当前位置:文档之家› 热轧无缝钢管缺陷及产生原因

热轧无缝钢管缺陷及产生原因

热轧无缝钢管缺陷及产生原因

1. 离层

缺陷特征:位于钢管内表面呈纵向分布,呈凸起螺旋状,块状金属分离或破裂状夹层。

产生原因:材质不良造成有非金属夹杂物,残余缩孔或严重疏松。

2. 直道内折

缺陷特征:位于钢管内表面呈纵向分布,呈现对称或单条直线形的折迭有通长,也有局部。产生原因:芯棒润滑不良,芯棒表面有缺陷或表面附有氧化铁皮,铁屑等使钢管内表面划成沟道,荒管在轧制过程中,在连轧机孔型内过充满。

3. 内孔不规则

缺陷特征:位于钢管内表面呈纵向分布,①有一个或二个相差180°的管壁增厚现象,或在钢管内表面与芯棒分离点处有壁厚增厚状,也称内鼓包。②钢管内园呈六方形的壁厚不均状,也称内六方。

产生原因:内鼓色:连轧压下量分配或张力选择不当,使金属过充满芯棒选用不当。

内六方:张减孔型与张力参数选择不当,张减机单机架减经或总减径率较大。

4. 管壁收缩

缺陷特征:位于钢管内表面上,钢管横向断面最薄处钢管内表面凹陷,壁厚局部变薄,严重的收缩几乎撕破。

产生原因:连轧机延伸过大,钢管在孔型侧壁部分,局部被拉薄连轧机各机架压下调整不当和延伸系数分配不合理。

5. 内轧疤

缺陷特征:钢管内表面纵向呈指甲状结疤、凸起或块状折迭,钢管内表面压痕。

产生原因:芯棒润滑状态不良,造成芯棒局部磨损、损坏、粘金属,顶头严重磨损、粘金属、缺肉或大裂纹穿孔耳子被压在钢管的内壁上。

6. 内折迭

缺陷特征:位于钢管内表面的端部,局部或纵向呈螺旋状半螺旋状或无规律分布的片状折迭。产生原因:穿孔过程中轧机调整不当,顶头严重磨损,管坯材质不好,芯棒严重损坏。

7. 轧折

缺陷特征:位于钢管内表面纵向管壁局部或全长上呈外凹里凸的皱折或在钢管外表面纵向通长有两道对称明显沟痕,一般为直线形,个别为斜线形。

产生原因:连轧荒管外径过大或荒管橢圆度太大,竹节控制强度不够或润滑状态不好,横移装置将连轧荒管碰瘪,连轧机转速错误。

8. 撕破

缺陷特征:位于钢管表面纵向上管体呈现不同程度的横向破裂,菱状和椭圆状穿透管体的孔洞。

产生原因:连轧来料局部有“黑斑”,过连轧时极易撕破,缺陷形式一般为菱形状。连轧来料温度偏低,连轧张力过大,连轧机转速选择不当。

9. 双缝折迭

缺陷特征:位于钢管表面纵向上一对斜向伸入管壁纵向的裂缝,这种裂缝有时是零散地分布在管子园周上有时以对称出现。

产生原因:穿孔毛管外径过大或直径不规则引起的折迭。

10.外折迭

缺陷特征:①钢管外表上呈现规律性的折迭有三角状,双缝直线状,单缝直线状或无规律的片状折迭等。

②钢管的纵向外表上呈现一条通常连续或间断缝纫机针脚状或错开60°、120°、180°缝纫针脚状的折迭。

③钢管的纵向外表上呈现螺旋状折迭。

④钢管表面纵向呈一条通长点状或短斜线的折迭,严重时错开120°的二条或三条。

产生原因:①管坯表面有纵向裂纹或存在严重的夹杂物,缩孔等产生螺旋状折迭。

②管坯表面清理不良,有尖锐棱角或存在外翘皮。

③穿孔机导盘结瘤或穿孔机出口嘴擦伤毛管。

④连轧辊或张减辊有裂纹或碰伤。

⑤张减机辊倒角不合要求,超寿命,新旧机架搭配使用不当。

⑥张减机钢管输送过程中机械擦伤或碰伤。

⑦张减机辊冷却水小或无造成张减机辊粘钢。

11.压痕

缺陷特征:在钢管纵向表面呈现无规律或有规律局部压痕、掉肉。形状有核状、条状、横向压伤、翘皮状、碎裂、铁屑状等。

产生原因:①张减机成品机架轧辊表面粘有金属物。

②结疤或其他异物压在钢管表面上脱落而形成。

③热态钢管碰伤或划伤。

④被横移装置或锯切装置碰伤、压印。

判断:一般管:壁厚≤8mm压痕深度不超过负偏差的90% ,壁厚>8mmm压痕深度不超过负偏差的80%最大度不得超过1.0mm。

锅炉管:不得超过壁厚负偏差之半,最大值为0.6mm。

油套管:压痕深度不得超过壁厚负偏差之半,S≥10mm时深度最大值不超过0.6mm,当S <10mm时最大深度不超过0.5mm。

12. 过热

缺陷特征:在钢管外表面呈粗糙的氧化铁皮鳞片或斑痕。

产生原因:加热时间过长或加热温度过高。

13. 矫凹

缺陷特征:在钢管外表面呈现螺旋形的凹痕。

产生原因:矫直辊角度调整不当,压下量太大,矫直辊磨损严重。

14. 凹痕

缺陷特征:在钢管外表面局部呈无规律或有规律各种形状的压痕外凹里凸,管壁壁厚无变化。产生原因:钢管在运输过程中受到剧烈的碰撞或受到较大冲压,在锯切过程中,夹紧力调整不当。

判断:一般管:凹痕深度不得使外径超出负偏差。

锅炉管、油套管:凹痕深度不得使外径超出负偏差之半。

15. 发纹

缺陷特征:在钢管的外表面上呈连续或不连续的发状细裂纹,多为螺旋形,螺距较大,也有近似直线。

产生原因:钢质不良,有皮下夹杂物和皮下气孔,管坯表面清理不良或有发纹。

16. 麻面

缺陷特征:沿钢管表面局部通长呈现高低不平的麻坑及沟痕,有的是周期性出现。

产生原因:连轧机或张减机轧辊磨损严重,在再加热炉内加热时间过长或温度过高,在再加热炉后高压水除鳞装置压力低,个别喷嘴堵塞。

判断:一般管:麻面深度不超过壁厚负偏差之半。

锅炉锅:麻面深度不超过负偏差之半,最大值为0.6mm。

油套管:麻面深度不超过壁厚负偏差之半,当S<10mm时深度最大值不超过0.5mm,S≥10mm深度最大值不超过0.6mm。

17. 壁厚不均

缺陷特征:钢管同一截面上壁厚最大值,最小值分别超过正偏差和负偏差或分别超过公称壁厚的±8~10% (厚壁管取上限薄壁管取下限)

