判断点A (2,0),

B ? ??

??-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值.

解:将点A (2,0)的坐标代入?????x =2cos θy =3sin θ,得?

????cos θ=1,

sin θ=0.

由于0≤θ<2π,

解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0.

将点B ? ????-3,32的坐标代入?

????x =2cos θy =3sin θ,

得?????-3=2cos θ,32=3sin θ,即?

????cos θ=-3

2,

sin θ=12

.

由于0≤θ<2π, 解得θ=5π

6

所以点B ?

????-3,32在曲线C 上,对应θ=5π6.

参数方程的概念

已知曲线C 的参数方程是???

?

?x =3t y =2t 2

+1

,(t 为参数).

(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.

[解] (1)把点M 1的坐标(0,1)代入方程组,得?

????0=3t ,

1=2t 2

+1. 解得:t =0.所以点M 1在曲线C 上. 同理:可知点M 2不在曲线C 上.

(2)因为点M 3(6,a )在曲线C 上,所以?

????6=3t ,

a =2t 2

+1. 解得:t =2,a =9.所以a =9.

(1)满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上和点不在曲线上.

(2)对于曲线C 的参数方程?????x =f (t )y =g (t ),(t 为参数),若点M (x 1,y 1)在曲线上,则?

??

??x 1=f (t )

y 1=g (t )对应的参数t 有解,否则参数t 不存在.

1.曲线C :?

????x =t

y =t -2,(t 为参数)与y 轴的交点坐标是____________.

解析:令x =0,即t =0得y =-2,所以曲线C 与y 轴的交点坐标是(0,-2). 答案:(0,-2)

2.已知曲线C 的参数方程为?

????x =t 2

+1

y =2t ,(t 为参数).

(1)判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; (2)若点F (10,a )在曲线C 上,求实数a 的值. 解:(1)把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上.

把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上. 把点E (3,2)的坐标代入方程组,

得到?????3=t 2

+1,2=2t ,即???t =±2,

t =1.

故t 不存在,所以点E 不在曲线上.

(2)令10=t 2

+1,解得t =±3,故a =2t =±6.

求曲线的参数方程

如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、

y 轴上滑动,求点P 在第一象限的轨迹的参数方程.

[解] 法一:设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q .

如图所示,则Rt △OAB ≌Rt △QBP . 取OB =t ,t 为参数,(0

-t 2

, 所以|BQ |=a 2

-t 2

.

所以点P 在第一象限的轨迹的参数方程为

??

?x =t +a 2-t 2

y =t

,(t 为参数,0

取∠QBP =θ,θ为参数(0<θ<

π2),则∠ABO =π

2

-θ. 在Rt △OAB 中,|OB |=a cos ? ??

??π2-θ=a sin θ. 在Rt △QBP 中,|BQ |=a cos θ,|PQ |=a sin θ. 所以点P 在第一象限的轨迹的参数方程为?

????x =a (sin θ+cos θ),

y =a sin θ.(θ为参数,

0<θ<

π

2

).

求曲线参数方程的主要步骤

第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.

第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,

y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在

研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.

第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.

设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为

π

60

rad/s ,试以时间t 为参数,建立质点运动轨迹的参数方程.

解:如图,运动开始时质点位于点A 处,

此时t =0,设动点M (x ,y )对应时刻t ,

由图可知:?

????x =2cos θ,

y =2sin θ,

又θ=π

60

·t ,

故参数方程为?????x =2cos π

60

t ,y =2sin π

60t .

(t 为参数).

1.对参数方程概念的理解

(1)曲线的参数方程中含有三个变量,并且以方程组的形式出现,其中x ,y 表示点的坐标,参数t 为中间变量,起着间接联系x ,y 桥梁的作用.

(2)参数方程中,x ,y 都是关于参数t 的函数.反之,如果x ,y 虽然都能用t 表示,但不都能表示成t 的函数,它就不是参数方程.

(3)曲线上任一点与满足参数方程的有序数对(x ,y )是一一对应关系.

从数学的角度看,曲线上的任一点M 的坐标(x ,y )由t 唯一确定.当t 在允许值范围内连续变化时,x ,y 的值也随之连续地变化,于是就可以连续地描绘出点的轨迹.

(4)在表达参数方程时,必须指明参数的取值范围,参数的取值范围不同,所表示的曲线可能不同.

2.求曲线的参数方程

(1)曲线的参数方程不是唯一的.同一条曲线由于所选取的参数不同,其参数方程的形式往往也不同.反之,形式不同的参数方程它们表示的曲线可以是相同的.

(2)求曲线的参数方程,关键是选取参数.通常要结合实际问题和曲线形状选取时间、线段长度、方位角、旋转角等具有明确的物理意义或几何意义的量为参数,这样做有利于应用参数方程解决问题,当然也可以任意选取一个没有明确的实际意义的量为参数.

(3)引入参数的同时,必须明确参数的取值范围.

1.下列方程可以作为x 轴的参数方程的是( )

A.?????x =t 2

+1y =0 B .?????x =0

y =3t +1 C.?????x =1+sin θy =0 D .?

????x =4t +1y =0 解析:选D.选项A 表示x 轴上以(1,0)为端点向右的射线;选项B 表示的是y 轴;选项C 表示x 轴上以(0,0)和(2,0)为端点的线段;只有选项D 可以作为x 轴的参数方程.

