当前位置:文档之家› 基因工程的应用..

基因工程的应用..

基因工程的应用..
基因工程的应用..

课时课题:专题一 1.3基因工程的应用(第一课时)课型:新授课

介导的抗病毒性还存在一些问题:①转基因植物对病毒的抗性有局限性,仅限于特定的病毒(被使用CP基因的病毒)或密切相关的病毒;②转基因植物大多数只是发病延缓,一般为两周,并非根治;③

(1)获得耐盐基因后,构建重组DNA分子所用的限制性内切酶作用于图中的处,DNA连接酶作用于处。

(2)获得目的基因的方法有直接提取和人工合成两种,如果通过反转

教学反思:

基因工程的应用是基因工程操作程序的一个必然的结果,如果本节只作为成果的学习,就显得少点什么,思维力度不足了。为此,加强指导学生搜集并处理信息的能力。即可加强学生的积极性,又可加强他们搜集并处理信息的能力。

专题一 1.3基因工程的应用(第一课时)导学案

班级________ 层次______ 姓名____________

学习过程:

一、基础知识梳理:

(仔细阅读教材,根据导学案上的知识链条,完成下面的内容)

植物基因工程硕果累累:

植物基因工程技术主要用于提高农作物的能力,以及改良农作物的和利用植物生产等方面。

(一)抗虫转基因植物

1.杀虫基因种类:Bt毒蛋白基因、抑制剂基因、抑制剂基因、植物凝集素基因等。

2.成果:抗虫植物:棉、玉米、马铃薯、番茄等。

(二)抗病转基因植物

1.植物的病原微生物:、真菌和细菌等。

2.抗病基因种类

(1)抗病毒基因:病毒基因和病毒的复制酶基因。

(2)抗真菌基因:基因和抗毒素合成基因。

(3)成果:烟草花叶病毒的转基因烟草和抗病毒的转基因小麦、甜椒、番茄等。

(三)抗逆转基因植物

1.抗逆基因:调节细胞基因使作物抗碱、抗旱;鱼的抗冻蛋白基因使作物耐寒;抗除草剂基因,使作物抗除草剂。

2.成果:烟草、大豆、番茄、玉米等。

(四)转基因改良植物品质

1.优良基因:必需氨基酸的蛋白质编码基因、控制番茄果实成熟的基因和植物花青素代谢有关的基因。

2.成果:转基因玉米、转基因延熟番茄和转基因矮牵牛。

例1、科学家已能运用基因工程技术,让羊合成并由乳腺分泌抗体,相关叙述中正确的是( )

①该技术将导致定向变异②DNA连接酶把目的基因与运载体黏性末端的碱基对连接起来

③蛋白质中的氨基酸序列可为合成目的基因提供资料

④受精卵是理想的受体细胞

A.①②③④B.①③④C.②③④D.①②④

基因工程药物异军突起

1.来源:转基因。

2.成果:等。

3、作用:治疗人类肿瘤、心血管疾病、遗传病、传染病、糖尿病、类风湿等疾病。

例2、抗病毒转基因植物成功表达后,以下说法正确的是( )

A.抗病毒转基因植物,可以抵抗所有病毒B.抗病毒转基因植物,对病毒的抗性具有局限性或特异性C.抗病毒转基因植物可以抗害虫D.抗病毒转基因植物可以稳定遗传,不会变异

二、合作探究:

二、合作探究、展示自我:

利用参考书,完成下列问题

1、转基因生物与目的基因的关系

2、植物基因工程硕果累累有哪些?

3、基因工程药物有哪些成果?

4、基因工程生产药物的优点?

