当前位置:文档之家› 空间谱估计经典算法性能比较

空间谱估计经典算法性能比较

空间谱估计经典算法性能比较
空间谱估计经典算法性能比较

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N-1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ∑--=+=1||0 *) ()(1 )(?m N n xx m n x n x N m r

经典功率谱估计方法实现问题的研究

1 随机信号的经典谱估计方法 估计功率谱密度的平滑周期图是一种计算简单的经典方法。它的主要特点是与任 何模型参数无关,是一类非参数化方法[4]。它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。 2.1 周期图法 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。周期图法[5]包含了下列两条假设: 1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段 )(n x N 来估计该随机序列的功率谱。这当然必然带来误差。 2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。与相关法相比,相关法在求相关函数)(m R x 时将 )(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外 x(n)是全零序列,这种处 理方法显然与周期图法不一样。 但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。简单地可以这样说:周期图法是M=N 时相关法的特例。因此相关法和周期图法可结合使用。 2.2 相关法谱估计(BT )法

基于Burg算法的AR模型功率谱估计简介

基于Burg 算法的AR 模型功率谱估计简介 摘要:在对随机信号的分析中,功率谱估计是一类重要的参数研究,功率谱估计的方法分为经典谱法和参数模型方法。参数模型方法是利用型号的先验知识,确定信号的模型,然后估计出模型的参数,以实现对信号的功率谱估计。根据wold 定理,AR 模型是比较常用的模型,根据Burg 算法等多种方法可以确定其参数。 关键词:功率谱估计;AR 模型;Burg 算法 随机信号的功率谱反映它的频率成分以及各成分的相对强弱, 能从频域上揭示信号的节律, 是随机信号的重要特征。因此, 用数字信号处理手段来估计随机信号的功率谱也是统计信号处理的基本手段之一。在信号处理的许多应用中, 常常需要进行谱估计的测量。例如, 在雷达系统中, 为了得到目标速度的信息需要进行谱测量; 在声纳系统中, 为了寻找水面舰艇或潜艇也要对混有噪声的信号进行分析。总之, 在许多应用领域中, 例如, 雷达、声纳、通讯声学、语言等领域, 都需要对信号的基本参数进行分析和估计, 以得到有用的信息, 其中, 谱分析就是一类最重要的参数研究。 1 功率谱估计简介 一个宽平稳随机过程的功率谱是其自相关序列的傅里叶变换,因此功率谱估计就等效于自相关估计。对于自相关各态遍历的过程,应有: )()()(121lim *k r n x k n x N N x N N n =? ?????++∞→∑-= 如果所有的)(n x 都是已知的,理论上功率谱估计就很简单了,只需要对其自相关序列取傅里叶变换就可以了。但是,这种方法有两个个很大的问题:一是不是所有的信号都是平稳信号,而且有用的数据量可能只有很少的一部分;二是数据中通常都会有噪声或群其它干扰信号。因此,谱估计就是用有限个含有噪声的观测值来估计)(jw x e P 。 谱估计的方法一般分为两类。第一类称为经典方法或参数方法,它首先由给定的数据估 计自相关序列)(k r x ,然后对估计出的)(?k r x 进行傅里叶变换获得功率谱估计。第二类称为非经典法,或参数模型法,是基于信号的一个随机模型来估计功率谱。非参数谱估计的缺陷是其频率分辨率低,估计的方差特性不好, 而且估计值沿频率轴的起伏甚烈,数据越长, 这一现象越严重。 为了改善谱分辨率,研究学者对基于模型的参数方法进行了大量研究。参数方法的第一步是对信号选择一个合适的模型,这种选择可能是基于有关信号如何产生的先验知识,也可能是多次试验后获得的结果。通常采用的模型包括AR 、MA 、ARMA 模型和谐波模型(噪声中含有复指数)。一旦模型选择好后,下一步就是计算模型的参数。最后将计算得到的参数带