2.方程?

????x =1+sin θ

y =sin 2θ,(θ为参数)所表示曲线经过下列点中的( )

A .(1,1)

B .? ??

??32,12

C.? ????32,32 D .? ????2+3

2

,-12

解析:选C.当θ=π6时,x =32,y =32,所以点? ????3

2,32在方程?

????x =1+sin θy =sin 2θ,(θ

为参数)所表示的曲线上.

3.已知点M (2,-2)在曲线C :???

??x =t +

1t y =-2,(t 为参数)上,则其对应的参数t 的值为________.

解析:由t +1

t

=2解得t =1.

答案:1

4.已知曲线C 的参数方程是?

????x =2t

y =3t 2

-1(t 为参数). (1)判断点M 1(0,-1),M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.

解:(1)把点M 1(0,-1)的坐标代入参数方程?

????x =2t ,y =3t 2-1,得?????0=2t

-1=3t 2

-1,所以t =0. 即点M 1(0,-1)在曲线C 上.

把点M 2(4,10)的坐标代入参数方程?

????x =2t ,y =3t 2-1,得?????4=2t

10=3t 2

-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)因为点M (2,a )在曲线C 上,

所以?

????2=2t ,

a =3t 2

-1. 所以t =1,a =3×12

-1=2. 即a 的值为2.

[A 基础达标]

1.已知曲线C 的参数方程是?

????x =5cos θ

y =5sin θ(0≤θ<2π),则参数

θ=

3

所对应的点P 的坐标为( )

A.? ????5

2,-532

B .? ????

52,532

C.? ??

??

532,52

D .? ??

??532,52

解析:选A.θ=5π3时,x =5×cos 5π3=52,y =5×sin 5π3=-53

2,

得点P ? ????5

2,-532,故选A.

2.参数方程????

?x =cos θy =sin θ

(θ为参数)表示的曲线是( )

A .直线

B .线段

C .圆

D .半圆

解析:选C.因为sin 2

θ+cos 2

θ=1,所以普通方程为x 2

+y 2

=1.故选C.

3.若点P (4,a )在曲线?????x =t 2,

y =2t

(t 为参数)上,则a 等于( )

A .4

B .4 2

C .8

D .1

解析:选B.根据题意,将点P 的坐标代入曲线方程中得?????4=t 2,a =2t

????t =8,

a =4 2.故选B.

4.已知?

????x =2+cos θ,y =sin θ(θ为参数),则(x -5)2+(y +4)2

的最小值是( )

A .4

B .25

C .36

D .6

解析:选A.因为(x -5)2

+(y +4)2

=(cos θ-3)2

+(sin θ+4)2

=26+10sin(θ-φ)(且tan φ=3

4

).

所以当sin(θ-φ)=-1时,有最小值4,故选A.

5.由方程x 2

+y 2

-4tx -2ty +3t 2

-4=0(t 为参数)所表示的一族圆的圆心的轨迹方程为( )

A.?

????x =2t y =t B .?

????x =-2t

y =t

C.???

??x =2t y =-t

D .???

??x =-2t y =-t

解析:选A.设(x ,y )为所求轨迹上任一点.由x 2+y 2-4tx -2ty +3t 2

-4=0得:(x -2t )2

+(y -t )2

=4+2t 2

.

所以???

??x =2t y =t

.

6.若x =t -1(t 为参数),则直线x +y -1=0的参数方程是____________. 解析:将x =t -1代入x +y -1=0得y =2-t ,

所以直线x +y -1=0的参数方程为?????x =t -1y =2-t ,(t 为参数).

答案:?

????x =t -1

y =2-t ,(t 为参数)

7.已知曲线?????x =2sin θ+1,

y =sin θ+3

(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),

C (-3,5),其中在曲线上的点是________.

解析:将A 点坐标代入方程得:θ=0或π,将B 、C 点坐标代入方程,方程无解,故

A 点在曲线上.

答案:A (1,3)

8.下列各参数方程与方程xy =1表示相同曲线的序号是________.

①?????x =t

2

y =-t 2;②?

????x =sin t

y =

1sin t ;③?????x =cos t y =1cos t ;④????

?x =tan t y =1tan t

.

解析:普通方程中,x ,y 均为不等于0的实数,而①②③中x 的取值依次为:[0,+∞),[-1,1],[-1,1],故①②③均不正确;而④中,x ∈R ,y ∈R ,且xy =1,故④正确.

答案:④

9.已知动圆x 2

+y 2

-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),求圆心的轨迹方程.

解:设P (x ,y )为所求轨迹上任一点. 由x 2

+y 2

-2ax cos θ-2by sin θ=0得:

(x -a cos θ)2

+(y -b sin θ)2

=a 2

cos 2

θ+b 2

sin 2

θ,

所以?

????x =a cos θ,

y =b sin θ.这就是所求的轨迹方程.

10.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA 交OA 于D ,PB ∥OA ,试求点P 的轨迹的参数方程.

解:设P (x ,y )是轨迹上任意一点,取∠DOQ =θ, 由PQ ⊥OA ,PB ∥OA ,得

x =OD =OQ cos θ=OA cos 2θ=2a cos 2θ, y =AB =OA tan θ=2a tan θ.