三、自主学习效果检测

1、抗病毒转基因植物成功表达后,以下说法正确的是

A.抗病毒转基因植物,可以抵抗所有病毒

B.抗病毒转基因植物,对病毒的抗性具有局限性或特异性

C.抗病毒转基因植物可以抗害虫

D.抗病毒转基因植物可以稳定遗传,不会变异

2、若利用基因工程技术培育能固氮的水稻新品种,其在环保上的重要意义是

A.减少氮肥的使用量,降低生产成本

B.减少氮肥的使用量,节约能源

C.避免氮肥过多引起环境污染D.改良土壤结构

3、科学家能利用基因工程技术培育出特殊的西红柿、香蕉,食用后人体内可产生特定的抗体,这说明这些西红柿、香蕉中的某些物质至少应

A.含有丰富的免疫球蛋白B.含有某种抗原特异性物质

C.含有一些生活的病菌D.能刺激人体内的效应T细胞分泌抗体

4、下列有关基因工程技术的应用中,对人类不利的是

A.制造“工程菌”用于药品生产

B.创造“超级菌”分解石油、DDT

C.重组DNA诱发受体细胞基因突变

D.导人外源基因替换缺陷基因

5、“工程菌”是指

A.用物理或化学方法诱发菌类自身某些基因得到高效表达的菌类细胞株系

B.用遗传工程的方法把相同种类不同株系的菌类通过杂交得到新细胞株系

C.用基因工程的方法使外源基因得到高效表达的菌类的细胞株系

D.从自然界中选取的能迅速增殖的菌类

四、课下达标检测

1、运用现代生物技术的育种方法,将抗菜青虫的Bt基因转移到优质油菜中,培育出转基因抗虫的油菜品

种,这一品种在生长过程中能产生特异的杀虫蛋白,对菜青虫有显著抗性,能大大减轻菜青虫对油菜的危

害,提高油菜产量,减少农药使用,保护农业生态环境。根据以上信息,下列叙述正确的是

A、Bt基因的化学成分是蛋白质

B、Bt基因中有菜青虫的遗传物质

C、转基因抗虫油菜能产生杀虫蛋白是由于具有Bt基因

D、转基因抗虫油菜产生的杀虫蛋白是无机物

2、基因工程培育的“工程菌”通过发酵工程生产的产品,不包括

A.白细胞介素一2 B.干扰素C.聚乙二醇D.重组乙肝疫苗

3、下列不属于利用基因工程技术制取的药物是

A、从大肠杆菌体内制取白细胞介素

B、在酵母菌体内获得的干扰素

C、在青霉菌体内提取青霉素

D、在肠杆菌体内获得胰岛素

4、下列有关基因工程技术的应用中,对人类不利的是

A.制造“工程菌”用于药品生产B.创造“超级菌”分解石油、DDT

C.重组DNA诱发受体细胞基因突变D.导入外源基因替换缺陷基因

5、干扰素是治疗癌症的重要药物,它必须从血液中提取,每升人血中只能提取0.5 g,所以价格昂贵。美国加利福尼亚的某生物制品公司用如下方法生产干扰素。如下图所示:

从上述方式中可以看出该公司生产干扰素运用的方法是

A.个体间的杂交B.基因工程C.细胞融合D.器官移植

6、生产上培育无子番茄、青霉素高产菌株、杂交培育矮秆抗锈病小麦、抗虫棉的培育原理依次是

①生长素促进果实发育②染色体变异③基因重组④基因突变⑤基因工程

A.①②③④B.①④③②C.①④②⑤D.①④③③

7、下列属于利用基因工程技术培育的新品种的是A、耐寒的小黑麦B、抗棉铃虫的转基因抗虫棉

C、太空椒D、试管牛

8、运用现代生物技术的育种方法,将抗菜青虫的Bt基因转移到优质油菜中,培育出转基因抗虫的油菜品种,这一品种在生长过程中能产生特异的杀虫蛋白,对菜青虫有显著抗性,能大大减轻菜青虫对油菜的危害,提高油菜产量,减少农药使用,保护农业生态环境。根据以上信息,下列叙述正确的是

A.Bt基因的化学成分是蛋白质B.Bt基因中有菜青虫的遗传物质

C.转基因抗虫油菜能产生杀虫蛋白是由于具有Bt基因

D.转基因抗虫油菜产生的杀虫蛋白是无机物

9、下列不属于基因工程方法生产的药品是

A.干扰素B.白细胞介素—2 C.青霉素D.乙肝疫苗

10.为扩大可耕地面积,增加粮食产量,黄河三角洲等盐碱地的开发利用备受关注。我国科学家应用耐盐基因培育出了耐盐水稻新品系。

(1)获得耐盐基因后,构建重组DNA分子所用的限制性内切酶作用于图中的处,DNA连接酶作

用于处。(填“a”或“b”)

(2)获得目的基因的方法有直接提取和人工合成两种,如果通过反转录法获得了人类胰岛素基因,那么这个基因与原基因相同吗?(相同、不同)。原因是什么?

(3)由导入目的基因的水稻细胞培养成植株需要利用技术。该技术是一种生殖的新技术,但如果培养的组织为花药,则应为生殖。

(4)在培养水稻细胞的过程中,要经历的两个重要过程分别是和。

(5)为了确定耐盐转基因水稻是否培育成功,既要用放射性同位素标记的作探针进行分子杂交检测,又要用从个体水平鉴定水稻植株的耐盐性。

11、随着科学技术的发展,化学农药的产量和品种逐年增加。但害虫的抗药性也不断增强,对农作物危害仍然很严重。如近年来,棉铃虫在我国大面积暴发成灾,造成经济损失每年达100亿以上。针对这种情况,江苏农科院开展“转基因抗虫棉”的科技攻关研究,成功地将某种细菌产生抗虫毒蛋白的抗虫基因导人棉花细胞中,得到的棉花新品种对棉铃虫的毒杀效果高达80%以上。就以上材料,分析回答:

(1)抗虫基因之所以能导人植物体内,原因是。

(2)“转基因抗虫棉”具有抗害虫的能力,这表明棉花体内产生了抗虫的物质。这个事实说明,害虫和植物共用一套,蛋白质合成的方式是的。

(3)“转基因抗虫棉”抗害虫的遗传信息传递过程可表示为。

(4)该项科技成果在环境保护上的作用是

(5)科学家预言,此种“转基因抗虫棉”独立种植若干代以后,也将出现不抗虫的植株,此现象来源于

(6)基因导人工程技术已在多方面得到应用,请各举一例说明该技术的应用可能带来的正负面影响。

12、填表

抗虫但不抗病毒、细

菌、真菌等。培育抗虫

作物的优点:_________

____________________

____不同的抗虫基因

作用机理不同。Bt毒蛋

白基因来自____

含必需氨基酸的

蛋白质编码基因

控制番茄果实成

熟的基

_____代谢有关的

基因

五、拓展提升

1、利用微生物生产药物的优越性:

利用微生物生产蛋白质类药物,是指将人们需要的某种蛋白质的编码基因,构建成表达载体后导入微生物,然后利用微生物发酵来生产蛋白质类药物。有以下优越性:

(1)利用活细胞作为表达系统,表达效率高,无需大型装置和大面积厂房就可以生产出大量药品。(2)可以解决传统制药中原料来源的不足。利用基因工程菌发酵生产就不需要从动物或人体上获取原料。(3)降低生产成本,减少生产人员和管理人员。

2.在抗病毒转基因植物中,为什么使用病毒外壳蛋白基因可以抗病毒侵染?

关于病毒外壳蛋白(coat protein,CP)基因导入植物后的抗病毒机理,目前有几种假说。一种假说认为:CP基因在植物细胞内表达积累后,当入侵的病毒裸露核酸进入植物细胞后,会立即被这些外壳蛋白重新包裹,从而阻止病毒核酸分子的复制和翻译。另一种假说认为:植物细胞内积累的病毒外壳蛋白会抑制病毒脱除外壳,使病毒核酸分子不能释放出来。然而最近的研究表明,如果将病毒的外壳蛋白的AUG起始密码缺失,使之不能被翻译,或者将外壳蛋白基因变成反义RNA基因,整合到植物细胞染色体上,转基因植物则有很好的抗性。因此,有人认为抗性机理不是外壳蛋白在起作用,而是CP基因转录出RNA后,与入侵病毒RNA之间的相互作用起到了抗性作用。

利用CP介导的抗病毒性还存在一些问题:①转基因植物对病毒的抗性有局限性,仅限于特定的病毒(被使用CP基因的病毒)或密切相关的病毒;②转基因植物大多数只是发病延缓,一般为两周,并非根治;③潜在着植物表达的外壳蛋白包被与另一种病毒形成新的杂合病毒的危险。

六、学习反思

基因工程应用实例及基因工程前景展望

基因工程应用实例及基因工程前景展望 高一(6) 陈韬 1、什么是基因工程(又称基因拼接技术和DNA重组技 术)? 是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 2、原理? 基因重组:通过将外源基因通过体外重组后导入受体细胞内,从而使这个基因能在受体细胞内复制、转录、翻译表达。它是用人为的方法将所需要的某一供体生物的——DNA 提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中进行正常的复制和表达,从而获得新物种。 3、应用? (1)农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。

(2)环境保护 基因工程做成的DNA 探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 (3)医药卫生 1.基因工程药品的生产: ⑴基因工程胰岛素 ⑵基因工程干扰素 ⑶其它基因工程药物 2.基因诊断与基因治疗: ◆SCID 的基因工程治疗 1. 转基因鱼 2. 转基因牛 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 8.特殊动物 9.抗虫棉

1.2基因工程的应用(第1课时)