功率谱估计

功率谱估计及其MATLAB仿真 詹红艳 (201121070630控制理论与控制工程) 摘要:从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。 关键词:功率谱估计;周期图法;AR参数法;Matlab Power Spectrum Density Estimation and the simulation in Matlab Zhan Hongyan (201121070630Control theory and control engineering) Abstract:Mainly introduces the principles of classical PSD estimation and modern PSD estimation,discusses the characteristics of the methods of realization in Matlab.Moreover,It gives an example of each part in realization using Matlab functions. Keywords:PSDPstimation,Periodogram method,AR Parameter method,Matlab 1引言 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。 功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,人称矩 阵实验室,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,成为目前极为流行的工程数学分析软件。也为数字信号处理进行理论学习、工程设计分析提供了相当便捷的途径。本文的仿真实验中,全部在Matlab6.5环境下调试通过;随机序列由频率不同的正弦信号加高斯白噪声组成。 2经典功率谱估计 经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。经典功率谱估计方法分为:相关函数法(BT法)、周期图法以及两种改进的周期图估计法即平均周期图法和平滑平均周期图法,其中周期图法应用较多,具有代表性。 1.1相关函数法(BT法) 该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。当延迟与数据长度相比很小时,可以有良好的估计精度。 Matlab代码示例1: Fs=500;%采样频率 n=0:1/Fs:1;

利用经典谱估计法估计信号的功率谱(随机信号)

随机信号 利用经典谱估计法估计信号的功率谱

作业综述: 给出一段信号“asd.wav”,利用经典谱估计法的原理,通过不同的谱估计方法,求出信号的功率谱密度函数。采用MATLAB语言,利用MATLAB语言强大的数据处理和数据可视化能力,通过GUI的对话框模板,使操作更为简便!在一个GUI界面中,同时呈现出不同方法产生出的功率谱。 这里给出了几种不同的方法:BT法,周期图法,平均法以及Welch法。把几种不同方法所得到的功率谱都呈现在一个界面中,便于对几种不同方法得到的功率谱作对比。 一.题目要求 给出一段信号及采样率,利用经典谱估计法估计出信号的功率谱。 二.基本原理及方法 经典谱估计的方法,实质上依赖于传统的傅里叶变换法。它是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有BT法,周期图法,平均法以及Welch法。 1. BT法(Blackman-Tukey) ●理论基础: (1)随机序列的维纳-辛钦定理 由于随机序列{X(n)}的自相关函数Rx(m)=E[X(n)X(n+m)]定义在离散点m上,设取样间隔为,则可将随机序列的自相关函数用连续时间函数表示为 等式两边取傅里叶变换,则随机序列的功率谱密度 (2)谱估计 BT法是先估计自相关函数Rx(m)(|m|=0,1,2…,N-1),然后再经过离散傅里叶变换求的功率谱密度的估值。即 其中可有式得到。 2. 周期图法 ●理论基础: 周期图法是根据各态历经随机过程功率谱的定义来进行谱估计的。在前面我们已知,各态历经的连续随机过程的功率谱密度满足

式中 是连续随机过程第i 个样本的截取函数 的频谱。对应在随机序列中则有 由于随机序列中观测数据 仅在 的点上存在,则 的N 点离散傅里叶变换为: 因此有随机信号的观测数据 的功率谱估计值(称“周期图”)如下: 由于上式中的离散傅里叶变换可以用快速傅里叶变换计算,因此就可以估计出功率 谱。 3.平均法: 理论基础: 平均法可视为周期图法的改进。周期图经过平均后会使它的方差减少,达到一致估计的目的,有一个定理:如果 , , , 是不相关的随机变量,且都有个均值 及其方差 ,则可以证明它们的算术平均的均值为 ,方差为 。 由定理可见:具有 个独立同分布随机变量平均的方差,是单个随机变量方差的 , 当 时,方差 ,可以达到一致估计的目的。因此,将 个独立的估计量经过算术 平均后得到的估计量的方差也是原估计量方差的 。 平均图法即是将数据 , , 分段求周期图法后再平均。例如,给定N=1000个数据样本(平均法适用于数据量大的场合),则可以将它分成10个长度为100的小段,分别计算每一段的周期图 ()()2 1001100,100(1) 1 ,1,2,```,10100 l j l n l G w X e l ω-=-= =∑ 然后将这10个周期图加以平均得谱估计值: ()() 10 100100,1 110l l G w G w ==∑ 由于这10小段的周期图取决于同一个过程,因而其均值相同。若这10个小段的周期图是统计独立的,则这10个小段平均之后的方差却是单段方差的 。