产生原因:穿孔来料不符合要求,管坯端面切斜,管坯热定心偏,管坯加热不均,穿孔设备调整不当,连轧机设备调整不当。

18. 壁厚超差

缺陷特征:钢管同一截面上或沿钢管长度方向壁厚超差。

产生原因:连轧机,张减机调整不当,转速选择不当,芯棒选择错误,张减增厚端设有切净。

19. 外径超差

缺陷特征:在钢管同一截面上或沿管长度方向外径超差。

产生原因:张减机孔型尺寸加工不对,张减机成品孔型磨损严重或孔型设计不对,再加热炉温度波动大。

20. 弯曲

缺陷特征:钢管沿长度方向不平直,钢管端部呈鹅头弯曲。

产生原因:张减机最后几架孔型中心线错位。张减机精轧孔型减径量分配不合理。张减管冷却方式不合理或锯切时温度过高,运输等原因造成。

21. 钢管开裂

缺陷特征:钢管头部或局部开裂。

产生原因:钢管局部受冷却水冷却在连轧或张减时形成开裂。钢管头部顶在高压水除鳞设备上被浇成“黑头”张减机轧制时开裂。

22. 拉丝

缺陷特征:在钢管外表通长或出现在管子A、B段呈有规律或无规律线条状,其金属丝有脱落或粘在钢管表面上。

产生原因:张减机孔型设计不合理,穿孔毛管,连轧荒管外径与椭圆度太大,即管形不好,张减机,空减机孔型倒角不合要求。张减机,空减机孔型不对中。张减机新旧机架搭配不当。

23. 擦伤

缺陷特征:在钢管外表呈现螺旋形伤痕及其他有规律或无规律分布的擦伤。

产生原因:钢管停留在旋转设备上,机械设备不光滑和错位。

24. 外形不圆

缺陷特征:钢管横截面不圆。

产生原因:锯切时夹紧力调整不当,张减机成品机架和工作机架位置安装不正确,精整涡流探伤出口夹紧装置夹紧力过大,矫直辊压下量或角度调整不当。

25. 青线

缺陷特征:钢管外表呈现对称或不对称的线形轧痕,沿纵向分布。

产生原因:张减机孔型设计不合理,轧低温钢。张减机孔型中心不对正错位。张减机孔型超寿命使用,磨损严重。张减机新旧孔型搭配使用不当。

26. 直道

缺陷特陷:沿钢管纵向分布的沟槽。

产生原因:当轧制温度低时,顶头粘金属划伤钢管内表面,顶头磨损严重。芯棒润滑不良或

磨损严重。

判断:一般管:外直道深度不超过壁厚负偏差的90%最深不超过1.0mm,内直道深度不超过壁厚负偏差的70%最深不超过0.6mm。

锅炉管、油套管:直道深度不得超过壁厚的5%,最大不超过0.4mm。

钢管经贸网https://www.doczj.com/doc/6518784319.html,辛勤整理,欢迎分享!钢管经贸网为客户提供最有效的资源推广和广告服务!欢迎拨打免费热线4000-27-28-29

热轧带钢缺陷图谱

热轧带钢外观缺陷 Visual Defects in Hot Rolled Strip 不规则表面夹杂(夹层)(Irregular Shells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 带状表面夹杂(夹层)(Seams) 【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。 【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 气泡(Blisters) 【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护

渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 结疤(重皮)(Scabs) 【定义与特征】 以不规则的舌状、鱼鳞状、条状或M状的金属薄片分布于带钢表面。一种与带钢基体相连;另一种与带钢基体不相连,但粘合到表面上,易于脱落,脱落后形成较光滑的凹坑。 【产生原因】 由于板坯表面有结疤、毛刺,轧后残留在带钢表面。或板坯经火焰清理后留有残渣,在轧制中压入表面。 【预防与纠正】 加强板坯切口熔渣的清理,合理调整中间坯的切头、切尾量,避免毛刺残留。 【鉴别与判定】 肉眼检查,钢板和钢带不得有结疤。 分层(Split layer) 【定义与特征】 带钢断面上呈现未焊合的缝隙,有时在离层的缝隙中有肉眼可见的夹杂物,严重的分层使钢板局部劈裂,分层产生的部位无规律。 【产生原因】 板坯内局部聚集过多气体或非金属夹杂物,在轧制过程中不能焊合;化学成分偏析严重,也能形成分层。 【预防与纠正】 优化炼钢工艺,提高钢质纯净度;保证吹氩时间,钢水搅拌均匀,避免气体残留;。 【鉴别与判定】 肉眼检查,钢板和钢带不得有分层。 翘皮(Spills) 【定义与特征】 翘皮常呈舌状、线状、层状或M状折叠(不连续,薄材常出现翘起),常出现在带钢上表面边部。【产生原因】 铸坯内部近上表面的针孔、气泡、夹杂,在轧制过程中易在带钢上表面边部(薄弱处)暴露,在往返轧制过程中或卷取过程中部分表皮分层剥离翘起造成翘皮缺陷。 【预防与纠正】