1.2基因工程应用(第1课时) (一)基因工程应用编制:王曼审核:秦磊校对:张统省 【学习目标】 1.举例说出基因工程的应用 2.关注转基因生物的安全性问题 3.举例说出生物武器的危害 【自学质疑】 一、回顾: 1.基因工程基本操作的“五步曲”是什么?PCR扩增过程 2.基因表达载体的组成及各自作用 3.将目的基因导入植物细胞、动物细胞、微生物细胞的常用方法 4.目的基因的检测与鉴定的步骤 5.必记概念:基因组文库 cDNA文库基因的编码区和非编码区 启动子、终止子、起始密码、终止密码内含子、外显子 RNA聚合酶结合位点、结构基因与标记基因基因探针显微注射感受态细胞 二、导学 知识网络体系抗虫转基因植物 抗病转基因植物 转基因植物其他抗逆转基因植物 改良植物品质 提高动物生长速度 改善畜产品的品质 转基因动物用转基因动物生产药物 用转基因动物作器官移植的供体 基因工程药物 基因治疗 转基因生物的安全性问题(食品安全、生态安全) 生物武器的危害性 【质疑讨论】 1.植物、动物的基因工程技术主要在哪些方面取得成果? 2.抗虫基因、抗病基因、抗逆基因、改良植物品质的基因主要有哪些? 3.“乳腺生物发生器”的优缺点及基因工程的大体操作步骤。 4.基因治疗的概念、种类及治病原理 知识点归纳: 一、植物基因工程成果 1.抗虫转基因植物 杀虫基因:主要有Bt毒蛋白基因、蛋白酶抵制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。 优点:降低生产成本,减少环境污染 2.抗病转基因植物 抗病基因:使用最多的是病毒外壳蛋白基因和病毒的复制酶基因;抗真菌转基因植物中可使用的基因有几丁质酶基因抗毒素合成基因。 3.其他抗逆转基因植物: 抗逆基因:调节渗透压的基因(使植物细胞渗透压升高以适应盐碱或干旱环境)、抗冻蛋白基因、抗除草剂基因。 作用:以提高植物对环境适应能力。 4.利用转基因改良植物的品质 举例:将必需氨基酸含量多的蛋白质编码基因导入植物中,或者改变这些氨基酸合成途径中某种关键酶的活性,以提高植物氨基酸含量。 二、动物基因工程 1.用于提高动物生长速度(生长激素基因) 2.用于改善畜产品的品质 3.用转基因动物生产药物(乳腺生物反应器) 优点:产量高;质量好;成本低;易提取。 缺点:只能是雌性个体在泌乳期时才行。 提示:①乳腺蛋白基因的启动子是一种特异性表达的启动子;受体细胞为受精卵。②有些可以导入膀胱壁细胞,从尿液中提取。 4.用转基因动物作器官移植的供体 原理:使移植器官的没有抗原,就不会发生免疫排斥反应 方法:将器官供体基因组导入某种调节因子,以抑制抗原决定基因的表达,或设法除去抗原决定基因。 5.基因工程药品 三、基因治疗 1.概念:把正常基因导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的,这是治疗遗传病的最有效手段。 2.种类:体外基因治疗和体内基因治疗。 3.原理:遗传病患者一般缺少正常基因,所以导入正常基因后,使其表达,即可对病情起到缓解作用。 提示:受体细胞一般为体细胞而不是受精卵,基因治疗后只有一部分细胞含有正常基因。基因治疗没有影响原有基因,所以细胞中两种基因同时存在。 【矫正反馈】 1.若利用基因工程技术培育能固氮的水稻新品种,其在环保上的重要意义是()A.减少氮肥的使用量,降低生产成本 B.减少氮肥的使用量,节约能源 C.避免氮肥过多引起环境污染 D.改良土壤结构 2.基因治疗是指() A.对有基因缺陷的细胞进行修复,从而使其恢复正常,达到治疗疾病的目的 B.把健康的外源基因导入到有基因缺陷的细胞中,达到治疗疾病的目的 C.运用人工诱变的方法,使有基因缺陷的细胞发生基因突变恢复正常 D.运用基因工程技术,把有缺陷的基因切除,达到治疗疾病的目的 3.疗白化病、苯丙酮尿症等人类遗传病的根本途径是() A.口服化学药物B.注射化学药物 C. 采用基因疗法替换致病基因 D.利用辐射或药物诱发致病基因突变 4.上海医学遗传研究所成功培育出第一头携带白蛋白的转基因牛,他们还研究出一种可大大提高基因表达水平的新方法,使转基因动物乳汁中的药物蛋白含量提高30多倍,转基因动物是指() A.提供基因的动物 B.基因组中增加外源基因的动物 C.能产生白蛋白的动物 D.能表达基因信息的动物 5.在基因诊断技术中,所用的探针DNA分子中必须存在一定量的放射性同位素,后者的作用是() A.为形成杂交的DNA分子提供能量B.引起探针DNA产生不定向的基因突变 C. 作为探针DNA的示踪元素D.增加探针DNA的分子量 6.诊断苯丙酮尿症所用的探针是() A.32P半乳糖甘转移酶基因B.荧光标记的苯丙氨酸羧化酶

基因工程及其应用图文稿

基因工程及其应用文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

第2节基因工程及其应用(第1课时)知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA 重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究

传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的 水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是 指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么? 七、基因重组与基因工程比较

基因工程在园林植物中的应用

基因工程在园林植物中的应用 摘要:与传统育种方法相比,基因工程技术具有独特优势,近年来, 基因工程育种一直是园林植物育种研究的热点。本文就近年来与花卉基因工程相关的研究与应用进行综述, 同时简单评述了花卉基因工程育种研究中存在的问题并展望其应用前景。 关键词:基因工程,育种,园林,花卉 正文: 我国的花卉栽培有着悠久的历史, 花卉种质资源丰富, 为世界园林的发展作出了巨大的贡献。但是, 与花卉业发达的一些国家相比, 我国的花卉发展水平还处于较为落后的阶段。传统育种大多通过杂交或无性繁殖筛选的方式选择良种, 育种周期长且效率低。而辐射育种、航天育种等则难以定向培育新品种, 随机性大。基因工程育种具有育种周期短、效率高, 培育定向性强和可跨种类利用有价值的基因等优点。因此, 花卉基因工程育种具有极大的发展潜力, 为改良和创造优、新、特花卉品种提供了快捷途径。 基因工程又称遗传工程,是生物工程的主导技术。DNA重组技术或分子克隆是基因工程的核心。与传统育种相比,花卉基因工程育种有如下优点:①在基因水平上改造植物,更具精确性;②能够定向修饰花卉某个或某些性状而保留其他性状,提高育种的目的性和可操作性;通过引入外来基因扩大基因库,从而培育出新型的花卉品种;③能够创新种质,打破物种间交流的界限,为花卉的定向育种提供更先进的技术保障;④育种周期短,效率高。 目前, 植物遗传转化方法主要有农杆菌介导转化法和DNA直接导入法两类。农杆菌介导法和基因枪法是外源基因进入植物细胞应用比较广泛和比较成功的方法。观赏花卉的品质性状通常包括花色、花香、花形、花期、株形、叶色和观赏寿命等, 这些品质的优劣会直接影响其观赏价值和商品价值。植物基因工程可以通过定向修饰花卉的某些目标性状而保留其他原有优良性状或引入外源基因而扩大其基因库等方式来培育具有独特新奇品质的高档花卉,创造出巨大的经济效益。因此, 花卉基因工程在花卉品质性状改良方面有着广阔的应用前景。 目前基因工程在花卉育种中的应用方面主要有: 1、花色基因工程 花的颜色是一种复杂性状, 它主要由三大类色素决定, 即类黄酮、类胡萝卜素及甜菜色素。这三大类色素的合成都涉及到多个代谢步骤、多种酶的催化, 因而与之相关的基因也较多, 其作用机理十分复杂。花的颜色还受到色素浓度、多种色素的共同成色作用, 某些色素与重金属离子螯合作用、液泡液的PH 值等因素的影响。 目前, 花色修饰主要通过以下几种方式进行。(1) 直接导入新的目的基因法。(2) 反义基因抑制法。(3) 共抑制法。 菊花是中国传统名花,其花色变异丰富,但独缺蓝色系;瓜叶菊是菊科千里光属广泛栽培的观赏植物,具有典型的蓝色系。研究通过对比菊花和瓜叶菊花青素苷生物合成途径上关键结构基因的表达差异,探讨菊花蓝色系缺失的原因,分析花发育过程中蓝色花形成的分子生物学机理,对于开展花色改良的分子育种具有重要的理论意义和实际应用价值。 2、香味基因工程 花的香味是花卉的一个重要观赏性状。但是花卉香味基因工程目前还处于起步阶段, 研究进展缓慢。究其原因, 主要是芳香物质有比花色素更为复杂的代谢途径。控制香味的代谢物远比控制色彩的代谢物多。 3、花发育基因工程 目前, 研究人员已克隆出了一批与花发育相关的基因。主要有开花基因、花分生组织特