基于经典谱估计的多普勒频移算法

仿真程序说明文档 1.平坦衰落信道仿真 1.1仿真设计 1.产生频率为c ω的01N +路正弦余弦信号; 2.产生在[0,2)π均匀分布的随机相位,产生在[,]m m f f -均匀分布的频率偏移,将随机相位和频率偏移加入到第一步产生的每路正余弦信号中; 3.产生每路信号的衰减cos n β,将第二步产生的每路信号乘以衰减cos n β; 4.将加入随机相位频率偏移以及乘以衰减以后的正弦信号叠加,得到同相分量,将加入随机相位频率偏移以及乘以衰减以后的余弦信号叠加,得到正交分量; 5.由同相和正交信号分别作为实部()c T t 和虚部()s T t 得到平坦衰落信道的输出; 1.2程序流程图

1.3仿真结果 下面给出了仿真的平坦衰落信道的统计特性 图1通过信道后的接收信号包络 在图1中用信道的最大增益对衰落进行了归一化。可以看出,仿真的数据流能够较好的符合典型的Rayleigh衰落信号。信道在某些点会引起深度衰落。 图2通过仿真信道信号的包络概率密度函数

在图2中,绘出了当N =34时的包络分布。可以看出当N =34时,包络分布与标准的瑞利分布基本吻合。随着N 的增加,包络更加趋向瑞利分布,且分布函数与时间t 无关,这一点满足广义平稳过程的要求。 图3通过仿真信道信号的自相关函数 可以看出自相关函数趋近贝赛尔(Bessel)函数。 以上我们讨论了仿真信道产生的随机过程是广义平稳的,并且其信号包络、包络概率分布、自相关性等统计特性,都能与Clarke 模型较好的吻合,因此能够较真实的反映信道。 2.LCR 仿真 2.1仿真设计 1.信号采样:首先对接收信号进行采样,得到输入信号的离散序列()g n ; 2.计算包络:根据输入的()g n 序列,计算相应的包络()()n g n α=; 3.确定电平R :计算()n α的均方根包络电平rms R ,使rms R R =; 4.估计LCR L :根据第二、第三步计算()n α和rms R 估计()n α每秒通过rms R 的次数LCR L ; 5.求解v :进行数值计算,求LCR 法的速度估计值v ;

相干信号空间谱估计测向Matlab仿真研究

相干信号空间谱估计测向Matlab 仿真研究 1. 引言 由于多径传播、电磁干扰等因素的影响,相干信源存在的电磁环境是经常碰到的。当空间存在相干源时,经典的超分辨DOA 估计方法:MUSIC 算法和ESPRIT 算法,已经失去了其高分辨性能优势,有时甚至不能正确地估计出信源的真实方位。新MUSIC 算法在空间不存在相干源时,其估计性能基本上是和MUSIC 算法是接近的,但若有相干源存在时,其估计性能也是大大降低。因此,若将其用于相干源,必须和经典的MUSIC 算法一样,首先对阵列输出的协方差矩阵进行各种去相干处理,然后再采用新MUSIC 算法实现对相干信源的DOA 估计。基于加权空间平滑的MUSIC 算法,该算法充分利用了子阵输出的自相关信息和互相关信息,将阵列协方差矩阵的所有子阵阵元数阶子矩阵进行加权平均,而权矩阵的选取以平滑后等价的信源协方差矩阵与对角阵的逼进为约束条件,以期对相干信源最大限度地去相干,改进常规空间平滑算法对相干源的分辨力。基于此本文提出的基于加权空间平滑的新MUSIC 算法,以实现对相干源最大限度的去相干,实现相干源的高分辨DOA 估计。 2. 窄带阵列相干源的数学模型和空间平滑算法 2.1 窄带阵列相干源的数学模型 对于M 元均匀线阵,阵源间距为d ,且假设均为各向同性阵元。阵列远场中在以线阵轴线法线为参考的(1,2,...)k P =k θ处有 P 个窄带点源以平面波入射,以阵列第一阵元为参考点,某一特定信号到达线阵时,各阵元接收信号间仅仅存在因波程差引起的相位差。阵列接收的快拍数据可由下式表示为: t t t θX()=A()S()+N() (2-1)

