当前位置:文档之家› 条形基础设计计算书

条形基础设计计算书

条形基础设计计算书
条形基础设计计算书

一、设计资料:

1、本设计的任务是设计一多层办公楼的钢筋混凝土柱下条形基础,框架柱的截面尺寸均为b×h=500mm×600mm,柱的平面布置如下图所示:

2、办公楼上部结构传至框架柱底面的荷载值标准值如下表所示:

注:表中轴力的单位为KN,弯矩的单位为;所有1、2、3轴号上的弯矩方向为逆时针、4、5、6轴号上的弯矩为顺时针,弯矩均作用在h方向上。

3、该建筑场地地表为一厚度为1.5m的杂填土层(容重为17kN/m3),其下为粘土层,粘土层承载力特征值为F ak=110kPa,地下水位很深,钢筋和混凝土的强度等级自定请设计此柱下条形基础并绘制施工图。

二、确定基础地面尺寸:

1、确定合理的基础长度:

设荷载合力到支座A的距离为x,如图1:则:

x=

∑∑

∑+

i i

i

i

F M

x F

=

300

700

700

700

700

350

)5.

17

300

14

700

5.

10

700

7

700

5.3

700

0(

+

+

+

+

+

+?

+

?

+

?

+

?

+

?

+

=8.62m

G

图1

因为x=?

2

1

=?, 所以,由《建筑地基基础设计规范》(GB50007-2002)8.3.1第2条规定条形基础端部应

沿纵向从两端边柱外伸,外伸长度宜为边跨跨距的倍取a 2=(与4

1

l=?相近)。

为使荷载形心与基底形心重合,使基底压力分布较为均匀,并使各柱下弯矩与跨中弯

矩趋于均衡以利配筋,得条形基础总长为:

L=2(a+a 2-x)=2?+19.36m ≈19.4m 121.1m 、确定基础底板宽度b : 竖向力合力标准值:

∑Ki

F

=350+700+700+700+700+300=3450kN

选择基础埋深为,则

m γ=(?+?)÷=m 3

深度修正后的地基承载力特征值为:

()5.0-+=d f f m d ak a γη=110+??

由地基承载力得到条形基础b 为: b ≥

)20(d f L F

a Ki

-∑=

)

8.120529.132(4.193450

?-?=1.842m

取b=2m ,由于b ?3m ,不需要修正承载力和基础宽度。

三、基础底板设计:

基础底板采用混凝土强度等级为C30,t f =mm 2,钢筋用HPB235级,

y f =210 N/mm 2。

a2

a

a1

竖向力设计值分别为:

F 1=1.35F 1K =?= F 2=F 3=F 4=F 5=?=945kN F 6=?=405kN 竖向力合力设计值为:

∑F =+945?4+405=

地基净反力: P j =

bL

F ∑=4

.1925.4657?=

基础边缘至柱边计算截面的距离:

b 1=2

1

(b-b 柱)=?()=0.75m

沿条形基础纵向取1m 长度计算则底板有效高度为: h 0≥

j 1t

p b 0.7f =

120.0390.75

0.71430

??=0.089m=89mm

结合《建筑地基基础设计规范》(GB50007-2002)取底板高度h=250mm ,作10mm 的C10混凝土垫层则:

h 0=250-40-5=205mm ?89mm

M=2

1

P j b 12=??2

s

y 00.9h M f 205

2109.010761.336

???871.364mm 2配钢筋φ14@170,

A s =906mm 2,可以。

以上受力筋沿条形基础横向配置,纵向分部筋取φ8@250。

四、基础内力计算(弯矩图以上部受拉为负,下部受拉为正):

1、计算基底单位净反力:

P i

=L

∑F 4

.195

.4657=m

计算简图如图2:

P

i

=m

图2 计算简图求固端弯矩:

M

AH =-M

AB

=-

2

1

P

i

a

1

2=??2M

BA

=-M

EF

=-

8

1

P

i

l2=

8

1

??2

M

BC =M

CD

=M

DE

=

12

1

P

i

l2=

12

1

??2M

CB

=M

DC

=M

ED

=-

12

1

P

i

l2=

12

1

??2

M

FG =-M

FE

=

2

1

P

i

a

2

2=??22、求弯矩分配系数:

设i=

l

EI

,则:

BA

μ=

EF

μ=

i4

i3

i3

+

=

BC

μ=

ED

μ=

i4

i3

i4

+

=

CB

μ=

CD

μ=

DC

μ=

DE

μ=

i4

i4

i4

+

=

3、用力矩分配法计算弯矩:

首先计算个支座处的不平衡力矩:

∑f B M=-∑f E M=+=·m

∑f C M=∑f D M=0

先进行第一轮的力矩分配法及传递(从B和E开始),然后进行C和D的力矩分配及传递,再回到B和E,如此循环直到误差允许为止,详细过程如表1:

表1 弯矩分配法计算过程

由上可得:

M 1A =·m, M 1B =·m, M 1C =·m, M 1D =·m M 1E =·m M 1F =·m

4、肋梁剪力计算:

根据支座弯矩及外荷载,以每跨梁为隔离体求支座剪力: A 截面左边的剪力为:

V l

A 1=P i a 1=?取H

B 段作脱离体,计算A R 1A =l 1[21

P i (a 1+l)2-M B ]

=5

.31

?[??2 = 图3 HB 段

A 截面右边的剪力:

V r A 1=P i a 1-R A =? '

B R =P i (a 1+l)- R A =?+=

B 截面左边的剪力为:

V l B 1='

B R =

取BC 段为脱离体(如图4):

'

'B R =l 1(21P i l 2+M B -M C )

=5

.31???21B 'B R '

'B R 截面右边的剪力为:

BC 段

V r B 1=-'

'B R =

'C R =P i l-''B R =?截面左边的剪力为: V l C 1='C R =

取CD 段为脱离体(如图5):

'

D R =''C R =2

1P i l=?? R 1C ='C R +''C R =+=

C 截面右边的剪力为:

V r C 1=-'

'C R = 图5 CD 段

D 截面左边的剪力为:

V l D 1='

D R =

取DE 段为脱离体(如图6):

'

'D R =l 1(21P i l 2+M D -M E )

=5.31

???2 =

R 1D ='D R +'

'D R =+=

'E R =P i l-''D R =? 图6 DE 段

D 截面右边的剪力为:

V r D 1=-'

'D R =

E 截面左边的剪力为:

V l E 1='

E R =

取EG 段为脱离体(如图7):

R 1F =l 1[21

P i (a 2+l)2-M E ]

=5

.31

?[??2截面左边的剪力: V l F 1=R F -P i a 2=? 图7 EG 段 E 截面右边的剪力为:

V r E 1=-'

'E R = R 1E ='E R +''E R =+=

F 截面右边的剪力:

V r F 1=-P i a 2=?、肋梁跨内最大弯矩计算: 按跨内剪力为零的条件求跨内最大弯矩:

以H 点为原点,设连续梁上各点到原点的距离为x i 则: HB 段:

P i x 1-R 1A =1 ? x 1=

077

.240859

.636=2.653m

所以 M 11=2

1

P i x 12-R 1A (x 1-a 1)

=2

1

??2?段: P i x 2-R 1A -R 1B =2 ?

x 2=

077

.240849

.911859.636+=6.451m

所以 M 21=2

1

P i x 22-R 1A (x 2-a 1)-R 1B [x 2-(a 1+l)] =

2

1

??2??段:由于荷载是对称的,所以其弯矩最大值必在中点位置。则: x 3=21L=21

?=9.7m

所以M 31=21

P i x 32-R 1A (x 3-a 1)-R 1B [x 3-(a 1+l)]- R 1C [x 3-(a 1+2l)]

=2

1

??2? ?[+]

?[+?]