基因工程的发展与前景

基因工程的发展与前景 摘要:基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。本文将从基因工程的概况、发展、应用与前景进行介绍和总结。 关键词:基因工程;发展;前景 1 基因工程的概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术。是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔生医奖颁给发现DNA 限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。2000年,国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程。 2 基因工程的发展 1860至1870年,奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年,丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年,3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年,美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年,科学家成功分离出第一个基因。 1980年,科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年,科学家首次培育出世界第一个转基因植物转基因烟草。 1988年,K.Mullis发明了PCR技术。 1990年10月,被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1994年,中科院曾邦哲提出转基因禽类金蛋计划和“输卵管生物反应器

选修三1.3基因工程的应用(徐新林)

专题1第3节基因工程的应用(P17) 【学习要求】 1.举例说出基因工程在农业、医疗、环境保护等方面的广泛应用及其发展前景2.关注基因工程的发展,认同基因工程的应用促进了生产力的提高 【学习重、难点】 重点:基因工程在农业、医疗、环境保护等方面的广泛应用难点:基因工程在农业、医疗、环境保护等方面的广泛应用 ?学习活动一举例说出植物基因工程成果 【自主学习】 阅读教材P17-19页,完成以下内容: 植物基因工程技术主要用于①提高农作物的能力,②改良农作物的③利用植物生产等方面。 (一)抗虫转基因植物 1.杀虫基因种类:①Bt毒蛋白基因、②抑制剂基因、③抑制剂基因、④植物凝集素基因等。 2.成果:抗虫植物:棉、玉米、马铃薯、番茄等。 (二)抗病转基因植物 1.植物的病原微生物:主要有、真菌和细菌等。 2.抗病基因种类 (1)抗病毒基因(使用最多):病毒基因和病毒的复制酶基因。 (2)抗真菌基因:基因和抗毒素合成基因。 (3)成果:烟草花叶病毒的转基因烟草和抗病毒的转基因小麦、甜椒、番茄等。 (三)其他抗逆转基因植物 1.抗逆基因:调节细胞基因使作物抗碱、抗旱;鱼的抗冻蛋白基因使作物耐寒;抗除草剂基因,使作物抗除草剂。 2.成果:烟草、大豆、番茄、玉米等。 (四)转基因改良植物品质 1.优良基因:必需氨基酸的蛋白质编码基因、控制番茄果实成熟的基因和植物花青素代谢有关的基因。 2.成果:转基因玉米、转基因延熟番茄和转基因矮牵牛。 【正误判断】 1.我国的转基因抗虫棉转入的抗虫基因是Bt毒蛋白基因() 2. 我国的转基因抗虫棉能抗所有的棉花害虫。 3.为培育抗除草剂的作物新品种,导入抗除草剂基因时只能以受精卵为受体() 4.目前,植物基因工程技术主要应用于提高农作物的抗逆性、生产某些天然药物、改良农作物的品质、作器官移植的供体() ?学习活动二举例说出动物基因工程成果 【自主学习】 阅读教材P20-21页,完成以下内容: (一)提高动物的生长速度 1.目的基因:外源基因。 2.成果:转基因绵羊、转基因鲤鱼。 (二)改善畜产品的品质 1.优良基因:肠乳糖酶基因。

1.3 基因工程的应用

1.3 基因工程的应用 1.举例说出基因工程的应用及取得的丰硕成果。(重点) 2.了解基因工程的进展。3.了解基因工程在农业和医疗等方面的应用。(难点)