无缝钢管的热轧工艺

无缝钢管 1.无缝钢管的制造加工方法: (1)热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库 (2)冷拔(轧)无缝钢管:圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库 2.热轧 (1)热轧的概念: 热轧(hot rolling)是相对于冷轧而言的,冷轧是在再结晶温度以下进行的轧制,而热轧就是在再结晶温度以上进行的轧制。 (2)热轧的优缺点 优点: a.热轧能显著降低能耗,降低成本。热轧时金属塑性高,变形抗力低,大大减少了金属变形的能量消耗。

b.热轧能改善金属及合金的加工工艺性能,即将铸造状态的粗大晶粒破碎,显著裂纹愈合,减少或消除铸造缺陷,将铸态组织转变为变形组织,提高合金的加工性能。 c.热轧通常采用大铸锭,大压下量轧制,不仅提高了生产效率,而且为提高轧制速度、实现轧制过程的连续化和自动化创造了条件。 缺点: a.经过热轧之后,钢材内部的非金属夹杂物(主要是硫化物和氧化物,还有硅酸盐)被压成薄片,出现分层(夹层)现象。分层使钢材沿厚度方向受拉的性能大大恶化,并且有可能在焊缝收缩时出现层间撕裂。焊缝收缩诱发的局部应变时常达到屈服点应变的数倍,比荷载引起的应变大得多。 b.不均匀冷却造成的残余应力。残余应力是在没有外力作用下内部自相平衡的应力,各种截面的热轧型钢都有这类残余应力,一般型钢截面尺寸越大,残余应力也越大。残余应力虽然是自相平衡的,但对钢构件在外力作用下的性能还是有一定影响。如对变形、稳定性、抗疲劳等方面都可能产生不利的作用。 c.热轧不能非常精确地控制产品所需的力学性能,热轧制品的组织和性能不能够均匀。其强度指标低于冷作硬化制品,而高于完全退火制品;塑性指标高于冷作硬化制品,而低于完全退火制品。 d.热轧产品厚度尺寸较难控制,控制精度相对较差;热轧制品的表面较冷轧制品粗糙Ra值一般在0.5~1.5μm。因此,热轧产品一般多作为冷轧加工的坯料。

焊接缺陷分类及预防措施

一、焊接缺陷的分类 焊接缺陷可分为外部缺陷和内部缺陷两种 1.外部缺陷 1)外观形状和尺寸不符合要求; 2)表面裂纹; 3)表面气孔; 4)咬边; 5)凹陷; 6)满溢; 7)焊瘤; 8)弧坑; 9)电弧擦伤; 10)明冷缩孔; 11)烧穿; 12)过烧。 2.内部缺陷 1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。 2)气孔; 3)夹渣; 4)未焊透; 5)未熔合; 6)夹钨; 7)夹珠。 二、各种焊接缺陷产生原因、危害及防止措施 1、外表面形状和尺寸不符合要求 表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。 危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。 防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。 2、焊接裂纹 表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。 危害:裂纹是所有的焊接缺陷里危害最严重的一种。它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。 产生原因及防止措施: (1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。这是由于焊接接头的金相组织和应力状态及氢的含量决定的。(如焊层下冷裂纹、焊趾冷裂纹、焊根冷裂纹等)。 产生机理:钢产生冷裂纹的倾向主要决定于钢的淬硬倾向,焊接接头的含氢量及其分布,以及接头所承受的拘束应力状态。 产生原因: a.钢种原淬硬倾向主要取决于化学成分、板厚、焊接工艺和冷却条件等。钢的淬硬倾向越大,越易产生冷裂纹。 b.氢的作用,氢是引起超高强钢焊接冷裂纹的重要因素之一,并且有延迟的特征。高强钢焊接接头的含氢量越高,则裂纹的敏感性越强。 c.焊接接头的应力状态:高强度钢焊接时产生延迟裂纹的倾向不仅取决于钢的淬硬倾向和氢的作用,还决定于焊接接头的应力状态。焊接时主要存在的应力有:不均匀加热及冷却过程中所产生的热应力、金属相变时产生的组织应力、结构自身拘束条件等。

冷拔管常见缺陷产生原因及预防和消除方法

[选取日期] 冷拔无缝钢管常见的缺陷特征产生的原因 及预防和消除方法 2010年10月08日 孟相欣

冷拔无缝钢管常见的缺陷特征 产生的原因及预防和消除方法 一、折迭 拔制后,钢管内外表面呈现直线或螺旋方向的折迭,局部或通长的出现在钢管上。 产生的原因:管料表面有折迭或夹杂物,有严重擦伤和裂纹,管料磨修处有棱角或深宽比(H/b)不够。 预防和消除方法:严格把好穿孔热轧质量关。 二、尺寸超差(包括壁厚超差,壁厚不均,直径超差,椭圆偏心) 直径超过了标准的偏差,在同一截面上管壁一边薄,一边厚,直径不等,长短轴之差超出标准规定。 产生的原因:1、拔制模具选择不当,或芯棒(内模)调整不当。2、内外模设计制造不合理或磨损严重,或硬度不够造成变形磨损。3、热处理时间长,温度高,或热处理性能不均匀。4、增减壁的规律控制不当。5、拔制表编制不合格。6、钢管矫直时被压扁,造成误差较大。 预防和消除方法:1、正确设计和选配拔管模具。2、正确执行热处理制度,均匀加热。3、正确调制矫直机,经常校对拔管机各部件和量具。 4、掌握不同钢种、不同规格钢管的增减壁规律。 5、正确合理编制拔制表。 6、椭圆度出格可重新矫直,局部椭圆度出格可切除。 三、划道 钢管表面上呈现纵向直线的划痕称为划道,划道长短不一,宽窄不等,多为沟状,可见沟底。

产生的原因:1、拔模表面不光滑,有裂纹或粘结金属。2、锤头过度部分有棱角,工具磨损。3、欠酸洗或毛管上残存氧化铁皮。4、磷化、皂化工序操作不当。5、内外模以损坏或磨损严重。6、中间退火不均,变形量不足。 预防和消除方法:1、提高拔管模具的表面质量。2、钢管酸洗后,氧化铁皮要冲洗干净。3、锤头过度部分要圆滑无棱角。4勤检查模具和钢管的表面,发现问题及时处理。 四、斗纹 钢管表面沿长度方向呈高低不平的环形波浪或波浪逐个相同排列,局部或通长出现在钢管内外表面上。 产生的原因:1、热处理后的性能不均,热轧时低温钢造成性能不均。2、酸洗后冲洗不干净,磷化不良导致皂化不均。3、芯杆细,拔制时芯杆产生弹性变形引起抖动。4、拔模形状不合理,入口锥角太大,使钢管与模孔的接触面积过小,使拔制拔制变形不稳定而抖动。 预防和消除方法:1、按操作规程要求进行热处理,达到软化性能均匀。 2、要把好酸洗、磷化、皂化的质量关。 3、按规定的变形量拔制。 4、正确选用芯杆尺寸。 五、拔凹 在钢管纵向上,管壁向内呈条状凹陷,其长短无规则。 产生的原因:1、无芯棒拔制(空拔)薄壁钢管时,减径量过大。2、钢管锤头端部有棱角或过度部分有皱折且变形量过大。3、管料局部璧薄(如修磨点)。 预防和消除方法:1、空拔薄壁管时,要合理分配减径量。2、锤头端部应无棱角和皱折。3、对管料表面的局部缺陷进行清理。