=·m

以G 点为原点,设连续梁上各点到原点的距离为x i 则: DE 段:

P i x 4-R 1E -R 1F = 4 ?

x 4=

077

.240287

.545398.931+=6.151m

所以 M 41=21

P i x 42-R 1F (x 4-a 2)-R 1E [x 4-(a 2+l)]

=21

??2? ?[+] =·m

EG 段:

P i x 5-R 1F =1 ? x 5=

077

.240287

.545=2.271m

所以 M 51=2

1

P i x 52-R 1F (x 5-a 2)

=2

1

??2?、考虑不平衡力的调整: 由以上计算得到支座反力为R A =,R B =,R C =,

R D =,R E =,R F =,与相应的柱荷载有较大的不平衡力,其差值部分超过了20%,可以采用实践中提出的“基底反力局部调整法”加以调整。即按计算简图(如下图)再进行连续梁分析,在支座附近的局部范围内加上均布线荷载。由对于边跨支座1

11

13()

o p q l l ??=

+ o l 为边跨长度;1l 为第一跨长度。对于中间支座11

133()i i

p

q l l -??=

+ 1i l -为第1i -长度;i l 为第i 跨长度得调整荷载值为:

q 1=3111l a R F A +-=35.31.1859.6365.472+

-=m

q 2=3312l l R F B +-=35.335.3849.911945+-=m

q 3=3313l l R F C +-=35.335.3051.816945+-=m

q 4=334l l R F D +-=35.335.3051.816945+-=m

q 5=3315l l R F E +-=35.335.3398.931945+-=m

q 6=2163a l R F F +-=8.03

5.3287.545405+-=m

其计算简图如下图所示:

图8 调整值计算简图(kN)

通过结构力学求解器分析得到的剪力图和弯矩图如下:

72.51

14.21

55.26

55.26

5.83

71.33

A B

C D

E

F

G

H

图10

调整值剪力图

A

B

C

D E

F

G H

图9

调整值剪力图(kN )

由调整值剪力图得:

V l

A2= V r

A2

= V l

B2

= V r

B2

= V l

C2

= V r

C2

= V l

D2

= V r

D2

=

V l

E2= V r

E2

= V l

F2

= V r

F2

=

两次计算结果叠加,得基础梁最终剪力和反力为:

V l

A =V l

A1

+V l

A2

=r

A

r

A1

r

A2A

l

A

r

A

l

B

l

B1

l

B2

r

B

r

B1

r

B2B

l

B

r

B

l

C

l

C1

l

C2

r

C

r

C1

r

C2C

l

C

r

C

l

D

l

D1

l

D2

r

D

r

D1

r

D2D

l

D

r

D

l

E

l E1l

E2

r

E

r

E1

r

E2E

l

E

r

E

l

F

l

F1

l

F2

r

F

r

F1

r

F2F

l

F

r

F

由调整值弯矩图得:

M

2

A

=·m,M

2

B

=·m M

2

C

=·m M

2

D

=·m M

2

E

=·m

M

2

F

=·m

M

12

=·m M

22

=·m M

32

=·m

M

42

=·m M

52

=·m

两次计算结果叠加,得基础梁最终弯矩为:

M

A

=M

1A

+M

2

A

= M

B

=M

1

B

+M

2

B

=+=·m

M

C

= M

1

C

+M

2

C

=+=·m

M

D

=M

1

D

+M

2

D

=+=·m

M

E

=M

1

E

+M

2

E

=

M

F =M

1

F

+M

2

F

=

1111222122331324414255152

叠加后的最终剪力图和弯矩图如下:

A B C D E F

G H

图11 最终剪力图(kN)

四、基础配筋计算

1、基础梁配筋准备工作:

①材料选择: 混凝土C30,t f =mm 2,f c =mm 2, 纵向受力钢筋采用二级钢HRB335,y f ='y f =300N/mm 2,

垫层采用C10混凝土垫层,厚100mm 。

②基础梁高度的确定: 由《建筑地基基础设计规范》(GB50007-2002)8.3.1得柱下

条形基础梁的高度宜为柱距的81~41的规定取h=51l=5

1

?=0.7m ,同时也符合基底

反力可以按直线分布,基础梁的内力可按倒梁法计算对条形基础梁的高度不小于

6

1

柱距的要求。 ③基础肋梁宽度: b=600mm 。 2、正截面受弯承载力计算:

①对支座正截面的配筋计算按矩形截面计算:

肋梁底面有板筋则:'

'0

70060640s h h a mm =-=-= 支座正截面受弯承载力计算如下表2:

表2 支座正截面受弯承载力计算

A B

C

D

E

F

G

H

最终弯矩图(kN·m )

图12

注:等效矩形应力图形系数1 1.0α=;'0640h mm =;min ρ取

0.45t

y

f f 及0.2%大值 由上表可以看出ξ?b ξ=满足要求,支座A 和支座F 选配可以配322Φ+220Φ则:

s A =1140+628=1768?min ρbh=%?600?700=903mm 2符合最小配筋率要求。

剩下的支座都配322Φ+220Φ则s A =1768 mm 2符合要求。钢筋全部贯通符合《建筑

地基基础设计规范》(GB50007-2002)规定底面通长钢筋的面积不应少于底面受力钢筋总面积的1/3的要求。

②对跨内正截面的配筋计算按T 形截面计算:

设肋梁顶面保护层厚度取40mm 则:070050650s h h a mm =-=-=

翼缘计算宽度为: 'f b =13l =1

3

?3500

=1166.67mm ?b+n s =600+2900=3500mm

翼缘厚 f h =250mm 判别T 形截面类型:

max M =·m ?1c f α'f b f h ('0h -

2

f h )

=????故各跨内截面都属于第一类T 形截面。

支座正截面配筋计算如下表3:

表3 跨中正截面受弯承载力计算

注:等效矩形应力图形系数1 1.0α=;'0640h mm =;min ρ取

0.45t y o

f h

f h 及0.2%大值 由上表可以看出ξ?b ξ=满足要求,由《建筑地基基础设计规范》(GB50007-2002)

规定的顶面的纵向受力钢筋宜全部通长配置要求取418Φ,

s A =1017mm 2?min ρbh=%?600?700=903mm 2符合最小配筋率要求。

3、斜截面受剪承载力计算: ①验算截面最小尺寸:

w h =h-f h =700-250=450mm , w h /b=450/600=?,属一般梁。则:

max 485.3040.250.25 1.014.36006401372.8c c o V kN f bh kN β=≤=????=,

截面尺寸符合要求

②斜截面受剪承载力计算如下表3:

表3 斜截面受剪承载力计算

以上选的箍筋肢数是根据《建筑地基基础设计规范》(GB50007-2002)构造配箍要求: 梁宽mm b mm 800350≤<,应采用四肢箍;梁高mm h mm 800500≤<,箍筋最大间距250mm ; 梁高mm h 800≤,箍筋最小6φ而得。

sv ρ=

sv A bs =201600200?=%?,min sv ρ=t vy f f =?1.43

210

=%,其配箍满足要求。由《建筑地基基础

设计规范》(GB50007-2002)规定在距支座柱距范围内箍筋应加密配置则加密区间配4φ8@100的HPB235,满足要求。 五、相关构造措施:

1、柱传下来的集中荷载由柱梁相交处的箍筋加密承担,所以可以不设吊筋。

2、在6~1轴线上设置连梁,提高条形基础的整体性。连梁截面设计一般按工程经验来设计,其高度宜与基础同高,宽度为

11

2

3

梁高,则可取其截面为250700b h mm mm ?=?。

采用C30混凝土,按构造配筋,但也需要有一定的强度和刚度,以发挥其作用。其纵向受力钢筋采用HRB335,对称配筋顶面和底面各配220

,每侧配2φ12的腰筋,拉结筋配φ8@500的HPB235,箍筋采用2φ8@250的HPB235。

3、按构造要求,腹板高度大于等于450mm时,在梁的两侧面应沿高度配置纵向构造钢筋,每侧构造钢筋面积不应小于腹板截面面积的%。构造钢筋面积As=b(h-250)×%=600×450×%=270mm2查钢筋表,每侧选用2φ14,As=308 mm2>270mm2。