一、植物基因工程的成果(阅读教材P17~P20) 植物基因工程技术主要用于提高农作物的抗逆能力,以及改良农作物的品质和利用植物生产药物等方面。 1.抗虫和抗病转基因植物 2. (1)抗逆基因:调节细胞渗透压的基因使作物抗盐碱、抗干旱;鱼的抗冻蛋白基因使作物耐寒;抗除草剂基因使作物抗除草剂。 (2)成果:烟草、大豆、番茄、玉米等。 3.利用转基因改良植物的品质

植物基因工程成果表现 “三抗一优良”,三抗是指“抗虫”“抗病”和“抗逆”,一优良是指转入的优良基因表达的性状表现优良。 二、动物基因工程的前景(阅读教材P20~P21)

三、基因工程药物(阅读教材P21~P23) 1.药物来源:转基因的“工程菌”。 2.成果:重组人胰岛素、细胞因子、抗体、疫苗、激素等。 四、基因治疗(阅读教材P23~P24) 1.概念:把正常基因导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 2.成果:将腺苷酸脱氨酶基因转入患者淋巴细胞中,治疗复合型免疫缺陷症。 3.方法 (1)体外基因治疗:先从病人体内获得某种细胞,如T淋巴细胞,进行培养。然后,在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。 (2)体内基因治疗:直接向人体组织细胞中转移基因的治病方法。 连一连 判一判

(1)转基因抗虫棉的Bt毒蛋白基因能抗病毒、细菌、真菌。(×) (2)“转基因植物”是指植物体细胞中出现了新基因的植物。(×) 分析:转基因植物是指细胞中被转入了外源基因的植物,并非出现新基因。 (3)(2018·宿迁高二检测)基因工程中,要培育转基因植物和动物,选用的受体细胞都是受精卵。(×) (4)利用工程菌可生产人的胰岛素等某些激素。(√) (5)(2018·绵阳高二期末)直接在患者组织细胞中,进行改造致病基因的方法为体内基因治疗。(×) (6)基因治疗又叫基因诊断。(×) 三种转基因生物的生产过程

基因工程的现状及发展

基因工程的现状及发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因工程的现状及发展 研究背景: 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 目的意义: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型。 内容摘要: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 成果展示:

精编高一下册《基因工程及其应用》知识点梳理:生物篇

精编高一下册《基因工程及其应用》知识点 梳理:生物篇 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 2.原理基因重组 3.工具: A.基因的剪刀:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的针线:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的运载工具:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。

c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。 5.转基因生物和转基因食品的安全性

基因工程在植物育种中的应用

基因工程在植物育种中的应用 官玲(GUAN Ling) (莆田学院环境与生命科学系福建莆田351100) 摘要:在现代生物技术中,基因工程作为一个重要的部分,已经在生产和生活等多方面起着重要的作用。不断成熟的基因工程技术它解决了传统育种不能突破的问题,与传统育种方法相比, 基因工程技术具有独特优势可以定向修饰植物的某些目标性状并保留其它原有性状通过引入外来基因扩大基因库。本文主要综述了基因工程在药用植物和花卉植物育种中的研究状况及对以后的发展现状进行的展望。 关键词:基因工程;植物育种;基因芯片技术;前景展望 基因工程是指运用分子生物学技术, 将目的基因或DNA片段通过载体或直接导入受体细胞, 使受体细胞遗传物质重新组合, 经细胞复制增殖, 新的基因在受体细胞中表达, 最后从转化细胞中筛选有价值的新类型, 继而它再生为工程植株, 从而创造新品种的一种定向育种技术。与传统育种相比, 植物基因工程具有以下特点植物基因工程是在基因水平上来改造植物的遗传物质, 更具有科学性和精确性,同时育种速度也大大加快能定向改造植物的遗传性状, 提高了育种的目的性与可操作性植物基因工程大大地扩展了育种的范围, 打破了物种之间的生殖隔离障碍, 实现了基因在生物界的共用性, 丰富了基因资源及植物品种。 1.基因工程技术在药用植物育种中的应用 由于医药事业的快速发展, 野生药材资源已远远不能满足需要, 尤其是许多原料性药用植物资源已面临资源枯竭的威胁, 加之人工驯化和栽培的药用植物物种退化和濒危的问题极为突出。根据这些中药资源的活性成分、生长规律、生产特性, 运用生物工程技术对其进行保存性研究, 从而保护濒危紧缺的药用植物资源.。 通过遗传转化, 将目的基因(如抗逆、抗病毒、抗虫、抗除草剂等相关基因)导入药用植物以改变传统遗传性状, 培育优良品种, 增强药用植物抗病毒、抗虫害、抗除草剂的能力, 利用植物生产异源蛋白及改变植物质量性状、保护和繁殖濒临灭绝的植物材料[1]. 1.1优良品种的培育 刘建勋等[2]利用PCR 技术克隆出青蒿素生物合成途径中的关键酶基因和东北红豆杉中紫三醇生物合成途径中起限速作用的紫三烯合成酶基因, 该基因cDNA 片段由2586 个核苷酸组成, 将该cDNA 片段导入红豆杉细胞后, 影响紫杉醇含量。NSFC 资助的“银杏内酯合成二萜环化酶基因克隆与生物转化研究”、“水母雪莲P 基因克隆及其对3-脱氧类黄酮化合物生物合成调控的研究”、“丹酚酸类化合物生物合成关键酶基因克隆与调控研究”、“重组蝎毒素

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

高三生物知识点归纳:基因工程及其应用

高三生物知识点归纳:基因工程及其应用 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 高考生物知识点归纳 2.原理基因重组 3.工具: A.基因的”剪刀”:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的”针线”:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的”运载工具”:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。 c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基

因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。

基因工程及其应用完整版

基因工程及其应用集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

第2节基因工程及其应用(第1课时) 知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究 传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么?

