当前位置:文档之家› 在不等式证明中的妙用泰勒公式

在不等式证明中的妙用泰勒公式

在不等式证明中的妙用泰勒公式

泰勒公式的证明及应用(1)

一.摘要 (3) 前言 (3) 二、泰勒公式极其极其证明........................ (3) (一)带有皮亚诺型余项的泰勒公式 (3) (二)带有拉格朗日型余项的泰勒公式 (4) (三)带有柯西型余项的泰勒公式 (5) (四)积分型泰勒公式 (6) (五)二元函数的泰勒公式 (7) 三、泰勒公式的若干应用 (8) (一)利用泰勒公式求极限 (8) (二)利用泰勒公式求高阶导数 (9) (三)利用泰勒公式判断敛散性 (10) (四)利用泰勒公式证明中值定理 (12) (五)利用泰勒公式证明不等式 (13) (六)利用泰勒公式求近似和值误差估计 (15) (七)利用泰勒公式研究函数的极值 (16) 四、我对泰勒公式的认识 (16) 参考文献 (17) 英文翻译 (17)

Taylor 公式的证明及应用 【摘要】数学中的著名的公式都是一古典的数学问题,它们在数学,化学与物理领域都有很广泛的运用。在现代数学中Taylor 公式有着重要地位,它对计算极限,敛散性的判断,不等式的证明、中值问题及高阶导的计算以及近似值的计算等方面都有很大的作用。在本文中,我将谈到关于公式的几种形式及其证明方法并对以上几个方面进一步的运用,和我对几者之间的一些联系和差异的看法。并通过具体事例进行具体的说明相关运用方法 【关键词】泰勒公式 佩亚诺余项 拉格朗日余项 极限 级数 1、常见Taylor 公式定义及其证明 我们通常所见的Taylor 公式有皮亚诺型、拉格朗日型、柯西型与积分型,还有常用的二元函数的Taylor 公式和高阶函数的Taylor 公式。 定义:设函数存在n 阶导数,由这些导数构成n 次多项式,称为函数在该点处的泰勒多项式各项系数称为泰勒系数。 1.1首先是带皮亚诺型余项的Taylor 公式: 若函数f 在点0x 存在且有n 阶导数,则有0()()(())n n f x T x x x =+ο-即 "' 200000() ()()()()()2! f x f x f x f x x x x x =+-+-+? ()00() ()! n n f x x x n +-0(())n x x +ο-. (2) 其中()n T x 是由这些导数构造的一个n 次多项式, "()' 2 0000000()()()()()()()()2!! n n n f x f x T x f x f x x x x x x x n =+-+-+?+- (3) 称为函数f 在点0x 处的Taylor 多项式,()n T x 的各项系数 ()0() !k f x k (1,2,,)k n =?称为Taylor 系数。从上易知()f x 与其Taylor 多项式()n T x 在点0x 有相同的函数值和相同

19泰勒公式在证明不等式中的几个应用

泰勒公式在证明不等式中的几个应用 摘 要:泰勒公式作为一种重要的数学工具,无论对科研还是在证明、计算等方面,它都起着很重要的作用。特别在高等数学畴,灵活运用泰勒公式,对不等式问题进行分析、构造、转化、放缩等是解决不等式证明问题的常用方法与思想。本文主要通过对各类典型不等式证明问题的分析处理,归纳了用泰勒公式来证明有关定积分不等式问题、含有初等函数与幂函数的不等式和一般不等式问题,以及泰勒公式在一元函数、二元函数不等式中的推广、证明与应用. 关键词:泰勒公式;偏导数;不等式 引言 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数 ] 31[-.所以泰勒公式能很好的 集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.文献[3-6]介绍了运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 1 泰勒公式知识的回顾: 定理1[1] 设函数()f x 在点0x 处的某邻域具有1n +阶导数,则对该邻域异于0x 的任意点 x ,在0x 与x 之间至少存在一点ξ,使得: ()f x =()0f x +()0' f x 0(x -x )+ ()0f''x 2!02 (x -x )+???+ ()()0n f x n! 0n (x -x )+()n R x , 其中()n R x =() (1)(1)! n f n ξ++称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0' f x + ()02!f''2x +???+()()0! n f n n x +0()n x . 2 泰勒公式在证明不等式中的应用 不等式是高等数学和近代数学分析的重要容之一,它反映了各变量之间很重要的一种关系即他们之间的大小关系。不等式的容也极其丰富,证明方法很多,而泰勒公式在证明不等式问题中起着举足轻重的作用。 2.1 泰勒公式在证明有关定积分不等式问题的应用 对于被积函数具有二阶或二阶以上连续可导,且又知最高阶数符号的命题.通过作辅助