所以点P 的轨迹的参数方程为?????x =2a cos 2

θy =2a tan θ

,θ∈? ????-π2,π2.

[B 能力提升]

11.已知圆的普通方程x 2

+y 2

+2x -6y +9=0,则它的参数方程为____________. 解析:由x 2

+y 2

+2x -6y +9=0,得(x +1)2

+(y -3)2

=1.

令x +1=cos θ,y -3=sin θ,所以参数方程为?????x =-1+cos θ

y =3+sin θ,(θ为参数).

答案:?

????x =-1+cos θ

y =3+sin θ,(θ为参数)(注答案不唯一)

12.动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程为____________.

解析:设M (x ,y ),则在x 轴上的位移为x =1+9t ,在y 轴上的位移为y =1+12t .

所以参数方程为:?

????x =1+9t ,

y =1+12t (t 为参数).

答案:???

?

?x =1+9t y =1+12t

(t 为参数)

13.在参数方程?

????x =f (t )

y =g (t )(t 为参数,且t ∈R)中,若f (t )和g (t )都是奇函数,请判断

该曲线所对应函数的奇偶性.

解:设(x ,y )是参数方程曲线上的任意一点,则存在参数t 使得?

????x =f (t )

y =g (t ),

所以-x =-f (t ),-y =-g (t ). 又f (t )、g (t )均为奇函数, 所以-x =f (-t ),-y =g (-t ),

所以?

????-x =f (-t )

-y =g (-t ),

即点(-x ,-y )也在曲线上,

所以该曲线的图象关于原点对称. 所以该曲线对应的函数为奇函数.

14.(选做题)试确定过M (0,1)作椭圆x 2

+y 2

4=1的弦的中点的轨迹的参数方程.

解:设过M (0,1)的弦所在的直线方程为y =kx +1,其与椭圆的交点为(x 1,y 1)和(x 2,

y 2).

设中点P (x ,y ),则有x =

x 1+x 2

2

,y =

y 1+y 2

2

.

由?

????y =kx +1,x 2+y 24=1得:(k 2+4)y 2-8y +4-4k 2=0.

所以y 1+y 2=

8k 2

+4,x 1+x 2=-2k

k 2+4

. 所以????

?x =-k k 2+4

y =4

k 2

+4.

这就是以动弦斜率k 为参数的动弦中点的轨迹的参数方程.

二元一次方程组的概念及解法

二元一次方程组的概念及解法 知识点梳理 知识点一二元一次方程组的概念 含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。 把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。 典例分析 例1、在方程组、、、、 、中,是二元一次方程组的有个; 例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=. 变式1:方程x+y=2的正整数解是__________. 变式2、在方程3x-ay=8中,如果是它的一个解,那 么a的值为? ? ? = = 1 3 y x

例3 方程组???=+=-5 21 y x y x 的解是( ) A 、 ???=-=21y x B 、???-==12 y x C 、???==21y x D 、???==12y x 例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组 。 例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。问鸡兔各几何。”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。 知识点二 解二元一次方程 消元解二元一次方程???代入消元法加减消元法 典例分析 例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = . 化成含x 的代数式表示y 的形式:y = .

三元一次方程组及其解法说课稿

三元一次方程组及其解法说课稿 东华附校代修勇 教学内容:沪教版初中数学六年级下册第六章第4节第一课时(教材第74页)一、说教材: (一)教材简析 沪教版教材开门见山直接给出三元一次方程组的定义,然后,引导学生通过消元(代入、加减)的思想方法,解一些特殊的三元一次方程组。上本节课前,学生已学习一元一次方程和二元一次方程组的概念及解法,也深刻体会解二元一次方程组中“消元”的思想,这为过渡到本节课的学习起到铺垫作用。同时这节课是对“代入”和“加减”消元的再次检验,也为学生未来类比学习解高次方程(降次)提供思维上的启迪。 (二)学情分析 学生总体比较听话,上课认真,虽然思维不是很活跃,但有较好的理解能力和基础。在上课前,学生已较熟练的掌握二元一次方程组的概念及解法,对用方程(组)解决问题的建模思想有初步的认识。 (三)教学目标 1.知识与技能: (1)了解三元一次方程组的概念。 (2)会用“代入”“加减”把三元一次方程组化为“二元”,进而化为“一元”方程来解决。 2.过程与方法: 经历认识三元一次方程组并掌握三元一次方程组解法的过程,进一步体会“消元”思想。 3.情感态度与价值观: 培养分析问题、解决问题的能力与探索精神。 (四)教学重难点 根据以上分析,我将本节课的教学重点确定为:三元一次方程组的概念及解法。教学难点确定为:三元一次方程组向二元一次方程组的转化。 二、说教法、学法