焊接常见缺陷

焊接缺陷及其成因常见的焊接外部缺陷有:尺寸不符合要求、咬边、焊瘤、弧坑及表面飞溅等。常见的焊缝内部缺陷有:夹渣及气孔等。产生焊缝缺陷的原因可用人、机、料、法、环五大因素查找。其中人是最活跃的因素。有些缺陷是焊工施焊时的习惯性动作所致,或与其尚未克服的瘤疾有关,这主要是电焊工的技术素质及责任心问题。从设备上看,我厂的电焊机均无电流表及电压表,调节手柄的数值只能作参考,因此要严格地执行焊接工艺要求是困难的。从材料上看,钢板无除锈除油工序,焊条夹头不除锈;工艺评定覆盖面不大,因我厂的材料代用较多,如可代Q2352A 钢的就有SM41B、SS41 、BCT3Cπ、RST37 等, 有时自焊, 有时互焊。虽然这些材料成分及性能相近,但是有些还存在较大差异,因此工艺参数应有相应的变化。施焊环境如空气的相对湿度、温度、风速等,都会影响焊接质量,然而有的电焊工却忽视了一点。产生焊接缺陷的原因很多,但只要严格执行焊接工艺就能够最大限度地避免这些缺陷。为了保证焊接质量,焊缝的检验是必不可少的,如焊缝的外观检查、射线探伤及机械性能试验。经验表明,前两者的合格与否都不是后者合格与否的必要条件,只是概率的大小而已。 2. 1 焊缝尺寸不符合要求 2. 1. 1 焊缝宽度过窄这主要是焊接电流较小、焊弧过长或焊速较快造成的。由于形成的金属熔池较小或保持时间较短,不利于钢水流动。我厂进口钢代替Q2352A 钢时常出现这一问题。这是由于进口钢一般比Q2352A 含合金元素要高些,熔点高,需要的熔化热也多。2. 1. 2 焊缝余高过高有时它与前一个问题同时出现。有的焊工片面地认为焊缝高点没关系,所以不习惯于0~1. 5mm 的焊缝余高,多数为上限或超高。但过高会产生应力集中,其主要原因是倒数第二层焊道接头过高,造成盖面层焊道局部超高,有时各层焊接参数不合适,各层累计超高。 2. 1. 3 角焊缝单边或下陷量过大角焊缝单边或下陷量过大造成单位面积上承力过大,使焊接强度降低。在我厂这是个老问题。其原因是坡口不规则、间隙不均匀、焊条与工件夹角不合适以及焊接参数与工艺要求不一致等。 2. 2 弧坑焊接弧坑多出现在列管式换热器管头焊缝或部分角焊缝,有部分弧坑在试水压时渗漏。产生弧坑的原因是熄弧时间过短或电流较大。 2. 3 咬边在我厂大多是局部深度超标的咬边,连续咬边超标的不多。咬边使焊接强度减弱,造成局部应力集中。其主要原因是电弧热量太高,如焊接电流过大,运条速度不当,焊条角度不当等,使电弧将焊缝边缘熔化后没有得到熔敷金属的补充所留下的缺口。 2. 4 焊瘤熔化金属流到加热不足的母材上形成了焊瘤,主要原因是焊接电流过大,焊接熔化过慢或焊条偏斜。 2. 5 严重飞溅比较严重的是那些无探伤要求的设备,直接原因是没按规定使用焊条。受潮或变质的焊条因水分或氧化物在焊接时分解产生大量气体,部分气体溶解在金属熔滴中,在电弧高温作用下,金属熔滴中的气体发生剧烈膨胀,使熔滴炸裂形成飞溅小滴散落在焊缝两侧。 2. 6 夹渣由于焊接电流过小或运条速度过快,金属熔池温度较低,液态金属和熔渣不易分开,或熔渣未来得及浮出,熔池已开始凝固,有时也存在清根不彻底问题。 2. 7 气孔产生气孔的原因很多,但在我厂产生气孔的主要原因是焊材及环境因素。钢板坡口两侧不做除锈处理,Fe3O4 除本身含氧外,还含有一定的结晶水,另外在空气相对湿度较大情况下也有微小的水珠,在熔池冶金过程中,非金属元素形成非金属氧化物,由于气体在金属中的溶解度随温度降低而减少,在结晶过程中部分气体来不及逸出,气泡残留在金属内形成了气孔。 3 克服焊接缺陷应采取的措施 (1) 增强有关人员的责任心,严格执行工作标准和焊接工艺要求。 (2) 经常进行技术培训,提高操作人员及有关人员的技术素质。 (3) 保证焊接设备及附件完好,为执行焊接工艺要求提供先决条件。 (4) 增大工艺评定覆盖面,保证工艺的

(完整版)无缝钢管执行标准

无缝钢管执行标准 1、结构用无缝管(GB/T8162-2008)是用于一般结构和机械结构的无缝钢管。 2、流体输送用无缝钢管(GB/T8163-2008)是用于输送水、油、气等流体的一般无缝钢管。 3、低中压锅炉用无缝钢管(GB3087-2008)是用于制造各种结构低中压锅炉过热蒸汽管、沸水管及机车锅炉用过热蒸汽管和拱砖管用的优质碳素结构钢热轧和冷拔(轧)无缝钢管。 4、高压锅炉用无缝钢管(GB5310-2008)是用于制造高压及其以上压力的水管锅炉受热面用的优质碳素钢、合金钢和不锈耐热钢无缝钢管。 5、化肥设备用高压无缝钢管(GB6479-2000)是适用于工作温度为-40~400℃、工作压力为10~30Ma的化工设备和管道的优质碳素结构钢和合金钢无缝钢管。 6、石油裂化用无缝钢管(GB9948-2006)是适用于石油精炼厂的炉管、热交换器和管道无缝钢管。 7、地质钻探用钢管(YB235-70)是供地质部门进行岩心钻探使用的钢管,按用途可分为钻杆、钻铤、岩心管、套管和沉淀管等。 8、金刚石岩芯钻探用无缝钢管(GB3423-82)是用于金刚石岩芯钻探的钻杆、岩心杆、套管的无缝钢管。