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

积分在不等式证明中的应用

积分在不等式证明中的应用 摘 要:本文是根据积分的有关概念与性质,采用举例的方法归纳并总结了积分在不等式证明中的几种比较常见的技术和手法,同时重点突出了积分在不等式证明中的基本的思想与方法。 关键词:积分 不等式 应用 Application of integral in proving inequality Abstract:This article is based on concepts and properties about integral, several common techniques and practices of the integral in the proving inequalities are concluded and summarized using the example of the way, while highlighting the integral in the proving inequalities of basic ideas and methods. Keywords:integral; inequality; application 不等式证明不但是初等数学的重要课题,同时也是解决其他相关数学问题的基础知识。在初等数学领域中有许多种证明不等式的方法,比如综合法、分析法、放缩法、归纳法、函数法、几何法等,但用这些初等方法证明不等式时证明过程比较繁琐,而常用的高等方法如微分法,则往往忽略了积分在不等式证明中的重要作用,本文着重从积分的一些定理和相关性质的方面来说明不等式证明的几种技术和手法,以便于从整体上更好地掌握证明不等式基本的思想方法。 1. 积分的定义在不等式证明中的应用 从积分的定义出发来证明不等式,是很容易被忽略的一种方法,但是这种比较原始的证明方法有时却是一种很有效的证明方法。 例题1:设)(x ψ是[]a ,0上的连续函数,)(x f 二阶可导,0)(≥''x f ,试证: ))(1()]([100dt t a f dt t f a a a ??≥ψψ. 证明:由题意知,0)(≥''x f ,故对于[]a x x x n ,0,,,21∈? ,有

泰勒公式的证明及应用

摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。 关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用

绪论 随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到 n 阶的导数,由这些导数构成一个n 次多项式 () 2 0000000()()() ()()()()(),1! 2! ! n n n f x f x f x T x f x x x x x x x n '''=+ -+ -++ - 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有 0()()(()),n n f x T x x x ο=+- 即() 2 00000000()() ()()()()()()(()).2! ! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+ -++ -+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5.121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ +< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b ==++++,证明:312n T <<

例4.已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6.数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的 关键词:泰勒公式的验证数学开题报告范文中国开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。 3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极

限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8 学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:2010年12月— 2011 年4 月 3.第一阶段:初期(2010年12月1日- 2011年3月15 日) 第二阶段:中期(2011年3月16 日- 2011年4月15日)第三阶段:结题(2011年4月16日- 2011年4月30日)

数形结合在不等式证明中的应用

数形结合在不等式证明中的应用 摘要主要研究“初等数学研究教程”教学,简单介绍如何运用数形结合思想证明不等式,有助于高等师范学校数学教育专业学生提高思维能力和中学数学教育能力。 关键词数形结合;不等式;证明 1引言 “初等数学研究教程”是高等师范学校数学教育专业的一门重要的专业基础课程,是从事中学数学教育必须掌握的基础理论。本文在“初等数学研究教程”教学中简单介绍如何运用数形结合思想证明不等式,以提高高等师范学校数学教育专业学生思维能力和中学数学教育能力。 数形结合的思想方法是中学数学的一大特点,而在中学数学教学中,不等式的证明历来是教学的一个重点和难点。合理、灵活地运用数形结合思想来证明不等式往往可以收到事半功倍的效果。我们首先看下面一道例题: 例1:若锐角α、β、γ满足cos2α+cos2β+cos2γ=1,求证: 。 证明思路:借助已知条件可构造一长 方体,使它的三边分别为a、b、c,且 记相交一点的三条棱a、b、c分别与AC’ 交成α、β、γ角。于是原有的三角证式就变成代数证式: 2利用数形结合证明不等式 由上例可见利用数形结合证明不等式的确可以使复杂问题简单化、形象化。在数学上,数和形是中学数学的两块基石,是研究数学的最基本方法之一。它体现了抽象思维与形象思维的结合,数学问题大体上都是围绕着“数”和“形”提炼、演变,发展而展开的。在中学数学中数形结合应用于证明不等式主要有三方面:用平面几何或立体几何的性质证明不等式,用解析几何的性质和方法证明不等式,用三角函数的性质和方法证明不等式。 2.1利用平面几何或立体几何的方法证明不等式 由于许多数量关系源于平面几何(或立体几何),诸如三角形的边长关系、边角