(一)说教法 现代教学理论认为,学生是学习的主体,教师是学习的组织者。根据这一理念,本节课我采用启发引导、讲练结合及分组竞赛的教学方法,以提出问题、解决问题为主线,让学生去观察、类比、探索并及时的反思,从真正意义上完成对知识的自我建构。另外,在教学中我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。 (二)说学法 三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性太强,因此在解前必须认真观察方程组中各个方程的特征,选择好先消去的“元”,这是决定解题过程繁简的关键,一般来说,要引导学生先消去系数最简单的未知数。 三、说教学过程 (一)创设情境、引入新课 设计意图:通过创设问题情境,引入新课,使学生了解三元一次方程组的概念及本节课要解决的问题。 提出问题:小明春节收到12张面额分别1元、2元、5元的微信红包,共计22元,其中1元红包的数量是2元红包的4倍,求1元、2元、5元红包各多少个? 【通过学生实际生活中的问题,提高数学的学习兴趣,激发学生强烈的探究欲望。】 教师提问:这里有三个要求的量,直接设出三个未知数列方程组,顺理成章,直截了当,容易理解。如果设1元、2元、5元红包分别为x个、y个、z个,用它们可以表示哪些等量关系? 预测学生回答:x+y+z=12;x+2y+5z=22;x=4y 教师活动设计:强调审题抓住的三个等量关系,从而表示成以上三个方程,这个问题的解答必须同时满足这三个条件,因此,这三个方程联立起来,成 为{ x+y+z=12 x+2y+5z=22 x=4y (二)明确概念、抓住本质 1. 明确概念

二元一次方程的概念及其解法

二元一次方程(组)的概念及其解法 【知识要点】 1. 什么叫做二元一次方程?什么叫做二元一次方程组? 2. 你知道解二元一次方程组的基本思路吗? 3.掌握二元一次方程组的两种解法“代入消元法”“加减消元法”【典型例题】 概念 1.下列方程中属二元一次方程的是( ) A.x+y=3z B.3xy-7=0 C.6x-7y=8 D.113 x y += 2.下列是二元一次方程组的是( ) A. 1 2 3 y x x ? -= ? ? ?= ? B.19 2 4 x y ? -= ? ? ?= ? C. 1 2 x y y x + ? = ? ? ?-= ? D. 2 2 1 2 2 x y y x ?= ? ? += ?? 3.数对 2 4 x y =- ? ? = ? 是下列哪一个方程的解( ) A.x+y=2 B.x+y=0 C.2x+y=1 D.x-y=2 4.已知5x+y=25,则用x的代数式表示y为______,用y的代数式表示x为____. 5.写出二元一次方程3x-5y=1的一个正整数解________. 6.两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨? 7.在平面直角坐标系中,已知点A)8 2(- -, b a与点B)3 2 (b a+ -,关于原点对称,求a、b的值.

解法一——代入消元法 例1.把方程3x=1-4y变形:(1)用含x的代数式表示y;(2)用含y的代数式表示x. 例2.用代入法解方程组: (1) 23 3280 y x x y =+ ? ? --= ? (2) 31 324 x y x y += ? ? +=- ? 练习 解下列方程组 (1)(2) 解法二——加减消元法 例4. (1 ).(2) 561 324 x y x y -= ? ? -= ? (3) 15 35 35250 y y x x y +- ? = ? ? ?--= ?

八年级上册数学 三元一次方程组教案

八年级数学上册教案 吧 斗 Assistant teacher 为 梦 想 奋

八年级数学上册教案 *5.8 三元一次方程组 1.理解三元一次方程(组)的概念; 2.能解简单的三元一次方程组. 一、情境导入 《九章算术》分为9章,并因此而得名.其中第8章为“方程”,里面有这样一道题目(用现代汉语表述):3束上等的稻,2束中等的稻,1束下等的稻,共出谷39斗;2束上等的稻,3束中等的稻,1束下等的稻,共出谷34斗;1束上等的稻,2束中等的稻,3束下等的稻,共出谷26斗. 问上、中、下三种稻,每束的出谷量各是多少斗? 二、合作探究 探究点一:三元一次方程组的概念 下列方程组中,是三元一次方程 组的是( ) A.?????x 2 -y =1,y +z =0,xz =2 B.? ??? ?1 x +1=1,1 y +z =2,1 z +x =6 C.?????a +b +c +d =1,a -c =2,b -d =3 D.???? ?m +n =18,n +t =12,t +m =0 解析:A 选项中,方程x 2 -y =1与xz =2中含未知数的项的次数为2,不符合三元一次方程组的定义,故A 选项不是;B 选项中1x ,1y ,1 z 不是整式,故B 选项不是;C 选项中方程组含有四个未知数,故C 选项不是;D 选项符合三元一次方程组的定义,故答案为D. 方法总结:满足三元一次方程组的条件: (1)方程组中一共含有三个未知数;(2)每个 方程中含未知数的次数都是1;(3)方程组中 共有三个整式方程. 探究点二:三元一次方程组的解法 解下列三元一次方程组: (1)???? ?z =y +x ,① 2x -3y +2z =5,②x +2y +z =13;③ (2)???? ?2x +3y +z =11,①x +y +z =0,②3x -y -z =-2.③ 解析:(1)观察各个方程的特点,可以 考虑用代入法求解,将①分别代入②和③中,消去z 可得到关于x 、y 的二元一次方程组;(2)观察各个方程的特点,可以考虑用加减法求解,用①减去②可消去z ,用①加上③也可消去z ,进而得到关于x 、y 的二元一次方程组. 解:(1)将①代入②、③,消去x ,得 ?????4x -y =5,2x +3y =13.解得? ????x =2,y =3.把x =2,y =3代入①,得z =5.所以原方程组的解为???? ?x =2,y =3,z =5. (2)①-②,得x +2y =11.④ ①+③,得5x +2y =9.⑤ ④与⑤组成方程组? ????x +2y =11, 5x +2y =9. 解得? ????x =-1 2 , y =234 . 把x =-12,y =234代入②,得z =-214 .

