当前位置:文档之家› 对波动方程的一些理解

对波动方程的一些理解

对波动方程的一些理解

1如果你从头到尾仔细查看声音的波动方程的推导过程,你会发现,这是一个介质中的密度变化从而导致压强变化(声压)的过程,如果静止介质中的声速是

Cs ,那么很容易就可以推导出来,对于一个以速度

v 运动的介质,声速是(Cs+v ),也就是说,声速Cs 是相对于介质而言的。

而对于电磁波的速度,麦克斯韦方程组里面只有一个

常数C 来描述,这个C 与光源的运动状态是完全没有关系的。那么这个

C 究竟是相对于哪一个参考系的速度呢?麦克斯韦当时自己认为他的方程组是基于

“绝对静止系”成立的(因为显然麦氏方程不满足伽利略相对性),这个C 因而也就是“绝对速度”。然而麦莫实验并没有找到以太存在的证据,这使得当时经典物理的天空多了一块阴云。

既然不能找到一个绝对静止系,

那么就有两个比较明显的结论,要么是麦氏方程从根本上就错了,要么是这个

C 本来就是一个常数,对哪一个惯性系都一样。爱因斯坦选择了后者:久经考验的麦氏方程依然成立,

它也不是仅仅是建立在一个不存在的绝对静止系之上的,而是对一切惯性系都成立,只要考虑相对论效应一切矛盾就消失了。2有时间看看,《什么是数学》

3.看书发现有很多波动方程:对波动方程总是有着模糊的概念:

看了以下内容发现各种波之间有相似的联系.

机械振动方程:

一维弹簧振子的振动方程由牛顿第二定律推导得:

方程的通解是:

ψ = C 1 co s ωt + C 2sin ωt

正弦形式为ψ= A sin (ωt + ?

) 简谐振动它是各种波的起因和微观模型。

振动和波动的关系:振动是质点模型,波动是介质模型;振动是因,波动是果。

机械波动方程

机械波的传播公式:

ψ= A sin[ω (t -x / u )+ ? ]

描述波的物理量:波速u 、波长λ、频率f 、周期

T 、圆频率ω、圆波数k=ω/u ,ψ= Asin[(ωt -kx) +?]

与下面的等价

ψ = C 1 co s(ω t - k x ) + C 2 s i n (ω t - k x )分别对x 和t 求二阶偏导数,可得

2

22sin[()]2

22A t kx x u u 1.1 222

sin[()]2A t kx t 1.2

整理得到机械波的波动方程为:

这是一维机械波的波动方程。

推广到空间因此可以得到三维机械波的波动方程:

或者用拉普拉斯算子222

2

222x

y z 写成2222221

0k u t 1.3

最简单的三维球面机械波就是把 1.3转换成球坐标形式

光学波动方程

光波(电磁波)的波动方程其实就是介质中的亥姆霍兹方程:总结:波动方程和它的解都有共同的形式。

第七章 一维波动方程的解题方法及习题答案

第二篇 数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I .质点力学:牛顿第二定律F mr =r r && 连续体力学222 2() (,)(,)0(()0; v 1()0(Euler eq.).u r t a u r t t v t v v p f t ρρρ ?????-?=??????? ?? +??=????-?+??=+=????? r r r r r r r r &弹性定律弦弹性体力学杆 振动:波动方程);膜 流体力学:质量守恒律:热力学物态方程: II.麦克斯韦方程 ;;00;().,,,D D E l B s E B B B H l j D s H j D E u B A u A σρτρσ??=???=?=????=????=???=?=+????=+??=-?=????????????????????r r r r r r r r r &&r r r r r r r r r r r &&r r r r 已已d d d d d d d 满足波动方程。Lorenz 力公式力学方程;Maxwell eqs.+电导定律电报方程。 III. 热力学统计物理 220;0.T k T t D t ρρ?? -?=??????-?=??? 热传导方程:扩 散方程:特别: 稳态(0t ρ?=?):20ρ?= (Laplace equation). IV. 量子力学的薛定谔方程: 22 .2u i u Vu t m ?=-?+?h h 2. 分类

波动方程的物理背景

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波和水波。波动方程抽象自声学,电磁学,和流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t 的标量函数u(代表各点偏离平衡位置的距离)满足: 这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c 依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。 在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c 应该用波的相速度代替: 实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程: 另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u 的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。 三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波: 式中: 和被称为弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants 或 Lamémoduli),是描述各向同性固体弹性性质的参数; 表示密度; 是源函数(即外界施加的激振力); 表示位移; 注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。其他形式的波动方程还能在量子力学和广义相对论理论中用到。 标量形式的一维波动方程 [编辑]波动方程的推导 一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。弹簧的弹性系数(又称“倔强系数”)为k:

对波动方程的一些理解

1如果你从头到尾仔细查看声音的波动方程的推导过程,你会发现,这是一个介质中的密度变化从而导致压强变化(声压)的过程,如果静止介质中的声速是 Cs ,那么很容易就可以推导出来,对于一个以速度 v 运动的介质,声速是(Cs+v ),也就是说,声速Cs 是相对于介质而言的。 而对于电磁波的速度,麦克斯韦方程组里面只有一个 常数C 来描述,这个C 与光源的运动状态是完全没有关系的。那么这个 C 究竟是相对于哪一个参考系的速度呢?麦克斯韦当时自己认为他的方程组是基于 “绝对静止系”成立的(因为显然麦氏方程不满足伽利略相对性),这个C 因而也就是“绝对速度”。然而麦莫实验并没有找到以太存在的证据,这使得当时经典物理的天空多了一块阴云。 既然不能找到一个绝对静止系, 那么就有两个比较明显的结论,要么是麦氏方程从根本上就错了,要么是这个 C 本来就是一个常数,对哪一个惯性系都一样。爱因斯坦选择了后者:久经考验的麦氏方程依然成立, 它也不是仅仅是建立在一个不存在的绝对静止系之上的,而是对一切惯性系都成立,只要考虑相对论效应一切矛盾就消失了。2有时间看看,《什么是数学》 3.看书发现有很多波动方程:对波动方程总是有着模糊的概念: 看了以下内容发现各种波之间有相似的联系. 机械振动方程: 一维弹簧振子的振动方程由牛顿第二定律推导得: 方程的通解是: ψ = C 1 co s ωt + C 2sin ωt 正弦形式为ψ= A sin (ωt + ? ) 简谐振动它是各种波的起因和微观模型。 振动和波动的关系:振动是质点模型,波动是介质模型;振动是因,波动是果。 机械波动方程 机械波的传播公式: ψ= A sin[ω (t -x / u )+ ? ] 描述波的物理量:波速u 、波长λ、频率f 、周期 T 、圆频率ω、圆波数k=ω/u ,ψ= Asin[(ωt -kx) +?] 与下面的等价 ψ = C 1 co s(ω t - k x ) + C 2 s i n (ω t - k x )分别对x 和t 求二阶偏导数,可得 2 22sin[()]2 22A t kx x u u 1.1 222 sin[()]2A t kx t 1.2 整理得到机械波的波动方程为: 这是一维机械波的波动方程。 推广到空间因此可以得到三维机械波的波动方程:

第四章 波动方程的积分解

第四章 波动方程的积分解 4.1非其次标量亥姆霍兹方程的积分解 电磁波问题的求解,都可以归结为求解其次或非其次标量或矢量波动方程。对这类二阶偏微分方程,一般可以采用微分法和积分法。 在电磁波问题中,有源区的时谐电磁场满足非其次亥姆霍兹方程: ()()() 22r k r f r φφ?+=- (4-1) 考虑在体积V 中,Φ和Ψ标量场和二阶导数连续,在包围体积V 的封闭截面S 上标量场Φ和Ψ的一阶导数存在,由标量格林函数: ()2 2 -d ()d V S V S φψψφφψψφ??=?-?????? (4-2) 建立了标量场Φ和Ψ在闭合界面内的体积分和闭合界面上的面积分关系。格林函数满足齐次亥姆霍兹方程。 ()() 220g r k g r ?+= 'r r ≠ (4-3) 整理以上三个算式得 ()()d [()()]d V s s g r f r V g r g r S φφ+=?-?????? (4-4) '[]d -[dS-()dS]n s s s g g g S g r a e R φφφ φ??-?==???????? (4-5) 积分结果为 () ' ''''''' '''1()d d 44jk r r jk r r jk r r V S e e e r f r V r r S n n r r r r r r φφφππ------?? ?? ?=-- ???--- ? ?? ?????()() (4-6) 电磁波遇到障碍物时,会发生绕射现象。标量基尔霍夫公式可以用来近 似计算电磁波通过电屏上孔径的绕射场,但需要假定条件: (1) 封闭面上除口径面外,标量场及其法向导数为零。