泰勒公式的证明及其应用

泰勒公式的证明及其应用 数学与应用数学专业胡心愿 [摘要]泰勒公式的相关理论是函数逼近论的基础。本文主要探索的是泰勒公式的一些证明方法,并对不同的证明方法进行相应的比较分析,在此基础上讨论泰勒公式在证明不等式、求函数极限、求近似值、求行列式的值、讨论了函数的凹凸性,判别拐点,判断级数敛散性等方面的应用.本文还针对多元函数的泰勒公式的推导和应用做了简单的论述. [关键词]泰勒公式;不等式;应用; Proof of Taylor's Formula and Its Application Mathematics and Appliced Mathematics Major HU Xin-yuan Abstract: The theory about Taylor's Formula is the basic content of Approximation Theory . What this paper explores is some methods that proof the Taylor's Formula, and the paper analyse and compare them. On that basis, the paper discuss the application of Taylor's Formula in some respects,such as Inequality proof, functional limit, approximate value, determinant value, convexity-concavity of function, the decision of inflection point, divergence of the series.The paper explore the derivation of Taylor's Formula of the function of many variables and its application. Key words:Taylor's Formula;inequality;application

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项式函

中值定理在不等式证明中的应用

摘要 本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍. 关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式 Abstract This paper idea wrote in inequality proof of use frequently during several of the mean value theorem, which in the Lagrange mean value theorem proving inequality in the application of the three methods to speak: direct formula method, variable value method, the method to construct auxiliary function. in the application of proof inequalities of the Taylor mean value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the function extreme value point or the most value point, the interval of known at any point. And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify inequality. And Cauchy mid-value theorem and integral mean value theorem in the application process to prove the inequality were briefly discussed Key words :The Lagrange Mean Value Theorem;Taylor's Formula;Cauchy Mean Value Theorem;Inequality;The Mean Value Theorem for Integrals

泰勒公式证明必须看word资料11页

泰勒公式(提高班) 授课题目: §3.3泰勒公式 教学目的与要求: 1.掌握函数在指定点的泰勒公式; 2.了解泰勒公式在求极限及证明命题中的应用. 教学重点与难点: 重点:几个常用函数的泰勒公式 难点:泰勒公式的证明 讲授内容: 对于一些较复杂的函数,为了便于研究,往往希望用一些简单的函数来近似表达.由于用多项式表示的函数,只要对自变量进行有限次加、减、乘三种算术运算,便能求出它的函数值来,因此我们经常用多项式来近似表达函数。 在微分的应用中已经知道,当x很小时,有如下的近似等式: ≈1,x e x+ x ln(. 1 +) x≈ 这些都是用一次多项式来近似表达函数的例子.显然.在0 x处这些— = 次多项式及其一阶导数的值,分别等于被近似表达的函数及其导数的相应值.

但是这种近似表达式还存在着不足之处:首先是精确度不高,它所产生的误差仅是关于x 的高阶无穷小;其次是用它来作近似计算时,不能具体估算出误差大小.因此,对于精确度要求较高且需要估计误差的时候,就必须用高次多项式来近似表达函数,同时给出误差公式. 于是提出如下的问题:设函数)(x f 在含有0x 的开区间内具有直到 (1+n )阶导数,试找出一个关于(0x x -)的n 次多项式 n n n x x a x x a x x a a x p )()()()(0202010-++-+-+=Λ (1) 来近似表达)(x f ,要求)(x p n 与)(x f 之差是比n x x )(0-高阶的无穷小,并给出误差)()(x p x f n -的具体表达式. 下面我们来讨论这个问题.假设)(x p n 在0x 处的函数值及它的直到n 阶导数在0x 处的值依次与)(0x f ,)(0x f ',)(,0)(x f n Λ相等,即满足 )()(00x f x p n =,)()(00x f x p n '=', )()(00x f x p n ''='',)(,0)()(x f p n n n =Λ, 按这些等式来确定多项式(1)的系数n a a a a Λ,,,210.为此,对(1)式求各 阶导数,然后分别代人以上等式,得 )(00x f a =,)(101x f a '=?,)(!202x f a ''=,)(!,0)(x f a n n n =Λ , 即得 )(00x f a =,)(01x f a '=,)(!2102x f a ''=,)(! 1,0)(x f n a n n =Λ. (2)