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

二元一次方程组基本概念及配套练习题

二元一次方程组的基本概念及配套练习题 【课前导入】 (1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗? 1)代数式:单独的一个数字或单独的一个字母以及用运算符号把数或表示数 的字母连成的式子。 2)等式:用“=”表示相等关系的式子。 3)方程:含有未知数的等式。 4)方程的解:使方程左右两边相等的未知数的值。 5)一元一次方程:在一个方程中未知数只有1个,并且未知数的最高次数是 1的等式。 【新课内容】 我们来看一个问题: 例1、丁丁想利用家里的天平称出一个苹果和一个梨的质量分别是多少? 问题展示:一个苹果和一个梨的质量合计200g。 这个问题中,如果设苹果和梨的质量分别为x g和y g,你能列出方程吗? 利用这个方程你能帮助丁丁分别求出苹果和梨的质量吗? 这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,你还能列出方程吗? 例2、篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。 某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少? 思考:以上问题包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗? 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分, 这两个条件可以用方程表示:

x +y =22 2x +y =40 上面两个方程中,每个方程都含有两个未知数(x 和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。 这两个方程有什么特点?与一元一次方程有什么不同? 注意:二元一次方程的左边和右边都应是整式 上面的问题中包含两个必须同时满足的条件,也就是未知数x 、y 必须同时满足方程 x +y =22 ① 和2x +y=40 ② 把这两个方程合在一起,写成 x y 222x y 40+=?? +=? 由于问题中包含两个必须同时满足的条件(等量关系),所以未知数x ,y 必须同时满足方程 ①,②,也就是说,我们要解出的x ,y 必须是这两个方程的公共解。 像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。 这里给出二元一次方程组的概念,两个二元一次方程合在一起就组成二元一次方程组。更一般地说,如果两个一次方程合起来共有两个未知数,那么它们组成一 个二元一次方程组。特别地,x 2x y 4=??+=?,和x 1y 2=??=?这样的方程组也是二元一次方程组。 满足方程①,且符合实际的意义的x,y 的值有那些?把它们填入表中。 下表中哪对x,y 的值还满足方程②? 设计这个探究的目的是,让学生通过对具体数值代人方程的过程,感受到满足一个二元一次方程的未知数的值有许多对。由于要考虑实际意义,所以满足方程①的未知数的值有23对(未知数为0~22的整数)。 注意:二元一次方程的解是满足方程的一对数值,即 y b ?? =?,一个二元 一次方程有无数对解,但是并不是说任意一对数值都是它的解。 我们还发现,x=18,y=4既满足方程①,又满足方程②,也就是说它们是方程①与方程②的公共解。 我们把x =18,y=4叫做二元一次方程组

1.三元一次方程的概念

1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如,等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 1.解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解. 解:由(2),得x=y+1.(4) 将(4)分别代入(1)、(3)得 解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得x-2y=-8 (4)

由(2),(4)组成方程组 解这个方程组,得 把x=10,y=9代入(1)中,得z=7. 因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组解:由(1)+(2)-(3),得y=9. 把y=9代入(2),得x=10. 把x=10,y=9代入(1),得z=7. 因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确求解方程组. 2.解方程组 分析:在这个方程组中,方程(1)只含有两个未知数x、z,所以只要由(2)(3)消去y,就可以得到只含有x,z的二元一次方程组. 解:(2)×3+(3),得11x+7z=29,(4) 把方程(1),(4)组成方程组 解这个方程组,得, 把x=-,z=5代入(2)得3(-)+2y+5=8,所以y=

参数方程的概念(教学设计)

曲线的参数方程(孙雷) 教材人民教育出版社高中数学选修4-4第二讲第一节 授课教师孙雷 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。 (上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。) 思考1: 若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,A与B角速度之间的关系是_______________; (2) 第二组图中,A与C角速度之间的关系是_______________; B与C角速度之间的关系是________________; 思考2: 思考: 若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,它们角速度之间的关系是_________________;

(2) 第二组图中,它们角速度之间的关系是_________________; 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 例1、圆的参数方程的推导 (1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在 直线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原 点以匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系 该如何建立呢?(其中r 与ω为常数,t 为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈? ??==t t r y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈? ??==θθθr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力) (3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么? 由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。 对于变数t (或θ)的每一个允许值,由方程组所确定的点),(y x P 都在圆上; (1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数t (或θ)建立起来的方程是圆的方程;) (4)若要表示一个完整的圆,则t 与θ的最小的取值范围是什么呢? )2,0[s i n c o s ωπωω∈???==t t r y t r x , )2,0[s i n c o s πθθθ∈???==r y r x (5)圆的参数方程及参数的定义 我们把方程①(或②)叫做⊙O 的参数方程,变数t (或θ)叫做参数。 (6)圆的参数方程的理解与认识 (ⅰ)参数方程)2,0[sin 3cos 3πθθθ∈???==y x 与]2,0[sin 3cos 3πθθ θ∈???==y x 是否表示同一曲线?为什么? (ⅱ)根据下列要求,分别写出圆心在原点、半径为r 的圆的部分圆弧的参数方程: ①在y 轴左侧的半圆(不包括y 轴上的点);