4、其他措施详见施工图。

钢筋混凝土条形基础计算公式_secret

钢筋混凝土条形基础计算 1、工程量计算内容和步骤 a 钢筋混凝土条形基础包括:挖槽、垫层、混凝土条形基础、钢筋、砖基础、地圈梁、防潮层、回填土、余土外运等。 b 外墙的长度按中到中5 内墙的长度按内墙净长和(不考虑工作面的)槽净长 2、定额规定: a 定额规定混凝土条形基础大放脚的T形接头处的重叠工程量要扣除。扣除办法是选择有代表性接头,计算出一个重合的混凝土体积,然后乘以接头个数,得出总重合体积,再从混凝土基础工程量中扣除(V1、V2) b 定额中长钢筋搭接规定为:Φ25内的8M一个接头,Φ25以上的6M一个接头,搭接长度为30d(30×钢筋直径d),圆钢筋加弯钩长12.5d 3、T形接头重合体积计算公式:(扣除重合部分体积V1、V2) 重合体积V1=〖基础底部宽度(B1)-墙厚〗÷2×与其相交的基础底部宽度(B2)×搭接长方体高度(h1) 重合体积V2=棱台高度(h2)÷6×〖[基础棱台上宽(b1)-墙厚(a)]÷2×与其相交的基础棱台上宽(b2)+[基础底宽-墙厚(a)]÷2×与其相交的基础的底宽(b2)+[基础棱台上宽(b1)-墙厚(a)]÷2+[基础底宽(B1)-墙厚(a)]÷2×[与其相交的基础棱台上宽(b2)+与其相交的基础底宽(B2)] 附:b1――外墙基础的棱台宽度,通常b1=b2 v1 v2 v3(v3通常不需计算)图示如下:

4、工程量计算程序公式: 首先,列L墙、L槽表: a、第一套算式:各断面基础分别计算工程量,然后合算。 ○11-1断面基础工程量: □A挖槽工程量: 槽长(L槽)×〖槽底部宽(B)+2×工作面宽度(C)〗×挖槽深度(H挖)+槽长(L槽)×放坡系数(K)×挖槽深度的平方(H挖2)=?立方 □B(C10)混凝土垫层工程量: 槽长(L槽)×槽内垫层宽(B)×垫层厚=?立方

独立基础设计计算书

目录 1 基本条件的确定 (2) 2 确定基础埋深 (2) 2.1设计冻深 (2) 2.2选择基础埋深 (2) 3 确定基础类型及材料 (2) 4 确定基础底面尺寸 (2) 4.1确定B柱基底尺寸 (2) 4.2确定C柱基底尺寸 (3) 5 软弱下卧层验算 (3) 5.1 B柱软弱下卧层验算 (3) 5.2 C柱软弱下卧层验算 (4) 6 计算柱基础沉降 (4) 6.1计算B柱基础沉降 (4) 6.2计算C柱基础沉降 (6) 7 按允许沉降量调整基底尺寸 (7) 8 基础高度验算 (8) 8.1 B柱基础高度验算 (9) 8.2 C柱基础高度验算 (10) 9 配筋计算 (12) 9.1 B柱配筋计算 (12) 9.2 C柱配筋计算 (14)