函数的凹凸性在不等式证明中的应用

学年论文 题目凹凸函数及其在证明不等式中的应用学院数学与计算机科学学院 专业数学与应用数学 级别10级 姓名洪玉茹 学号101301040

摘 要 首先给出了凸函数的定义,.接着给出了凸函数的一个判定定理 以及Jesen 不等式.通过例题展示了凸函数在不等式证明中的应用.凸函数具有重要的理论研究价值和实际广泛应用,利用凸函数的性质证明不等式;很容易证明不等式的正确性.因此,正确理解凸函数的定义、性质及应用,更对有关学术问题进行推广研究起着举足轻重的作用. 关键词 凸函数,凸函数判定定理Jensen 不等式。 下面我们主要研究凸函数,凹函数由读者自行探索。 一、 凸函数的等价定义 定义1 若函数()f x 对于区间(,)a b 内的任意12,x x 以及(0,1)λ∈,恒有 []1212(1)()(1)()f x x f x f x λλλλ+-≤+-, 则称()f x 为区间(,)a b 上的凸函数. 其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间的 线总在曲线之上. 定义2 若函数()f x 在区间(,)a b 内连续,对于区间(,)a b 内的任意12,x x ,恒有 []12121 ( )()()22 x x f f x f x +≤+, 则称()f x 为区间(,)a b 上的凸函数. 其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间割线的中点总在曲线上相应点(具有相同横坐标)之上. 定义3 若函数()f x 在区间(,)a b 内可微,且对于区间(,)a b 内的任意x 及0x , 恒有 000()()()()f x f x f x x x '≥+-, 则称()f x 为区间(,)a b 上的凸函数.

泰勒公式的证明及应用 开题报告

题目泰勒公式的证明及推广应用 一、选题背景和意义 在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、 乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。 通过对数学分析的学习,我感觉到泰勒公式是高等数学中的重要内容,在各个 领域有着广泛的应用,例如在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。 除此以外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解。 二、国内外研究现状、发展动态 本人以1999—2010十一年为时间范围,以“泰勒公式”、“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章,发现国内外对泰勒公式的其研究进展主要分配在以下领域: 一、带不同型余项泰勒公式的证明; 二、泰勒公式的应用举例。 三、研究内容及可行性分析 在高等数学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习高等数学的关键一环。本论文将主要研究泰勒公式的证明及其在其他方面的应用。 本文将通过对泰勒公式的探讨,给出了泰勒公式在其它方面的应用,,显现出泰勒公式的应用之广泛。希望其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导。 接下来我将分两方面的应用来阐述本次论文的主要内容。 一、带不同型余项泰勒公式的证明: 本次证明将涉及到三种不同余项的泰勒公式的证明,即: 1.带皮亚诺余项的泰勒公式; 2.带拉格朗日余项的泰勒公式; 3.带积分型余项的泰勒公式; 二、泰勒公式的应用: 本次论文将涉及到泰勒公式在以下七个方面的应用: 1、泰勒公式在极限计算中的应用; 在函数极限运算中,不定式极限的计算始终为我们所注意,因为这是比较困难的一类问题。计算不定式极限我们常常使用洛必达法则或者洛必达法则与等价无穷小结合使用。但对于有些未定式极限问题若采用泰勒公式求解,会更简单明了。我将在论文中就例题进行探讨。 2、泰勒公式在判定级数及广义积分敛散性中的应用;