基因工程的现状与发展趋势

题目:基因工程的现状与发展趋势专业:13食品科学与工程 学号:132701105 姓名:盛英奇 日期:2015/7/1

【摘要】从20世纪70 年代初发展起来的基因工程技术,经过40多年来的进步与发展,已成为生物技术的核心内容。生物学成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 【关键词】基因工程技术;应用;前景;现状 一、墓因工程的原理及研究内容 基因工程是人们在揭示生命之谜的过程中建立起来的。早在300多年前,人们就发现,世界上生物尽管种类繁多,千姿百态,但都是细胞(如肉眼看不见的细菌等微生物)或者是由细胞构成的(如现存的200多万种多细胞动植物)。人们还发现,生物有遗传和变异的特征,遗传保证了生物种类的延续不断,变异则赋予生物种的进化,保证生物种类对环境的适应。而生物的所有特性及遗传变异都是由生物体细胞内的遗传物质所决定的,这种遗传物质就是被科学家称之为脱氧核糖核酸(简称DNA)的大分子物质,一般位于生物的细胞核内。DNA是由许多核昔酸连接而成的高分子化合物,如把DNA比喻成长链条,核昔酸就是组成这链条的一个个环节。生物细胞核内的DNA分子是由两条成对的多核昔酸长链互相缠人类开始学会干预生物的变异,即通过杂交、筛选等方式改变生物物种的某些特性,使之有利于人类,如水稻、小麦等作物的育种,家禽家畜优良品系的培育等,它是通过动植物父、母本交配繁殖时,生殖细胞内DNA上相应性状基因互相间可能出现的交换来实现的,这种交换的概率是人们不能控制的,所以选种的过程较为缓慢,需几年乃至几十年的时间,而且亲缘关系相差较远的生物种之间很难杂交。而本世纪}o年代初诞生的基因工程,则是按照人类的需要,从某种生物体的基因组中,分离出带有目的基因(即所需基因)的DNA片段,运用重组DNA技术,对这些DNA片段进行体外操作,把不同来源的基因按照设计的蓝图,重新构成新的基因组(即重组体),再将重组DNA分子插入到原先没有这类DNA 片段的受体细胞(亦称宿主细胞)的DNA上,并使其不仅能“安家落户”,而且能“传种接代”,即能准确地把该外源基因的遗传特性在新的细胞(宿主细胞)里增殖和表达出来。就像一台机器上的零部件拆下来安装到另一台机器上。在生物体中,这种生命零件就是基因。因为用的是工程技术的方法原理,故称基因工程,亦叫遗传工程。用这种方法所形成的杂种DNA分子与神话中的那种狮首、羊身、

选修三专题一1.3《基因工程的应用》教案.doc

选修三专题一第3节基因工程的应用 一、教学目标 1.举例说出基因工程应用及取得的丰硕成果。 2.关注基因工程的进展。 3.认同基因工程的应用促进生产力的提高。 二、教学重点和难点 1.教学重点 基因工程在农业和医疗等方面的应用。 2.教学难点 基因治疗。 三、教学过程 1、转基因生物与目的基因的关系 转基因生物目的基因目的基因从何来 抗虫棉Bt毒蛋白基因苏云金芽孢杆菌抗真菌立枯丝核菌的烟草几丁质酶基因和抗毒素合成基因 抗盐碱和干旱作物调节细胞渗透压的基因 耐寒的番茄抗冻蛋白基因鱼 抗除草剂大豆抗除草剂基因 增强甜味的水果降低乳糖的奶牛 甜味基因肠乳糖酶基因 生产胰岛素的工程菌人胰岛素基因人 讨论: 1、用动物乳腺作为反应器,生产高价值的蛋白质(如教材中列举的血清白蛋白、抗凝血酶等)比工厂化生产的优越之处有哪些?(乳腺生物反应器的优点:①产量高;②质量好; ③成本低;④易提取。) 简介:动物乳腺生物反应器 1987年美国科学家戈登(Gordon)等人首次在小鼠的奶中生产出一种医用蛋白──tPA (组织