(完整版)二元一次方程组知识点整理

第五章 二元一次方程组 知识点整理 知识点1:二元一次方程(组)的定义 1、二元一次方程的概念 含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程 注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数. (2)含有未知数的项的次数都是1. (3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程) 2.含有未知数的项的系数不等于零,且两未知数的次数为1。 即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by |a|-1 =5是关于x 、y 的二元一次方程,则a =______,b =_____. 例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22 =-y x ,⑥22=-+y x xy ,⑦71 =+y x ⑧y x 23+,⑨1=++c b a 【巩固练习】 下列方程中是二元一次方程的是( ) A .3x-y 2 =0 B .2x +1y =1 C .3x -5 2 y=6 D .4xy=3 2、二元一次方程组的概念 由两个二元一次方程所组成的方程组叫二元一次方程组 注意:①方程组中有且只有两个未知数。②方程组中含有未知数的项的次数为1。③方程组中每个方程均为整式方程。 例:下列方程组中,是二元一次方程组的是( ) A 、2284 23119 (23754624) x y x y a b x B C D x y b c y x x y +=+=-=??=??? ? ? ?+=-==-=???? 【巩固练习】1,已知下列方程组:(1)32x y y =??=-?,(2)324x y y z +=??-=?,(3)1310x y x y ?+=?? ??-=?? ,(4)30x y x y +=??-=?, 其中属于二元一次方程组的个数为( ) A .1 B. 2 C . 3 D . 4 1、 若75331 3=+--m n m y x 是关于x 、y 二元一次方程,则m =_________,n =_________。 知识点2:二元一次方程组的解定义

三元一次方程组解法练习题

三元一次方程组解决实际问题 (1)、三元一次方程的概念 三元一次方程组就是含有三个未知数,并且含有的未知数的项都是1次的整式方程。 (2)、三元一次方程组的概念 一般地,由三个一次方程组成,并且含有三个未知数的方程组叫做三元一次方程组。 (3)、三元一次方程组的解法 (1)三元一次方程组与二元一次方程组同属于一次方程组,解二元一次方程组基本思想是消元,通过代入法或加减法使二元化成一元,未知转化为已知,受它的启发,解三元一次方程组也通过代入或加减消元,使三元化为二元或一元,转化为我们已经熟悉的问题。 (2)三元一次方程组解题的基本步骤: ①利用代入法或加减法,把方程组中的一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组。 ②解这个二元一次方程组,求得两个未知数的值; ③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。 典例剖析: 例解方程组 2636 31576 4949 x y z x y z x y z ++= ? ? ++= ? ?-+= ? ① ② ③ 思路探索:此方程组中没有一个未知数的系数的绝对值是1,所以考虑用加减消元法,选择消去系数较简单的未知数x,由①和②,①和③两次消元,得到关于y,z的二元一次方程组,最后求x。 解析:①×3,得 6x+18y+9z=18④ ②×2,得 6x+30y+14z=12⑤ ⑤-④,得12y+5z=-6⑥ ①×2,得4x+12y+6z=12⑦ ⑦-③, 得21y+2z=3⑧ 由⑥和⑧组成方程组 1256 2123 y z y z +=- ? ? += ? ,解这个方程组,得 1 3 2 y z ? = ? ? ?=- ? 把y=1 3 , z=-2代入①,得2x+6× 1 3 +3×(-2)=6, ∴ x=5

二元一次方程组的相关概念基础知识讲解

二元一次方程(组)的相关概念(基础)知识讲解 【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】 要点一、二元一次方程 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 要点二、二元一次方程的解 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这

个二元一次方程. 要点三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如也是二元一次方程组. 要点四、二元一次方程组的解 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释: (1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个. 【典型例题】 类型一、二元一次方程 1.已知下列方程,其中是二元一次方程的有. (1)25=y;(2)1=4;(3)=3;(4)=6;(5)24y=7; (6);(7);(8);(9);(10).【思路点拨】按二元一次方程满足的三个条件一一检验.

三元一次方程组及其解法

7.3 三元一次方程组及其解法 【教学目标】 知识与能力 (1)了解三元一次方程组的概念. (2)会解某个方程只有两元的简单的三元一次方程组. (3)掌握解三元一次方程组过程中化三元为二元的思路. 过程与方法 通过消元可把“三元”转化为“二元”,充分体会“转化”是解二元一次方程组的基本思路. 情感、态度、价值观 通过本节的教学,应该使学生体会通过本节学习,进一步体会“消元”的基本思想,认识到数学的价值。 【教学重点】 (1)使学生会解简单的三元一次方程组. (2)通过本节学习,进一步体会“消元”的基本思想. 【教学难点】 针对方程组的特点,灵活使用代入法、加减法等重要方法. 【教学过程】 一、回顾旧知,引入新课 在7.2节中,我们应用二元一次方程组,求出了勇士队在我们的小世界杯足球赛第一轮比赛中胜与平的场数。 问题回顾 暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛。比赛规定:胜一场得3分,平一场得1分,负一场得0分。勇士队在第一轮比赛中赛了9场,只负了2场,共得17分。 那么这个队胜了几场?又平了几场呢? 解:设勇士队胜了x场,平了y场,则 胜 每场得分