泰勒公式证明及应用讲解

泰勒公式及其应用 佟梅 (渤海大学数学系辽宁锦州121000 中国) 摘要:数学是一门很重要的学科,许多的数学家研究出了各种定理、公式,并且都证实了它们的正确性,应用这些定理公式解决了许多疑难问题,泰勒公式就是其一。泰勒公式是数学分析中的一个重要公式,它在解决分析中的问题时应用广泛、灵活,也是解决各种数学问题的一个强有力的工具之一,本文对泰勒公式进行了简单的介绍,重点介绍了它的各种应用,作了一个较系统和规律性的分析综述。首先,介绍了泰勒定理及其几种表示形式的泰勒公式,在后面的应用中会应用到。其次,就是本文的重点——泰勒公式的应用,介绍了九个方面,主要包括:研究级数和广义积分的敛散性、利用泰勒公式求极限、近似计算和误差估计、确定和比较无穷小的阶、证明不等式等等,通过许多的例题分析,体现出了泰勒公式在解决数学问题时的重要性和简洁性。 关键词:泰勒公式,极限,误差估计,敛散性,不等式。 Taylor’s formula and its application Tong Mei (Department of Mathematics Bohai University,Liaoning Jinzhou 121000 China) Abstract:Mathematics is a very important discipline. Many mathematicians studied all kinds of theorem and formula, proved their correctness, and applied them to solve a number of difficult problems. Taylor formula is one of them.Taylor’s formula is a important formula in mathematical analysis. It can be used widely and conveniently to solve the problems in analysis. In addition, it is one of powerful tools to solve all kinds of mathematics problems. This article provides a simple introdu ction to Taylor’s formula, emphasizes its various applications, and makes a systematic and inerratic analysis summary. Firstly, this article introduces the Taylor theorem and some Taylor’s formula of different _expression forms, which will be applied later. Next, it is the emphasis of this article -- the application of Taylor’s formula. Here nine aspects are introduced: studying the convergence and divergence of series and the improper integral, using the Taylor’s formnla to calculate limit, the approximate calculation and error estimate, determining and comparing the order of infinitesimals, the application in theorem proof, proving inequality, and so on. Through many example analysis, the importance and conciseness of Taylor’s formula in solving mathematic s questions are well illustrated. Key Words: Taylor’s formula; limit; error estimate ;convergent or divergent; inequality.

证明数列不等式之放缩技能及缩放在数列中的应用全套整合

证明数列不等式之放缩技巧以及不等式缩放在数列中应用 大全 证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时, (2) 12n n n +<. 证法一:令)6(2 ) 2(≥+=n n n c n n ,则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683 1.644 n c c ?≤==< 于是当6n ≥时,2 (2) 1.2 n n +< 证法二:可用数学归纳法证.(1)当n = 6时,6 6(62)483 12644 ?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即 (2) 1.2k k k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3) 1.222(2)(2)2k k k k k k k k k k k k k k ++++++++=?<<++ 由(1)、(2)所述,当n ≥6时, 2 (1) 12n n +<. 二、借助数列递推关系 例 2.已知12-=n n a .证明: ()23 11112 3 n n N a a a *++++ <∈. 证明:n n n n n a a 121121************?=-?=-<-=+++ , ∴3 2])21(1[321)21(...12111112122132<-?=?++?+<+++= -+n n n a a a a a a S . 例3. 已知函数f(x)= 52168x x +-,设正项数列{}n a 满足1a =l ,()1n n a f a +=. (1) 试比较n a 与5 4 的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1 n i i b =∑.证明:当n ≥2时,S n <1 4(2n -1).

导数在不等式证明中的应用

导数在不等式证明中的应用 引言 不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学习的重要内容之一,也是难点之一。其常用的证明方法有: 比较法、综合法、分析法、重要不等法、数学归纳法等等,然而有一些问题用上面的方法来解决是很困难的,我们在学完导数及其应用这一内容以后,可以利用导数的定义、函数的单调性、最值性(极值性)等相关知识解决一些不等式证明的问题。导数也是微积分的初步基础知识,是研究函数、解决实际问题的有力工,它包括微分中值定理和导数应用。不等式的证明在数学课题中也是一个很重要的问题,此类问题能够培养我们理解问题、分析问题的能力。本文针这篇论文是在指导老师的悉心指导和严格要求下完成的。这篇论文是在指导老师的悉心指导和严格要求下完成的。对导数的定义、微分中值定理、函数的单调性、泰勒公式、函数的极值、函数的凹凸性在不等式证明中的应用进行了举例。 一、利用导数的定义证明不等式 定义 设函数()f f x =在点0x 的某领域内有定义,若极限 ()() 000 lim x x f x f x x x →-- 存在 则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作()'0f x 令 0x x x =+?,()()00y f x x f x ?=+?-,则上式可改写为 ()()()00'000lim lim x x f x x f x y f x x x ?→?→+?-?==?? 所以,导数是函数增量y ?与自变量增量x ?之比 y x ??的极限。这个增量比称为函数关于自变量的平均变化率( 又称差商),而导数()'0f x 则为f 在0x 处关于x 的变化率。 以下是导数的定义的两种等价形式:

相关主题
文本预览
相关文档 最新文档