(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真 1 引言 随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。 信号的功率谱密度描述随机信号的功率在频域随频率的分布。利用给定的 N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。谱估计方法分为两大类:经典谱估计和现代谱估计。经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。这是不符合实际情况的,因而产生了较差的频率分辨率。而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。 2 经典功率谱估计 经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。 周期图法( Periodogram ) Schuster 首先提出周期图法。周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。 取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换 1 ()()N j j n N n X e x n e ω ω---==∑ 然后进行谱估计

一种基于空域滤波的空间谱估计方法

第26卷第2期信号处理V01.26.No.2一:垫!!篁!:旦===一=:一=:::==一=墅垒些垒曼些望篁垦!墼些篁::一一=一=:=一=一=:壁!;垫!坠:一种基于空域滤波的空间谱估计方法 甘泉孙学军唐斌 (电子科技大学电子工程学院,成都610054) 摘要:本文提出一种基于空域滤波的空间谱估计方法。对阵列进行相互重叠的子阵划分后,通过对子阵运用自适应波束形成方法实现对空间信号的窄域滤波及干扰抑制,提高期零信号的信干噪比。提出对阵列中所划分的子阵运用二次组阵的方法,根据子阵间的位置关系以及各个子阵自适应滤波后的输出运用空间谱估计方法在指定的空间区域范围内实现对期望信号的DOA估计。仿真实验表明,相比常规谱估计方法基于空域滤波的空问谱估计方法有效地改善了期望信号所处的电磁环境,进一步提高了DOA估计的精度和抗干扰性能。 关键词:子阵;波束形成;空间谱估计;MUSIC算法 中图分类号:TN911.7文献标识码:A文章编号:1003—0530(2010)02—0230—04 ASpatialSpectrumEstimationMethodBasedonthe SpatialFilteringApproach GANQuartSUNXue-junTANGBin (SchoolofElectronicEngineering,UESTofChinaChengdu610054) Abstract:Thepaperhasproposedaspatialspectrumestimationmethodbasedonthespatialfilteringapproach.Aftertheoverlapsubalraysalesetinthearray,thespatialjammingsignalshavebeenfilteredandrestrainedusingtheadaptivebeamformedbythesub- 踟T{lyandthe SINRisincreasedforthedesiredsignal.Basedonthesecondarycombinationofthesubalrays,thedirection-of-arrivalsale estimatedwiththeoutputsofthesubalraysandthelocationsofthesubarraysusingthespatialspectrumestimationmethodinthedesired spatialregions.Simulationresultsshowthespatialspectrumestimationmethodbasedonthespatialfilteringapproachhasimprovedtheelectromagneticenvironmentforthedesiredsignalandtheestimateaccuracyandtheanti-jammingabilityachievedalebetterthanregn— larspatialspectrumestimationmethod. Keywords:subarray;beamforming;spatialspectrumestimation;MUSICalgorithm 1引言 在现代空间信号处理技术中,信号的到达方向(DOA)估计在雷达与对抗、电子侦察、通信、智能天线、声纳等领域都得到了广泛的应用和研究。对常规的DOA估计方法,如何提高在复杂电磁对抗和低信噪比环境下信号测向的抗干扰能力和精度是一个非常热门的研究课题¨’21。 基于阵列接收信号相位差检测的干涉仪方法是DOA估计中常用的快速方法,但容易受到信噪比和信干比等条件的限制。为了提高DOA估计的抗干扰能力和估计精度,文献[3,4]和文献[5]中,提出通过对 收稿13期:2009年1月9日;修回13期:2009年5月11日阵列波束合成产生两个或多个虚拟子阵,再对子阵的输出进行相fiz差计算,从而实现对子波束主瓣宽度内的信号到达角度估计,该方法在干涉仪测向过程中对降低干扰提高估计精度有较好的效果。 基于空间谱估计的DOA估计算法是另一类高精度的测向算法,它具有较高的估计精度和更为广泛的适用条件,因此得到了广泛的研究和应用,但当存在噪声调相等相干干扰的条件下,谱估计方法的性能将受到明显影响∞圳。结合上述基于子阵的干涉仪DOA估计研究思想,为了进一步提高复杂环境下信号测向的性能,本文在对子阵进行自适应波束形成的基础上,对子阵的输出在指定的区域内运用空间谱估计方法。首 万方数据