?? ?=+=++17 39 2y x y x 解得???==25y x 提出问题: 在第二轮比赛中,勇士队参加了10场比赛,按同样的计分规则,共得18分。已知勇士队在比赛中胜的场数正好等于平与负的场数之和,那么勇士队在第二轮比赛中,胜、负、平的场数各是多少? 解:设勇士队胜了x 场,平了y 场,负了z 场,则 0 ?? ? ??+==+=++z y x y x z y x 18310 引出定义:像这种含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程组。一般情况下,三元一次方程组有三个方程,但不一定每个方程都出现三个未知数。 二、自主探究--------三元一次方程组的解法 探究一: 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言) 解方程?? ? ??+==+=++③②① z y x y x z y x 18 310 解:把③分别带入①②得???=++=+++18)(310 y z y z y z y 整理得???=+=+⑤④18341022z y z y 由?????12⑤④得? ??=+=+⑦⑥ 18342044z y z y 由⑦⑥-得2=z 把2=z 代入④得1042=+y , 即 3=y

参数方程的概念

参数方程的概念 参数方程的概念: 一般地,在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t 的函数且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 参数方程和普通方程的互化: 在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。 (1)参数方程化为普通方程的过程就是消参过程,常见方法有三种: ①代入法:利用解方程的技巧求出参数t,然后代入消去参数; ②三角法:利用三角恒等式消去参数; ③整体消元法:根据参数方程本身的结构特征,从整体上消去. (2)普通方程化为参数方程需要引入参数. 如:①直线的普通方程是2x-y+2=0,可以化为参数方程 ②在普通方程xy=1中,令可以化为参数方程 关于参数的几点说明: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)同一曲线选取参数不同,曲线参数方程形式也不同. (3)在实际问题中要确定参数的取值范围. 参数方程的几种常用方法:

方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等. 方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程,要熟记曲线参数方程的形式及参数的意义. 方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题. 方法4利用圆的渐开线的参数方程求点:利用参数方程求解点时只需将参数代入方程就可求得。 方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式 ,可知只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一确定,因此只需把点代人参数方程求出r值再代人参数方程的表达式. 柱坐标系与球坐标系 柱坐标系的定义: 建立空间直角坐标系Oxyz,设P(x,y,z)是空间任意一点,它在Oxy平面上的射影为Q,Q点的极坐标为(ρ,θ),则P的位置可用有序数组(ρ,θ,z)表示,(ρ,θ,z)叫做点P的柱坐标。 (1)柱坐标转化为直角坐标: (2)直角坐标转化为柱坐标:。 球坐标系的定义: 建立空间直角坐标系Oxyz,设P(x,y,z)是空间任意一点,记|OP|=r,OP与Oz轴正向所夹的角为j,点P在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为θ,则P的位置可用有序数组(r,j,θ)表示,(r,j,θ)叫做点P的球坐标。

二元一次方程组的基本概念

详解点一、方程、一元一次方程的概念 ⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同. ⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 详解点二、二元一次方程: 含有两个未知数,并且含未知数的项的次数都是1的(整式)方程叫做二元一次方程。 练习:在方程(1) x + 2y = 3,(2) x 2 + 2x = 0,(3)93 1=-y x ,(4)4131=-y 中,属于二元一次方程的有 个。 详解点三、二元一次方程组: 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。 详解点四、二元一次方程组的解: 一般地,使二元一次方程组的各个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。 练习:方程组???=-=+1 233 2y x y x 的解是( ) A .???=-=35y x B .???-=-=11y x C .???==11y x D .? ??-==53y x

例1:下列方程组中,不是二元一次方程组的是( ) A.1 23x y =?? +=?,. B.10x y x y +=?? -=?,. C.10x y xy +=?? =?,. D.21y x x y =?? -=?, . 分析:根据二元一次方程组的概念,我们知道,组成方程组必须含两个相同的未知数(如x 和y ),并且这两个方程中必须至少含一个二元一次方程。 例2:已知x y ,的值:①22x y =??= ?,;②32x y =??=?,;③32x y =-??=-?,;④66x y =??=? , .其中,是二元一次方程24 x y -=的解的是( ) A.① B.② C.③ D.④ 分析:这个题可以说是在整式乘除的基础上进行变形的一个类型,把这几组组解分别代入二元一次方程组检验即可。 例1、根据下表中所给的x 的值以及x 与y 的对应关系,填写下表: 【变式练习】若方程628kx y -=有一解32 x y =-??=?, 则k 的值等于 例2、有这样一道题目:判断31x y =??=?,是否是方程组2502350x y x y +-=??+-=? , 的解? 小明的解答过程是:将3x =,1y =代入方程250x y +-=,等式成立.所以31 x y =?? =?, 是方程组