基本波动方程的求解方法

关于弦振动的求解方法 李航 一、无界弦振动 1、一维齐次波动方程 达朗贝尔方程解无界的定解问题 ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( <达朗贝尔公式> 在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。考虑无界的定解问题一般方程为 ??? ??? ?=??=>+∞<<∞-??=??==)(|),(|0, ,002 2222x t u x u t x x u a t u t t φ? 由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分别a 1± 为的两条直线在x 轴上截得的区间。 2、一维非齐次波动方程的柯西问题 达朗贝尔方程解非齐次定解问题 ` ??? ??? ?=??=>+∞<<∞-+??=??==)2()(|),(|)1(0,),(0022 222 , x t u x u t x t x f x u a t u t x φ? 令),(),(),(t x V t x U t x u +=,可将此定解分解成下面两个定解问题:

(I) ???????=??=>+∞<<∞-??=??== , )(|),(|0,0022 222x t u x u t x x u a t u t x φ? (II) ??? ????=??=>+∞<<∞-+??=??== , 0|,0|0,),(0022 222t x t u u t x t x f x u a t u 其中问题(I)的解可由达朗贝尔公式给出: ?+-+-++=at x at x d a at x at x t x U ξξ???)(21)]()([21),(。 对于问题(II),有下面重要的定理。 定理(齐次化原理)设),,(τωt x 是柯西问题 ??? ??? ?=??=>??=??==  , ),(|,0|22 222τωωτωωττx f t t x a t t x 的解)0(≥τ,则?=t d t x t x V 0),,(),(ττω是问题(II)的解。 二、有界的弦振动方程 ( 1、分离变量法 齐次条件的分离变量法 (1) (2) (3) 设)()(),(t T x X t x u =,代入方程(1)得: ) () ()()('''t aT t T x X x X = ?????????====><

波动方程

1.1 波动方程的形式 一维波动方程(描述弦的振动或波动现象的)()t x f x u a t u ,2 2 222=??-?? 二维波动方程(例如薄膜振动)()t y x f y u x u a t u ,,2222 222+??? ? ????+??=?? 三维波动方程(例如电磁波、声波的传播)()t z y x f z u y u x u a t u ,,,222222 222+???? ????+??+??=?? 1.2 波动方程的定解条件(以一维波动方程为例) (1)边界条件 ①第一类边界条件(又称Dirichlet 边界条件):弦振动问题中,弦的两端被固定在0=x 及l x =两点,因此有()0,0=t u ,()0,=t l u 。 ②第二类边界条件(又称Neumann 边界条件):弦的一端(例如0=x )处于自由状态,即可以在垂直于x 轴的直线上自由滑动,未受到垂直方向的外力,此时成立 0=??=o x x u 。也可以考虑更普遍的边 界条件 ()t x u x μ=??=0 ,其中()t μ是t 的已知函数。 ③第三类边界条件:弦的一端固定在弹性支承上,不放考虑在l x =的一端,此时边界条件归结为 0u =??? ??+??=l x u x σ。也可以考虑更普遍的情况()t u x l x v u =??? ??+??=σ,其中()t v 是t 的已知函数。 1.3 利用叠加原理求解初值问题 初值问题 ()()()()??? ????+∞<<∞=??==+∞<<∞>=??-??)x -(,,:0t x 0,-t ,,22 222x t u x u t x f x u a t u ψ? (1) 利用叠加原理求解上述初值问题,叠加原理表明由()t x f ,所代表的外力因素和由()()x x ψ?,所代表的初始振动状态对整个振动过程所产生的综合影响,可以分解为单独只考虑外力因素或只考虑初始振动状态对振动过程所产生的影响的叠加。即如果函数()t x u ,1和()t x u ,2分别是下述初值问题 (I )()()()()??? ????=??===??-??2.1.....................,:0t 1.1. (022) 222x t u x u x u a t u ψ?

基本波动方程的求解方法

关于弦振动的求解方法 李航 一、无界弦振动 1、一维齐次波动方程 达朗贝尔方程解无界的定解问题 ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( <达朗贝尔公式> 在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。考虑无界的定解问题一般方程为 ??? ????=??=>+∞<<∞-??=??==)(|),(|0, ,0022222x t u x u t x x u a t u t t φ? 由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分别a 1± 为的两条直线在x 轴上截得的区间。 2、一维非齐次波动方程的柯西问题 达朗贝尔方程解非齐次定解问题 ???????=??=>+∞<<∞-+??=??==)2()(|),(|)1(0,),(0022222 , x t u x u t x t x f x u a t u t x φ? 令),(),(),(t x V t x U t x u +=,可将此定解分解成下面两个定解问题:

(I) ??????? =??=>+∞<<∞-??=??== , )(|),(|0,0022 222x t u x u t x x u a t u t x φ? (II) ???????=??=>+∞<<∞-+??=??== , 0|,0|0,),(0022 222t x t u u t x t x f x u a t u 其中问题(I)的解可由达朗贝尔公式给出: ?+-+-++=at x at x d a at x at x t x U ξξ???)(21)]()([21 ),(。 对于问题(II),有下面重要的定理。 定理(齐次化原理)设),,(τωt x 是柯西问题 ???????=??=>??=??==  , ),(|,0|2 2 222τωωτωωττx f t t x a t t x 的解)0(≥τ,则?=t d t x t x V 0),,(),(ττω是问题(II)的解。 二、有界的弦振动方程 1、分离变量法 齐次条件的分离变量法 (1) (2) (3) 设)()(),(t T x X t x u =,代入方程(1)得: )() ( )()('''t aT t T x X x X = ?????????====><

声学中波动方程的建立

田佳星 海洋技术 今天我介绍一下声学中波动方程的建立。我们首先介绍一下声学的基本概念。 声波是机械振动状态在介质中的传播。存在声波的空间称为声场。理论上描述声场需要引入一些物理量:声压、位移、振速、密度压缩量和相位等。通常采用上述各物理量的时空分布函数描述声场。下面对这些物理量作简要介绍。 1. 基本概念 1) 声压(标量) 声波为压缩波。描述“压缩”过程的一个物理量是压强。然而,声波是声扰动(如振动源)引起介质中的压强发生变化的部分。因此,我们引入声压的概念: 声压p 为介质压强的变化量: 0P P p -= (2-1) 其中,P 是压强,0P 是介质中的静态压强。 声压是描述波动的物理量。为使用方便,还由声压引入了瞬时声压p 、峰值声压0p 和有效声压e p 。 声场中某瞬时的声压称为瞬时声压。一定时间间隔内的最大瞬时声压称为峰值声压。瞬时声压在一定时间间隔内的均方根值称为有效声压,即 e p = 对简谐声波,p 、0p 和e p 相互之间的关系和电压可作相同类比,即 0exp[]p p j t ω= 20p p e =。 一般仪器仪表测得是有效声压。 2) 位移和振速(矢量) 质点位移是指介质质点离开其平衡位置的距离。质点振速是介质质点瞬时振动的速度。两者均是有大小和方向的量,即矢量,相互关系为 u d dt ξ= (2-3) 对简谐振动,位移和振速都满足如下关系:

0exp[] j t ξξω=, (2-4a) 0exp[]u u j t ω=, (2-4b) 其中,0ξ和0u 分别为位移幅值和振速幅值。 需要注意的是区分质点振速和声传播速度。声传播速度是指振动状态在介质中传播的速度,而质点振速是指在给定时间和给定空间位置的某一质点的振动速度。 3) 密度和压缩量 密度的变化也是描述声波的一个物理量。这里引入压缩量的概念: ()0100ρρρρρ=-=s (2-5) 其中,ρ密度,0ρ为静态密度,01ρρρ-=为密度改变量。 压缩量s 的含义为介质密度的相对变化量。 4) 相位 为描写简谐振动而引入的物理量。它描述质点简谐振动的状态。质点振动的一个周期对应着相位0-2π。相位和质点振动状态有一一对应的关系。 声波是振动状态在介质中的传播,而相位描述的是质点简谐振动的状态。由此可见相位在声场描述中的重要性。 以上物理量并不是独立的,如根据位移由(2-3)式可以求出振速。实际应用时可根据需要选择使用哪些物理量来描述,如对简谐声波,只需要位移幅值和相位就可导出振速、加速度等基本物理量;更进一步,如果已知介质条件,只要知道位移幅值和相位的初值,就可计算声场的时空分布函数了。 2. 理想流体介质中的小振幅波 本节先建立描述声波的基本方程-波动方程,并讨论波动方程的线性特性;然后分别介绍波动方程在几种简单介质条件下的解-行波解、平面波解、球面波解和柱面波解,并对各种解中相关的物理量,如声场中的能量、介质特性阻抗和声阻抗率、相速度和群速度等概念,进行讨论,并重点分析在水声物理中应用较多的平面波在两种不同均匀介质界面上的反射和折射现象。 一、波动方程 建立波动方程

相关主题
文本预览
相关文档 最新文档