9、石油钻探管(YB528-65)是用于石油钻探两端内加厚或外加厚的无缝钢管。钢管分车丝和不车丝两种,车丝管用接头联结,不车丝管用对焊的方法与工具接头联结。 10、船舶用碳钢无缝钢管(GB5213-85)是制造船舶I级耐压管系、Ⅱ级耐压管系、锅炉及过热器用的碳素钢无缝钢管。碳素钢无缝钢管管壁工作温度不超过450℃,合金钢无缝钢管管壁工作温度超过450℃。 11、汽车半轴套管用无缝钢管(GB3088-82)是制造汽车半轴套管及驱动桥桥壳轴管用的优质碳素结构钢和合金结构钢热轧无缝钢管。12、柴油机用高压油管(GB3093-2002)是制造柴油机喷射系统高压管用的冷拔无缝钢管。 13、液压和气动缸筒用精密内径无缝钢管(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。14、冷拔或冷轧精密无缝钢管(GB3639-2000)是用于机械结构、液压设备的尺寸精度高和表面光洁度好的冷拔或冷轧精密无缝钢管。选用精密无缝钢管制造机械结构或液压设备等,可以大大节约机械加工工时,提高材料利用率,同时有利于提高产品质量。 15、结构用不锈钢无缝钢管(GB/T14975-2002)是广泛用于化工、石油、轻纺、医疗、食品、机械等工业的耐腐蚀管道和结构件及零件的不锈钢制成的热轧(挤、扩)和冷拔(轧)无缝钢管。 16、流体输送用不锈钢无缝钢管(GB/T14976-2002)是用于输送流体的不锈钢制成的热轧(挤、扩)和冷拔(轧)无缝钢管。

热轧带钢缺陷图谱

热轧带钢缺陷图谱

————————————————————————————————作者: ————————————————————————————————日期: ?

热轧带钢外观缺陷 Visual Defects inHot Rolled Strip 2.1 不规则表面夹杂(夹层)(IrregularShells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.2 带状表面夹杂(夹层)(Seams)

【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.3 气泡(Blisters)

【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 2.4 结疤(重皮)(Scabs)

钢热轧无缝钢管技术标准

45钢热轧无缝钢管技术标准 1 范围 本技术协议规定了45钢热轧无缝钢管的尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规定、包装、标志和质量证明书等。 2 规范性引用文件 下列文件中的条款通过本协议的引用而成为本协议的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本协议。凡是不注日期的引用文件,其最新版本适用于本协议。 GB/T 222 钢的化学成份允许偏差 GB/T 223 钢的化学分析方法 GB/T 228.1 金属拉伸试验第1部分:试验拉伸试验 GB/T 10561 钢中非金属夹杂物含量的测定 GB/T 8162 碳素结构钢 GB/T 2102 钢管的验收、包装、标志和质量证明书 3 尺寸、外形、重量及允许偏差 3.1 外径和壁厚 钢管的外径、壁厚尺寸允许偏差应符合表1和表2的规定。 3.2 外形 钢管两端断面应与钢管轴线垂直,切口毛刺应去除。 钢管的不圆度应不超过0.5mm 3.3 长度 钢管交货长度在合同中注明,若以定尺长度交货,长度允许偏差为0~+50mm。 3.4 弯曲度 钢管的每米弯曲度不超过1.5mm/m,钢管全长弯曲度应不大于钢管总长度的0.15%。 3.5 重量 钢管按实际重量交货。 4 技术要求(化学成份应符合GB/T 699-1999) 4.1 钢的牌号及化学成分 钢的牌号及化学成分(熔炼分析)应符合表3 的规定。 4.2 冶炼方法 电炉/转炉+炉外精炼+真空脱气。 4.3 交货状态 钢管以热轧状态交货。 4.4 加工用途 切削加工用钢。 4.5 力学性能

钢管交货状态下的纵向力学性能应符合表4 的规定。 4.6 非金属夹杂物 钢管应按GB/T 10561中A法检验非金属夹杂物,其合格级别应符合表5的规定 表5 夹杂物级别要求(级) 4.7 表面质量 钢管内外表面不得有目视可见的裂纹、折叠、轧折、孔洞、离层,钢管外表不得有严重碰伤。这些缺陷应完全清除,清理处的实际壁厚应不小于壁厚所允许的最小值。 5 试验方法 钢材检验项目的取样数量、取样部位及试验方法应符合表6 的规定。 表6 钢管的取样和试验方法 6 钢管验收、包装、标志和质量证明书 6.1 钢管每捆重量不超过3.5吨。 6.2 钢管其他验收、包装、标志和质量证明书按GB/T 2102执行。 6.3 不同炉号、牌号、规格的钢管不得放在同一捆中。 6.4 本协议其它未提及项目应符合GB/T 8162-2008标准。 6.5 批号标识要求 1)原则上每批货应源自钢管生产厂同一制造批号/炉号。 2)当同一批货包含钢管生产厂两个制造批号时,供方必须对每一捆包标识其制造批/炉号。 3)同一捆包只能是同一批号的钢管,同一规格的钢管在同一机组生产。 4)钢管质保书应随货到厂,质保书必须清晰和真实。 5)圆钢钢坯质保书应随货到厂,质保书必须清晰真实,检验项目必须含以上所涉及的所有内容,特别是非金属杂物检验。 6)钢管厂的标识小卡除标明其生产批号外,应该同时写明圆钢钢坯炉号或者每捆有一张标识卡,写明圆钢炉号。