经典谱估计算法研究与实现

毕业设计(论文) 论文题目:经典谱估计算法研究与实现 教学中心:电子科技大学网络教育学院苏州学习中心指导老师:职称: 学生姓名:学号: 专业:通信工程

毕业设计(论文)任务书 题目:经典谱估计算法研究与实现 任务与要求: 探讨我国经典谱估计算法运用和影响下所面临的机遇与挑战以及经典谱估计算法研究与实现,结合所知识,理论联系实际, 写出毕业论文。 时间:2014年 1 月25日至 2014年 4 月 14日共 12 周教学中心:电子科技大学网络教育学院苏州学习中心 学生姓名:学号: 专业:通信工程 指导单位或教研室:电子科技大学网络教育学院苏州学习中心 指导教师:职称:

毕业设计(论文)进度计划表

电子科技大学毕业设计(论文)中期检查记录表 注:此表同学生毕业设计(论文)一起存档

1 随机信号的经典谱估计方法 估计功率谱密度的平滑周期图是一种计算简单的经典方法。它的主要特点是 与任何模型参数无关,是一类非参数化方法[4]。它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。 2.1 周期图法 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。周期图法[5]包含了下列两条假设: 1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段)(n x N 来估计该随机序列的功率谱。这当然必然带来误差。 2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。与相关法相比,相关法在求相关函数)(m R x 时将)(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外x(n)是全零序列,这种处理方法显然与周期图法不一样。 但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。简单地可以这样说:周期图法是M=N 时相关法的特例。因此相关法和周期图法可结合使用。

1空间谱估计测向原理

1空间谱估计测向原理 对于一般远场信号而言同一信号到达不同天线元存在一个波程差这个波程差导致了接收阵元间的相位差利用阵元间的相位差,就可以估计出信号的方位 如图1所示。 图1方位估计原理 对于窄带信号而言两个天线之间的相位差甲。通过测量得到的相位差、就可以计算出来波方位。 对于窄带信号信号可用的复包络形式表示 考虑N个远场的窄带信号入射到空间某阵列天线上其中阵列天线由M个阵元组成其通道数与阵元数相等。则第!个阵元接收到的信号为: 式(1)中i=1,2,3、、、、M;Ni(t)中t表示第i个阵元在t时刻的噪声。 将M个阵元在同一时刻接收到的信号排列成一个列矢量,可得: 上式中g ij为第i个阵元对第j个信号的增益。 在理想情况下,假设阵列中各个阵元是各向同性的且不存在通道不一致、互祸等因素的影响则上式中的 增益归一化后上式可以简化为:

将上式写成矢量形式如下: x(t)=As(t)+w(t) (4) 式(4)中二X(t)为阵列数据,S[t}为空间信号N(t)为噪声数据,A为空间阵列的流型矩阵(导向矢量阵)。阵列数据X(t)的协方差矩阵R可写成; (5) 其中是空间信号的相关矩阵。为理想白噪声功率。 对协方差矩阵R进行特征分解,可以进行信号数量的判断;然后确定信号的子空间与噪声子空间根据信号参数范围进行谱峰搜索找出最大值点对应的角度即信号入射方向;将信号的频率信息、方位信息等进行关联分析整理出完整的有价值的信息。 2空间谱估计测向系统的组成 空间谱估计测向系统一般包括测向天线阵、超外差接收机、数字信号处理机等硬件部分,设备的组成框图如图z所示 测向天线阵中安装了多个相同特性的全向天线阵元,一般采用圆阵。 超外差接收机采用多次变频,实现高的动态和虚假抑制,同时要求频率稳定性高。 数字信号处理机一般采用AD+DSP+FPGA的设计方案,用FPGA设计协处理器处理大量、规则的计算,而利用DSP的灵活性处理复杂不规则的计算,从而使数字信号处理机的性能达到最优. 空间谱估计测向系统的工作过程如下:测向天线阵在数字信号处理机的控制下选择所需的接收天线将接收到的多路无线电信号,直接送到超外差接收机。超外差接收机在数字信号处理机的控制下调谐在所需的工作频点同时输出多路中频信号到达数字信号处理机。数字

功率谱估计浅谈汇总

功率谱估计浅谈 摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计 前言 功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。 周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。 下面就给出这两类谱估计的简单原理介绍与方法实现。 经典谱估计法 经典法是基于传统的傅里叶变换。本文主要介绍一种方法:周期图法。 周期图法 由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。下面讨论离散随机信号序列的功率谱问题。 连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:

AR模型谱估计算法分析

信息量准则在AR模型谱估计算法分析

绪论 雷达杂波的建模与仿真,是雷达目标环境模拟中的重要组成部分,杂波建模的好坏将直接影响到最终模拟效果。统计建模是目前较为成熟和常用的杂波建模方法,在建立统计性模型时,杂波通常用相关非高斯分布随机过程来描述,其主要模拟方法有三种:外部模型法、广义维纳过程的零记忆非线性变换法(ZMNL)和球不变随机过程法(SIRP)。使用这三种方法的前提都是要先产生具有指定功率谱特性的相关高斯随机过程。 相对于杂波的空间相关性,杂波在时间上的相关性由其功率谱特性来描述。地面雷达环境杂波的功率谱主要用高斯谱或n 次方谱来描述,分析这两种分布特性不难发现,杂波功率大部分集中在半功率点或特征频率范围内,具有一定程度的极值函数特征, 因此,可以用有限阶自回归(AR)过程模拟近似。也就是说,可以将杂波看成是一个具有指定功率谱特性的自回归随机过程。这样,相关高斯杂波的模拟问题就转换为对给定功率谱求解其AR 模型的参数和阶数问题。 AR 模型定阶准则可以分为两类: 线性代数法和信息量准则法。线性代数法需要计算矩阵的秩, 计算量大,不易于工程实时实现。文献[1]给出了一种修正的LEVISON算法来确定AR阶数,得到的阶数与实际AR 阶数较为接近,但前提是需要事先选择一个取值理想的收敛因子,这给实际工作带来了不确定性。信息量准则法是设定一个与AR阶数、线形预测误差方差相关的性能指标,选择使这个性能指标达到最小的阶数,依此作为定阶原则来确定AR 阶数。它的优点是计算量小,易于实现,不需要选择不确定性因素,而且这种基于信息量准则的方法具有明确的物理意义。 采用模型仿真相关高斯序列,具有灵活性强,效率高的优点,但如何选择合适的阶数一直是模型谱估计中的关键问题。本文从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理,根据现代谱估计中的线性预测自回归模型法(AR模型法)估计功率谱的原理,讨论了Levlnsion-Durbin算法和四种基于信息量准则的AR模型定阶准则:AIC、FPE、CAT和MDL,计算AR模型参数、估计功率谱并利用进行了实例计算和分析。