苏教版数学高一苏教版选修4-4教案 4.4.1《参数方程的概念》

选修4-4 第二章 参数方程 【课标要求】 1、了解抛物运动轨迹的参数方程及参数的意义。 2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。 3、会进行曲线的参数方程与普通方程的互化。 第一课时 参数方程的概念 一、教学目标: 1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。 2.分析曲线的几何性质,选择适当的参数写出它的参数方程。 二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。 教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。 三、教学方法:启发诱导,探究归纳 四、教学过程 (一).参数方程的概念 1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为0ν ,与地面成 α角, 如何来刻画铅球运动的轨迹呢? 2.分析探究理解: (1)、斜抛运动: 为参数) t gt t v y t v x (21sin cos 200?? ? ??-?=?=αα (2)、抽象概括:参数方程的概念。(见课本第27页) 说明:(1)一般来说,参数的变化范围是有限制的。 (2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。 (3)平抛运动:【课本P27页例题】 为参数) t gt y t x (215001002?? ? ??-==

(4)思考交流:把引例中求出的铅球运动的轨迹 的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用。 (二)、应用举例: 例1、(课本第28页例1)已知曲线C 的参数方程是???+==1 232 t y t x (t 为参数)(1)判断点 1 M (0,1), 2M (5,4)与曲线C 的位置关系;(2)已知点3M (6,a )在曲线C 上, 求a 的值。 分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。学生练习。 反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。 例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为60 π rad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。 解析:如图,运动开始时质点位于A 点处,此时t=0,设动点M (x,y )对应时刻t ,由图可知 ???==θθsin 2cos 2y x 又t 60πθ=,得参数方程为22?? ??? ==y x (三)、课堂练习:课本P28页中练习题1、2 (四)、小结:1.本节学习的数学知识;2(五)、作业:课本P28页中1、3 补充:设飞机以匀速v=150m/s 作水平飞行,若在飞行高度h=588m 处投弹(设投弹的初速度等于飞机的速度,且不计空气阻力)。(1)求炸弹离开飞机后的轨迹方程;(2)试问飞机在离目标多远(水平距离)处投弹才能命中目标。简解:(1))(9.45881502 为参数t t y t x ???-==。 (2)1643m 。

三元一次方程组的解法及技巧解析

三元一次方程组的解法及技巧解析初中阶段是我们一生中学习的“黄金时期”。不光愉快的过新学期,也要面对一件重要的事情那就是学习。优立方数学为大家提供了三元一次方程组的解法知识点,希望对大家有所帮助。 1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如, 等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一

个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解. 解:由(2),得x=y+1.(4) 将(4)分别代入(1)、(3)得解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得x-2y=-8(4) 由(2),(4)组成方程组

解这个方程组,得把x=10,y=9代入(1)中,得z=7. 因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组 解:由(1)+(2)-(3),得y=9. 把y=9代入(2),得x=10. 把x=10,y=9代入(1),得z=7. 因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确

一次方程与方程组知识点

知识点1:一元一次方程的概念 只含有一个未知数,并且未知数的次数都是1,像这样的整式方程叫做一元一次方程。(如:21,314223 x x x x --=+=-) 特点:①等号两边都是整式②只含有一个未知数③未知数的次数都为1. 判断方法:首先要将整式方程化简,然后再判断是否满足一元一次方程的三个特点。 知识点2:等式的基本性质 1.等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。 即如果a b =,那么a c b c ±=±; 2.等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。 即如果a b =,那么ac bc =, (0)a b c c c =≠; 3.对称性:如果a b =,那么b a =; 4.传递性:如果a b =,b c =,那么a c =。 知识点3:一元一次方程的解法 1.移项法则 把方程的某一项改变符号后,从方程的一边移到方程的另一边,叫做移项法则。 2.解一元一次方程的步骤 ①去分母:在方程两边都乘以各分母的最小公倍数; ②去括号:先去小括号,再去中括号,最后去大括号; ③移项:把含有未知数的项都移到方程的一边,其它项都移到方程的另一边(移项要变号) ④合并同类项:把方程变成(0)ax b a =≠的形式 ⑤系数华为1:在方程两边都除以未知数的系数a ,得到方程的解b x a =。 知识点4:(1)二元一次方程的概念 含有两个未知数,且未知项的最高次数是1的整式方程叫做二元一次方程。 如:1,323,32 m x y x y n +=-=+=都是二元一次方程。 (2)二元一次方程组的概念 由两个二元一次方程组成的方程组叫做二元一次方程组。(如:2324 x y x y +=??-=?) 知识点5:二元一次方程组的解 使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解。 知识点6:二元一次方程组的解法

三元一次方程组及解法资料讲解

要点一、三元一次方程及三元一次方程组的概念 1. 三元一次方程的定义: 含有三个相同的未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程. 要点诠释: (1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次. (2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零. 2.三元一次方程组的定义: 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释: (1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可. (2) 在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建 立三元一次方程组求解 要点二、三元一次方程组的解法 解三元一次方程组的一般步骤 (1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程; (4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起.

要点诠释: (1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二 元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是: (2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的 解法 要点三、三元一次方程组的应用 列三元一次方程组解应用题的一般步骤: 1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数; 2.找出能够表达应用题全部含义的相等关系; 3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值; 5.写出答案(包括单位名称). 要点诠释: (1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组 类型一、三元一次方程及三元一次方程组的概念 1. 下列方程组不是三元一次方程组的是().

相关主题
文本预览
相关文档 最新文档