焊接缺陷及产生的原因

常见的气焊焊接缺陷及产生的原因 字体: 小中大| 打印发布: 2009-04-29 12:00 作者: webmaster 来源: 本站原创查看: 58次 常见的气焊焊接缺陷可分为外部缺陷和内部缺陷两大类。外部缺陷位于焊缝的外表面,一般用肉眼或低倍放大镜即可以发现。常见的外部缺陷包括焊缝尺寸不符合要求、表面气孔、裂纹、咬边、未焊满、凹坑、烧穿和焊瘤等;内部缺陷位于焊缝内部,需用破坏性试验或无损探伤等方法才能发现,如内部气孔、裂纹、夹渣、未焊透、未熔合等。 一、焊缝尺寸不符合要求 焊缝的尺寸与设计上规定的尺寸不符,或者焊缝成型不良,出现高低、宽窄不一、焊波粗劣等现象。焊缝尺寸不符合要求,不仅影响焊缝的美观,还会影响焊缝金属与母材的结合,造成应力集中,影响焊件的安全使用。 焊缝尺寸不符合要求产生的原因主要有:接头边缘加工不整齐、坡口角度或装配间隙不均匀;焊接工艺参数不正确,如火焰能率过大或过小、焊丝和焊嘴的倾角配合不当、气焊焊接速度不均匀等;操作技术不当,如焊嘴或焊丝横向摆动不一致等。 防止焊缝高低、宽窄不一、焊波粗劣的措施有:正确调整火焰能率:将焊件接头边缘调整齐;气焊过程中焊嘴、焊丝的横向摆动要一致;焊接速度要均匀且不要向熔池内填充过多的焊丝。 二、未焊透 焊接时接头根部未完全熔透的现象称为未焊透,详见图7—1。 未焊透不仅降低了焊接接头的机械性能,而且在未焊透的缺口及末端处形成应力集中,进一步引起裂纹的产生。在重要的焊缝中,若发现有未焊透缺陷,必须铲除,重新补焊。 产生未焊透的原因较多,通常有焊接接头在气焊前未经清理干净,如存在氧化物、油污等;坡口角度过小、接头间隙太小或钝边过厚;焊嘴号码过小,火焰能率不够或焊接速度过快;焊件的散热速度过快,使得熔池存在的时间短,以致填充金属与母材之间不能充分地熔合。 防止未焊透采取的措施,除了选择合理的坡口型式和装配间隙外,应在焊前进行清理,消除坡口两侧的氧化物和油污;根据板厚正确选用相应的焊嘴和焊丝直径;在焊接时选择合理的火焰能率和焊接速度;尤其是对导热快、散热面积大的焊件,要进行焊前预热和在焊接过程中加热焊件。 三、未熔合 熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分称为未熔 合,详见图7—2。

不锈钢管常用标准和常用规格表样本

不锈钢管常见标准及其常见规格表 不锈钢管常见标准: GB2270-80 不锈钢无缝钢管 GB/T14976-94 流体输送用不锈钢无缝钢管 GB/T14975-94 结构用不锈钢无缝钢管 GB13296-91 锅炉、热交换器用不锈钢无缝钢管 (GJB2608-96)( YB676-73) 航空用结构钢厚壁无缝钢管(GJB2296-95)( YB678-71) 航空用不锈无缝钢管 (YB/T679-97)( YB679-71) 航空用18A空心铆钉薄壁无缝钢管(GJB2609-96)( YB680-71) 航空用结构薄壁无缝钢管 (YB/T681-97)( YB681-71) 航空用导管20A薄壁无缝钢管 GB3090-82 不锈钢小直径钢管

GB5310-95 高压锅炉用无缝钢管 GB3087-82 低中压无缝钢管 GB3089-92 不锈耐酸极薄壁无缝钢管 GB9948-88 石油裂化无缝钢管 ASTM A213 锅炉、热交换器用铁素体和奥氏体合金钢无缝钢管ASTM A269 一般用途奥氏体不锈钢无缝钢管和焊接钢管ASTM A312 奥氏体不锈钢无缝钢管焊接钢管焊接钢管 ASTM A450 碳素钢,铁素体和奥氏体合金钢管的一般要求ASTM A530 专门用途的铁素钢和合金钢的一般要求 ASTM A789 一般要求碳素体奥氏体不锈钢无缝钢管和焊接钢管JIS G3456-88 机械结构用不锈钢管

JIS G3448-88 普通管道用不锈钢管 JIS G3459-88 管道用不锈钢管 JIS G3463-88 锅炉、热交换器用不锈钢管 Q/HYAD 101-91 化工用无缝长钢管(0Cr18NI11T) Q/HYAD 103-91 00Cr18Ni5MO3Si2双相不锈钢无缝钢管不锈钢管常见规格

不锈钢管常用标准及常用规格表

不锈钢管常用标准及其常用规格表不锈钢管常用标准: GB2270-80 不锈钢无缝钢管 GB/T14976-94 流体输送用不锈钢无缝钢管 GB/T14975-94 结构用不锈钢无缝钢管 GB13296-91 锅炉、热交换器用不锈钢无缝钢管 (GJB2608-96)(YB676-73)航空用结构钢厚壁无缝钢管 (GJB2296-95)(YB678-71)航空用不锈无缝钢管 (YB/T679-97)(YB679-71)航空用18A空心铆钉薄壁无缝钢管(GJB2609-96)(YB680-71)航空用结构薄壁无缝钢管 (YB/T681-97)(YB681-71)航空用导管20A薄壁无缝钢管 GB3090-82 不锈钢小直径钢管 GB5310-95 高压锅炉用无缝钢管 GB3087-82 低中压无缝钢管 GB3089-92 不锈耐酸极薄壁无缝钢管 GB9948-88 石油裂化无缝钢管 ASTM A213 锅炉、热交换器用铁素体和奥氏体合金钢无缝钢管ASTM A269 一般用途奥氏体不锈钢无缝钢管和焊接钢管 ASTM A312 奥氏体不锈钢无缝钢管焊接钢管焊接钢管 ASTM A450 碳素钢,铁素体和奥氏体合金钢管的一般要求ASTM A530 专门用途的铁素钢和合金钢的一般要求 ASTM A789 一般要求碳素体奥氏体不锈钢无缝钢管和焊接钢管

JIS G3456-88 机械结构用不锈钢管 JIS G3448-88 普通管道用不锈钢管 JIS G3459-88 管道用不锈钢管 JIS G3463-88 锅炉、热交换器用不锈钢管 Q/HYAD 101-91 化工用无缝长钢管(0Cr18NI11T) Q/HYAD 103-91 00Cr18Ni5MO3Si2双相不锈钢无缝钢管不锈钢管常用规格

带钢常见缺陷及其图谱

结疤(重皮) 图1 图2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;

②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害:导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。气泡 图1 开口气泡 图2 开口气泡 1.缺陷特征

钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氮不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害:可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。