经典功率谱估计

Classical Power Spectrum Estimation Abstract With the increasing need of spectrum, various computational methods and algorithms have been proposed in the literature. Keeping these views and facts of spectrum shaping capability by FRFT based windows we have proposed a closed form solution for Bartlett window in fractional domain. This may be useful for analysis of different upcoming generations of mobile communication in a better way which are based on OFDM technique. Moreover, it is useful for real-time processing of non-stationary signals. As per our best knowledge the closed form solution mentioned in this paper have not been reported in the literature till date.This paper focuses on classical period spectral estimation and moderu spectral estimation based on Burg algorithm. By comparing various algorithms in computational complexity and resolution, Burg algorithm was used to signal processing finally. Experimental and simulation results indicated that digital signal processing system would meet system requirements for measurement accuracy. Keywords periodogram spectral estimation ; Burg algorithm I. INTRODUCTION When we expand the frequency response of any digital filter by means of Fourier series, we get impulse response of the digital filter in the form of coefficients of the Fourier series. But the resultant filter is unrealizable and also its impulse response in infinite in duration. If we directly truncate this series to a finite number of points we have to face with well known Gibbs phenomenon, so we modify the Fourier coefficients by

第十一章 均衡

第十一章 均 衡 11.1 均衡器中的噪声增强 11.2 均衡器的类型 11.3 折叠谱和无ISI 传输 11.4 线性均衡 11.5 最大似然序列估计 11.6 判决反馈均衡 11.7 其他均衡方法 11.8 自适应均衡:训练和跟踪 时延扩展会引起码间干扰(ISI ),均衡就是指在接收端所采取的抗ISI 技术。当码元周期与信道的均方根时延扩展可比时,就需要考虑ISI 问题。 11.1 均衡中的噪声增强 均衡器的目的是消除ISI 的影响。但在消除ISI 的同时,必须要顾及到噪声功率的增强问题。如图,假设信号经过了一个频率响应为H (f )的信道,在接收机的前端叠加了高斯白噪声n (t ),从而输入信号为Y (f )=S (f )H (f )+N (f )。如欲完全消除信道中引入的ISI ,只需在接收端引入这样一个模拟均衡器: )(/1)(f H f H eg = 经过均衡后的接收信号Y (f )为: )(')()()]()()([f N f S f H f N f H f S eg +=+ 其中)('f N 是有色高斯噪声。上式表明所有ISI 都被消除了。但是,若在s (t )的带宽范围内H (f )有零点,即若对于某一0f ,有)(0f H =0,那么噪声)('f N 的功率将为无限大。即使频谱没有零点,如果某些频率处有很大的衰减,那么均衡器)(/1)(f H f H eg =也会使这些频率上的噪声显著增大。在这种情况下,虽然ISI

被消除了,但因为信噪比大大降低,所以性能也会很差。因此,均衡设计应当在减小ISI 的同时最大化均衡器输出的信噪比。 通过模拟均衡器说明噪声增强 11.2均衡器的类型 均衡技术主要分为线性和非线性两种类型。线性均衡实现简单,易于理解, 但多数无线通信系统并没有采用线性均衡,因为他的噪声增强要比非线性均衡大。最常用的非线性均衡是实现简单、性能也不错的判决反馈均衡。但在低信噪比时,DFE 存在误码传播的问题,进而会导致性能恶化。最优的均衡技术是最大似然序列估计,但其复杂度随时延扩展成指数增长,这对多数信道来说是难以实用的。 均衡器的类型、结构和算法 均衡器 类型 横向 格形 横向 格形 横向信道 LMS RLS 快速RLS 平方根RLS 梯度RLS LMS RLS 快速RLS 平方根RLS 梯度RLS LMS RLS 快速RLS 平方根RLS 结构 抽头更新 算法