1 基本条件确定 人工填土不能作为持力层,选用亚粘土作为持力层。 2 确定基础埋深 2.1设计冻深 ???Z =Z zw zs o d ψψze ψ=2.01.000.950.90???1.71=m 2.2选择基础埋深 根据设计任务书中给出的数据,人工填土d 1.5m =,因持力层应选在亚粘土层处,故取0m .2d = 3 确定基础类型及材料 基础类型为:柱下独立基础 基础材料:混凝土采用C25,钢筋采用HPB235。 4 确定基础底面尺寸 根据亚粘土e=0.95,l I 0.65=,查表得0, 1.0b d ηη==。因d=2.0m 。 基础底面以上土的加权平均重度: 1[18.0 1.519.0(2.0 1.5)]/2.018.25o γ=?+?-=3/m KN 地基承载力特征值a f (先不考虑对基础宽度进行修正): 11(0.5)150 1.018.25(2.00.5)177.38a a d m f f d ηγ=+?-=+??-=a KP 4.1 确定B 柱基底尺寸 202400 17.47.177.3820 2.0 K a G F A m f d γ≥ ==--?由于偏心力矩不大,基础底面面积按 20%增大,即A=1.20A =20.962m 。一般l/b=1.2~2.0,初步选择基础底面尺寸: 25.4 3.921.06m 3.9A l b b m =?=?==,虽然>m 3,但b η=0不需要对a f 进行修正。 4.1.1持力层承载力验算 基础和回填土重:20 2.021.06842.4G G dA KN γ==??= 偏心距:2100.0652400842.4k e m = =+

某框架结构柱下条形基础设计讲解

某框架结构柱下条形基础设计(倒梁法) 一、设计资料 1、某建筑物为7层框架结构,框架为三跨的横向承重框架,每跨跨度为7.2m ;边柱传至基础顶部的荷载标准值和设计值分别为:Fk=2665KN 、Mk=572KN ?M 、Vk=146KN ,F=3331KN 、M=715KN ?M 、V=182KN ;中柱传至基础顶部的荷载标准值和设计值分别为:Fk=4231KN 、Mk=481KN ?M 、Vk=165KN ,F=5289KN 、M=601KN ?M 、V=206KN 。 2、根据现场观察描述,原位测试分析及室内试验结果,整个勘察范围内场地地层主要由粘性土、粉土及粉砂组成,根据土的结构及物理力学性质共分为7层,具体层位及工程特性见附表。勘察钻孔完成后统一测量了各钻孔的地下水位,水位埋深平均值为0.9m ,本地下水对混凝土无腐蚀性,对钢筋混凝土中的钢筋无腐蚀性。 3、根据地质资料,确定条基埋深d =1.9m ; 二、内力计算 1、基础梁高度的确定 取h =1.5m 符合GB50007-2002 8.3.1柱下条形基础梁的高度宜为柱距的 11 ~48 的规定。 2、条基端部外伸长度的确定 据GB50007-2002 8.3.1第2条规定外伸长度宜为第一跨的0.25倍考虑到柱端存在弯矩及其方向左侧延伸0.250.257.2 1.8l m m =?= 为使荷载形心与基底形心重合,右端延伸长度为ef l ,ef l 计算过程如下:

a . 确定荷载合力到E点的距离 o x: 333137.2528927.271526012182 1.52206 1.52 3331252892 o x ??+??-?-?-??-??= ?+? 得 182396 10.58 17240 o x m == b . 右端延伸长度为 ef l: (1.8 2.77.2210.58)2 1.87.23 2.24 ef l m =++?-?--?= 3、地基净反力 j p的计算。 对E点取合力距即:0 E M ∑=, 2 2.24 2.2433317.2352897.23(25.64 2.24)0.5(71526012)(1821.522061.52)0 2 j j p p ??+??+??--?-?+?-??+??= 即271.2712182396672.3751 j j KN p p m =?= 4、确定计算简图 5、采用结构力学求解器计算在地基净反力Pj作用下基础梁的内力图 A B C D E F 1089.25 1804.25 2868.92 -2020.41 3469.922946.05 -1149.01 3547.05 971.85 -2180.78 1686.85 弯矩图(KN·M)

扩大基础设计计算书

目录 一、基本设计资料 (1) 二、设计内容: (1) (一)中墩及基础尺寸拟定 (1) 1.墩帽尺寸拟定 (1) 2.墩身尺寸确定 (2) 3基础尺寸确定.................................. - 4 - (二)墩帽局部受压验算. (4) 1.上部构造自重 (4) 2.墩身自重计算 (4) 3.浮力计算 (5) 4.活载计算 (5) 5.水平荷载计算 (7) 6.墩帽局部受压验算 (8) (三)墩身底截面验算 (9) 1.正截面强度验算 (9) 2.基底应力验算 (10) 3.稳定性验算.................................. - 10 - 4.沉降量验算.................................. - 10 - 5.墩顶水平位移验算............................ - 10 -