压入氧化铁皮 图1 一次(炉生)氧化铁皮(压入) 图2 二次氧化铁皮(轧制过程产生)

图3 二次氧化铁皮(轧辊氧化膜脱落) 1.缺陷特征 热轧过程中氧化铁皮压入钢带表面形成的一种表面缺陷称压入氧化铁皮。按其产生原因不同可分为炉生(一次)氧化铁皮、轧制过程中产生的(二次)氧化铁皮或轧辊氧化膜脱落压入带钢表面形成的(二次)氧化铁皮。 2.产生原因及危害 产生原因: ①钢坯表面存在严重纵裂纹; ②钢坯加热工艺或加热操作不当,导致炉生铁皮难以除尽; ③高压除鳞水压力低、喷嘴堵塞等导致轧制过程中产生的氧化铁皮压入带钢表面; ④轧制节奏过快、轧辊冷却不良等导致轧辊表面氧化膜脱落压入带钢表面。 危害:影响钢带表面质量和涂装效果。 3.预防及消除方法 ①加强钢坯质量验收,表面存在严重纵裂纹的板坯应清理合格后使用; ②合理制订钢坯加热工艺,按规程要求加热板坯; ③定期检查高压除鳞水系统设备,保证除鳞水压力,避免喷嘴堵塞;

热轧无缝钢管知识大全包括热轧无缝钢管缺陷

2、热轧钢管生产工艺流程 2.1一般工艺流程 热轧无缝钢管的生产工艺流程包括坯料轧前准备、管坯加热、穿孔、轧制、定减径和钢管冷却、精整等几个基本工序。 当今热轧无缝钢管生产的一般主要变形工序有三个:穿孔、轧管和定减径;其各自的工艺目的和要求为: 2.1.1穿孔:将实心的管坯变为空心的毛管;我们可以理解为定型,既将轧件断面定为圆环状;其设备被称为穿孔机。对穿孔工艺的要求是:首先要保证穿出的毛管壁厚均匀,椭圆度小,几何尺寸精度高;其次是毛管的内外表面要较光滑,不得有结疤、折叠、裂纹等缺陷;第三是要有相应的穿孔速度和轧制周期,以适应整个机组的生产节奏,使毛管的终轧温度能满足轧管机的要求。 2.1.2轧管:将厚壁的毛管变为薄壁(接近成品壁厚)的荒管;我们可以视其为定壁,即根据后续的工序减径量和经验公式确定本工序荒管的壁厚值;该设备被称为轧管机。对轧管工艺的要求是:第一是将厚壁毛管变成薄壁荒管(减壁延伸)时首先要保证荒管具有较高的壁厚均匀度;其次荒管具有良好的内外表面质量。 2.1.3定减径(包括张减):大圆变小圆,简称定径;相应的设备为定(减)径机,其主要作用是消除前道工序轧制过程中造成的荒管外径不一(同一支或同一批),以提高热轧成品管的外径精度和真圆度。对定减径工艺的要求是:首先在一定的总减径率和较小的单机架减径率条件下来达到定径目的,第二可实现使用一种规格管坯生产多种规格成品管的任务,第三还可进一步改善钢管的外表面质量。 20世纪80年代末,曾出现过试图取消轧管工序,仅使用穿孔加定减的方法

生产无缝钢管,简称CPS,即斜轧穿孔和张减的英文缩写),并在南非的Tosa厂进行了工业试验,用来生产外径:33.4~179.8mm,壁厚3.4~25mm的钢管,其中定径最小外径为101.6mm;张减最大外径我101.6mm。经过实践检验,该工艺在产生壁厚大于10mm的钢管时质量尚可,但在生产壁厚小于8mm的钢管时通过定径、张减不能完全消除穿孔毛管的螺旋线,影响了钢管的外观质量。在随后的改造中不得不在穿孔机于定减径机之间增设了一台MINI-MPM(4机架)来确保产品质量。 2.2各热轧机组生产工艺过程特点 我们通常将毛管的壁厚加工称之为轧管。轧管是钢管成型过程中最重要的一个工序环节。这个环节的主要任务是按照成品钢管的要求将厚壁的毛管减薄至与成品钢管相适应的程度,即它必须考虑到后继定、减径工序时壁厚的变化,这个环节还要提高毛管的内外表面质量和壁厚的均匀度。通过轧管减壁延伸工序后的管子一般称为荒管。轧管减壁方法的基本特点是在毛管内按上刚性芯棒,由外部工具(轧辊或模孔)对毛管壁厚进行压缩减壁。依据变形原理和设备特点的不同,它有许多种生产方法,如表1所示。一般习惯根据轧管机的形式来命名热轧机组。轧管机分单机架和多机架,单机架有自动轧管机、阿塞尔轧机、ACCU-ROLL等,斜轧管机都是单机架的;连轧管机都是多机架的,通常4~8个机架,如MPM、PQF等。目前主要使用连轧(属于纵轧)与斜轧两种轧管工艺。