功率谱估计MATLAB实现

功率谱估计性能分析及其MATLAB实现 一、经典功率谱估计分类简介 1.间接法 根据维纳-辛钦定理,1958年Blackman和Turkey给出了这一方法的具体实现,即先由N个观察值,估计出自相关函数,求自相关函数傅里叶变换,以此变换结果作为对功率谱的估计。 2.直接法 直接法功率谱估计是间接法功率谱估计的一个特例,又称为周期图法,它是把随机信号的N 个观察值直接进行傅里叶变换,得到,然后取其幅值的平方,再除以N,作为对功率谱的估计。 3.改进的周期图法 将N点的观察值分成L个数据段,每段的数据为M,然后计算L个数据段的周期图的平均 ,作为功率谱的估计,以此来改善用N点观察数据直接计算的周期图的方差特性。根据分段方法的不同,又可以分为Welch法和Bartlett法。 Welch法 所分的数据段可以互相重叠,选用的数据窗可以是任意窗。 Bartlett法 所分的数据段互不重叠,选用的数据窗是矩形窗。

二、经典功率谱估计的性能比较 1.仿真结果 为了比较经典功率谱估计的性能,本文采用的信号是高斯白噪声加两个正弦信号,采样率Fs=1000Hz,两个正弦信号的频率分别为f1=200Hz,f2=210Hz。所用数据长度N=400. 仿真结果如下: Figure1(a)示出了待估计信号的时域波形;

Figure2(b)示出了用该数据段直接求出的周期图,所用的数据窗为矩形窗; Figure2(c)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为矩形窗,长度M=128,数据没有加窗; Figure2(d)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为Hamming 窗,长度M=64,数据没有加窗; Figure2(e)是用Welch平均法求出的功率谱曲线,每段数据的长度为64点,重叠32点,使用的Hamming窗; Figure2(f)是用Welch平均法求出的功率谱曲线,每段数据的长度为100点,重叠48点,使用的Hamming窗; 2.性能比较 1)直接法得到的功率谱分辨率最高,但是方差性能最差,功率谱起伏剧烈,容易出现 虚假谱峰; 2)间接法由于使用了平滑窗对直接法估计的功率谱进行了平滑,因此方差性能比直接 法好,功率谱比直接法估计的要平滑,但其分辨率比直接法低。 3)Welch平均周期图法是三种经典功率谱估计方法中方差性能最好的,估计的功率谱 也最为平滑,但这是以分辨率的下降及偏差的增大为代价的。 3.关于经典功率谱估计的总结 1)功率谱估计,不论是直接法还是间接法都可以用FFT快速计算,且物理概念明确,因而 仍是目前较常用的谱估计方法。 2)谱的分辨率较低,它正比于2π/N,N是所使用的数据长度。 3)方差性能不好,不是真实功率谱的一致估计,且N增大时,功率谱起伏加剧。 4)周期图的平滑和平均是和窗函数的使用紧密关联的,平滑和平均主要是用来改善周期图 的方差性能,但往往又减小了分辨率和增加了偏差,没有一个窗函数能使估计的功率谱在方差、偏差和分辨率各个方面都得到改善,因此使用窗函数只是改进估计质量的一个技巧问题,并不能从根本上解决问题。 三、AR模型功率谱估计 1.A R模型功率谱估计简介 AR模型功率谱估计是现代谱估计中最常用的一种方法,这是因为AR模型参数的精确估计可以用解一组线性方程(Yule-Walker方程)的方法求得。其核心思想是:将信号看成是一个p 阶AR过程,通过建立Yule-Walker方程求解AR模型的参数,从而得到功率谱的估计。 由于已知的仅仅是长度有限的观测数据,因此AR模型参数的求得,通常是首先通过某种算法求得自相关函数的估计值,进而求得AR模型参数的估计值。常用的几种AR模型参数提取方法有: 1)自相关法 假定观测数据区间之外的数据为0,在均方误差意义下使得数据的前向预测误差最小。

相关主题
文本预览
相关文档 最新文档