型纤溶酶原激活物),展示了用动物乳腺生产高附加值产品的可能性。利用动物乳腺生产高价值产 品的方式称为动物乳腺反应器。 为什么要用动物乳腺作为反应器生产高价值的蛋白质产品呢?这是因为动物乳房是一种高度分化的专门化腺体,合成蛋白质的能力非常强,尤其是一些经过长期的遗传改良,专门产奶的乳用动物品种,蛋白质合成能力更是惊人。一头优质奶牛,一年可产奶10 000 kg。即便是一只奶山羊,一年也可产奶2 000 kg。 动物乳腺生物反应器归纳起来有四大优点:①产量高,且易收获目标产品,可以随乳汁分泌而排出动物体外;②目标产品的质量好。动物乳腺组织不仅具有按遗传信息流向合成蛋白质的能力,而且具备一整套对蛋白进行修饰和加工的能力,如糖基化、羧化、磷酸化以及分子组装等,而微生物和植物系统都不具备这种全面的蛋白质后加工能力;③产品成本低;④从奶牛中提取产品,操作比较简单。 正因为利用动物乳腺生物反应器生产高附加值的产品有上述优点,目前利用动物乳腺生物反应器生产医用蛋白质已成为一种风险投资产业,受到科学家、商界和医药界的高度重视。目前瞄准的目标医药产品有:①血液蛋白质,如表1-2所示,这些血液蛋白质有巨大的经济效益,其中利用奶牛生产的凝血酶Ⅲ已通过第三期临床实验,即将投放市场。②第二代医用蛋白质,主要有抗体、降钙素、人的生长激素、胰岛素等药物蛋白,乳白蛋白、乳铁蛋白等营养蛋白,疫苗,组织修复物等。③生产“人源化牛奶”,即用成人的乳蛋白基因替代牛的乳蛋白基因,使牛奶变成像人奶的一种基因工程奶。 动物乳腺生物反应器的做法与转基因动物的操作是相同的,只是为了将目标产品在乳汁中形成,需要使用乳腺组织中特异表达的启动子,即在目标产品蛋白质编码框的前面加上乳腺组织中特异表达的启动子等,构建成表达载体后通过注射导入受精卵中,再将其送入母体动物内,发育成动物个体,这个转基因动物就会在奶中产生所需要的目标产品。 2、用基因工程技术实现动物乳腺生物反应器的操作过程是怎样的? 用基因工程技术实现动物乳腺生物反应器的操作过程与转基因动物操作过程相同。 不同之处:为了将目标产品在奶中形成,需要使用乳腺组织中特异表达的启动子,要在编码目的蛋白质的基因序列前加上乳腺组织中特异表达的启动子构建成表达载体。 操作过程大致归纳为:获取目的基因(例如血清白蛋白基因)→构建基因表达载体(在血清白蛋白基因前加特异表达的启动子)→显微注射导入哺乳动物受精卵中→形成胚胎→将胚胎送入母体动物→发育成转基因动物(只有在产下的雌性个体中,转入的基因才能表达)。

基因工程技术的发展历史-现状及前景

学号 1234567 基因工程课程论文 ( 2013 届本科) 题目:基因工程技术发展历史、现状及前景 学院:农业与生物技术学院 班级:生物科学 091 班 作者姓名: X X X 指导教师: XXX 职称:教授 完成日期: 2013 年 3 月 16 日 二○一三年三月

基因工程技术发展历史、现状及前景 摘要:生物学已是现代最重要学科之一,而从20世纪70年代初发展起来的基因工程技术,经过30多年来的发展与进步,已成为生物技术的核心。基因工程技术现应用范围涉及农业、工业、医药、能源、环保等诸多领域。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程技术及相关领域将成为21世纪的主导产业之一。 关键词:基因工程技术、发展历史、现状、前景 引言 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞-DNA 的技术称为“基因系治疗”,通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 一、基因工程技术的发展历史 (一)基因工程发展简述 人类与动物的许多病害都是由单细胞原核生物——细菌引起的。在一段时间,细菌成为人类的第一大杀手,成千上万的生命被其感染吞噬。虽然青霉素以及磺胺类等搞菌药物的出现拯救了无数的生命,但是,好景不长,青霉素使用不到期10年,即在世界上20世纪50年代中期,就发现了严重的细菌抗药性,并且这种抗药性还具有“传染性”,也就是说,一种细菌的抗药性可以传给另一种细菌。

基因工程的应用

基因工程技术的应用和前景 【摘要】基因工程问世以来短短的二十年,显示出了巨大的活力,今后基因工程将重点开展基因组学、基因工程药物、动植物生物反应器和环保等方面的研究,展望未来,基因工程的前景将是更加灿烂辉煌。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术前景现状 随着基因工程技术的迅速发展,通过克隆或筛选出来的富基因,转到作物中进行表达,已取得很大的进展。由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。 但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力 1、植物基因工程成果丰硕 自1983年首次获得转基因烟草、马铃薯以来,短短十余年间,植物基因工程的研究和开发进展十分迅速。国际上获得转基因植株的植物已达100种以上,包括水稻、玉米、马铃薯等作物;棉花、大豆、油菜、亚麻、向日葵等经济作物;番茄、黄瓜、芥菜、甘蓝、花椰菜、胡萝卜、茄子、生菜、芹菜等蔬菜作物;首楷、白三叶草等牧草;苹果、核桃、李、木瓜、甜瓜、草荀等瓜果;短牵牛、菊花、香石竹、伽蓝菜等花卉以及杨树造林树种。转基因植物研究取得了令人鼓舞的突破性发展。十

相关主题
文本预览
相关文档 最新文档