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

软件测试缺陷(Bug)写作注意点

软件测试缺陷(Bug)写作注意点 提供准确、完整、简洁、一致的缺陷报告是体现软件测试的专业性、高质量的主要评价指标。遗憾的是,一些缺陷报告经常包含过少或过多信息,而且组织混乱,难以理解。由此导致缺陷被退回,从而延误及时修正,最坏的情况是由于没有清楚地说明缺陷的影响,开发人员忽略了这些缺陷,使这些缺陷随软件版本一起发布出去。 因此,软件测试工程师必须认识到书写软件缺陷报告是测试执行过程的一项重要任务,首先要理解缺陷报告读者的期望,遵照缺陷报告的写作准则,书写内容完备的软件缺陷报告。本文将阐述软件测试缺陷报告的读者,描述软件缺陷报告的主要组成部分和各部分的书写要求,指出某些常见错误和实用改进方法,最后总结了缺陷报告的写作要点。 1. 缺陷报告的读者对象 在书写软件缺陷报告之前,需要明白谁是缺陷报告的读者对象,知道读者最希望从缺陷报告中获得什么信息。通常,缺陷报告的直接读者是软件开发人员和质量管理人员,除此之外,来自市场和技术支持等部门的人也可能需要查看缺陷情况。每个阅读缺陷报告的人都需要理解缺陷针对的产品和使用的技术。另外,他们不是软件测试人员,可能对于具体软件测试的细节了解不多。 概括起来,缺陷报告的读者最希望获得的信息包括: ?易于搜索软件测试报告的缺陷; ?报告的软件缺陷进行了必要的隔离,报告的缺陷信息更具体、准确; ?软件开发人员希望获得缺陷的本质特征和复现步骤; ?市场和技术支持等部门希望获得缺陷类型分布以及对市场和用户的影响程度。 软件测试人员的任务之一就是需要针对读者的上述要求,书写良好的软件缺陷报告。 2. 缺陷报告的写作准则 书写清晰、完整的缺陷报告是对保证缺陷正确处理的最佳手段。它也减少了工程师以及其它质量保证人员的后续工作。 为了书写更优良的缺陷报告,需要遵守“5C”准则: ?Correct(准确):每个组成部分的描述准确,不会引起误解; ?Clear(清晰):每个组成部分的描述清晰,易于理解; ?Concise(简洁):只包含必不可少的信息,不包括任何多余的内容; ?Complete(完整):包含复现该缺陷的完整步骤和其他本质信息; ?Consistent(一致):按照一致的格式书写全部缺陷报告。 3. 缺陷报告的组织结构 尽管不同的软件测试项目对于缺陷报告的具体组成部分不尽相同,但是基本组织结构都是大同小异的。一个完整的软件缺陷报告通常由下列几部分组成: ?缺陷的标题; ?缺陷的基本信息;

热轧卷缺陷图谱

热轧板卷缺陷图谱 缺陷名称辊印 1.缺陷特征: 是一组具有周期性(其周期长度即为产生辊印的辊子的周长及其后再加工的延伸量,大小形状基本一致的凸凹缺陷,并且外观形状不规则。 2.产生原因:一方面由于辊子疲劳或硬度不够,使辊面掉肉呈凹形,另一方面由于辊子表面粘有异物,经轧制或精整加工的钢材表面形成凸凹缺陷。 3.预防及消除方法: (1)正确选择轧辊材质及其热处理工艺,调整轧辊冷却水,使辊身冷却均匀,预防轧辊掉肉; (2)定期检查轧辊表面质量,禁止违章轧钢或异物进入轧辊,预防伤害轧辊表面; (3)定期更换疲劳的轧辊、夹送辊、助卷辊等; (4)如轧钢发现异常如冷卷、卡钢、甩尾等情况时,应及时检查轧辊表面是否损伤; (5)定期检查精整加工线平整辊、矫直辊等表面质量。

缺陷名称氧化铁皮 缺陷图片 1.缺陷特征: 氧化铁皮一般粘附在钢板表面上,分布于板面局部或全部,铁皮有的疏松易脱落;有的压入板面不易脱落。根据其外观形态不同可分为:红铁皮、线条状铁皮、木纹状铁皮、流线状铁皮、纺锤状铁皮、拖曳状铁皮或散沙状铁皮等。 2.产生原因: (1)板坯加热制度不合理或加热操作不当生成较厚且较致密的铁皮,除鳞时难以除尽,轧制时被压入钢板表面上; (2)由于高压除鳞水压力低、水咀堵塞、水咀角度安装不合理或操作不当等原因,使钢坯上的铁皮未除尽,轧制时被压入到钢板表面上。 (3)氧化铁皮在沸腾钢中发生较多,含硅较高的钢中易产生红铁皮。 (4)轧辊表面粗糙也是产生氧化铁皮的一个重要原因。

缺陷名称波浪 缺陷图片 1.缺陷特征: 沿钢板的轧制方向呈现高低起伏的波浪形的弯曲。根据分布的部位不同,分为中间浪、单边浪和双边浪。 2.产生原因: (1)辊形曲线不合理,轧辊磨损不均匀; (2)压下量分配不合理; (3)轧辊辊缝调整不良或轧件跑偏; (4)轧辊冷却不均; (5)轧件温度不均; (6)卷取机前的侧导板开口度过小等。

焊接缺陷及产生原因

焊接缺陷产生原因及防止措施 一、焊接缺陷定义 焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等。这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断。其中危害最大的是焊接裂纹和气孔。

二、焊接缺陷的分类 焊接生产中产生焊接缺陷的种类是多种多样的,按其在焊接接头中所处的位置和表现形式的不同,可以把焊接缺陷大致分为两类:一类是外部缺陷;另一类是内部缺陷。焊接缺陷的详细分类如图1所示。 图1 焊接缺陷分类图 焊接缺陷示意图如图2所示: (a)裂纹(b)焊瘤(c)焊穿 (d)弧坑(e)气孔(f)夹渣

(g )咬边 (h )未融合 (i )未焊透 图2 焊接缺陷示意图

三、影响焊接缺陷的因素 1. 材料因素 所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂及保护气体等。这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中,母材本身的材质对热影响区的性能起着决定性的作用,当然,所采用的焊接材料对焊缝金属的成分和性能也是关键因素。如果焊材与母材匹配不当,不仅可能引起焊接区内的裂纹、气孔等各种缺陷,也可能引起脆化、软化等性能变化。所以,为了保证得到良好的焊接接头,必须对材料因素予以重视。 2.工艺因素 同一种母材,在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。 焊接方法对焊接质量的影响主要在两个方面:首先是焊接热源的特点,其可以直接改变焊接热循环的各项参数,如线能量、高温停留时间、冷却速度等;其次是对熔池和接头附近区域的保护方式,如渣保护、气保护等。焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。 3.结构因素 焊接接头的结构设计影响其受力状态,其既可能影响焊接时是否发生缺陷,又可能影响焊后接头的力学性能。设计焊接结构时,应尽量使接头处于拘束度较小、能自由伸缩的状态,这样有利于防止焊接裂纹的产生。 4.使用条件 焊接结构必须符合使用条件的要求,如载荷的性质、工作温度的高低、工作介质有无腐蚀性等,其必然会影响到接头的使用性能。 例如,焊接接头在高温下承载,必须考虑到合金元素的扩散整个结构发生蠕变的问题;承受冲击载荷或在低温下使用时,要考虑到脆性断裂的可能性;接头如需在腐蚀介质中工作时,又要考虑应力腐蚀的问题……。 综上所述,影响焊接缺陷的因素是多方面的,如材料、工艺、结构和使用条件等,必须综合考虑上述因素的影响。

相关主题
文本预览
相关文档 最新文档