混凝土实体中墩与扩大基础设计 一、基本设计资料 1.设计荷载标准:公路II级 2.上部结构: 上部结构采用装配式后张法预应力混凝土简支T梁。跨径40m,计算跨径38.80m,梁长39.96m,梁高230cm,支座尺寸25cm×35cm×4.9cm(支座为板式橡胶支座,尺寸为顺×横×高),主梁间距160cm,桥面净宽为7+2×0.75m,一孔上部结构荷载为5070kN。 3.水文资料: 设计水位182.7m 河床标高177.65m; 一般冲刷度 1.60m; 局部冲刷深度2.80m。 4.地质资料: 表层3米厚为软塑粘性土,其液性指数I L=0.8;孔隙比e=0.7;容重γ=18.0kN/m3,以下为砾砂,中密γ=19.7kN/m3。 二、设计内容: (一)中墩及基础尺寸拟定 1.墩帽尺寸拟定(采用20号混凝土) 顺桥向墩帽宽度:b≥f + a +2c1 + 2c2 f = 40m(跨径)-38.80m(计算跨径)=1.20m 支座顺桥向宽度a = 0.25m 查表2-1 c1=0.1m c2=0.2m b =1.20 + 0.25 + 2×0.1 + 2×0.2=2.05m 按抗震要求:b/2 ≥ 50+L(跨径) =50+40=90cm b =2.05m 则取满足上述要求的墩帽宽度b=2.05m 横桥向墩帽宽: 矩形:B = 两侧主梁间距 + a + 2c1 + 2c2 =1.6×4+ 0.35 + 2×0.1+ 2×0.2=7.35m 圆端形:B=7.35 + b =7.35+2.05=9.4m

柱下条形基础计算书

1. 工程概况及设计资料 某柱下条形基础,所受外荷载大小及位置如图1.1所示。柱采用C40混凝土,截面尺寸800800mm mm ?。地基为均质粘性土,地基承载力特征值160ak a f KP =,土的重度3 19/KN m γ=。地基基础等级:乙级。地下防水等级:二级。 图1.1 2. 基础宽度计算 基础埋深定为2m 。总竖向荷载值 1000180014004000ki N KN KN KN KN =++=∑ 180********.5 5.334000N KN m KN m e m KN ?+?= = 假设两端向外延伸总长度为3m ,则 4.56313.5L m m m m =++= 地基底面以上土的加权重度3 19/m KN m γ= 查得《地基规范》中对于粘性土: 1.6d η=,0.3b η=

持力层经深度修正后的地基承载力特征值 3(0.5)160 1.619/(20.5)205.6a ak d m a a f f d m KP KN m m m KP ηγ=+-=+??-=()()3 4000 1.789205.620/ 2.013.5ki a G a N KN b m f d l KP KN m m m γ≥ = =--??∑取 2.0b m = 3. 两端外伸长度验算即地基承载力验算 320/ 2.013.5 2.01044k G KN m m m m KN =???= 400010445044ki k N G KN KN KN +=+=∑ 80ki M KN m =?∑ 800.0155244N G KN m e m KN +?= = 113.5 5.445 1.3052l m m ??=-= ??? 213.5 5.055 1.6952l m m ??=-= ??? 5244194.22205.62.013.5ki k k a a a N G KN p KP f KP bl m m +== =<=?∑ ,max ,min 6195.58 1.2246.7524460.015(1)(1)2.013.513.5192.860 ki k k N G a a a k a N G p e KP f KP KN p bl l m m KP ++>=?= ± =±=?>∑

条形基础设计计算书

一、设计资料: 1、本设计的任务是设计一多层办公楼的钢筋混凝土柱下条形基础,框架柱的截面尺寸均为b×h=500mm×600mm,柱的平面布置如下图所示: 2、办公楼上部结构传至框架柱底面的荷载值标准值如下表所示: 注:表中轴力的单位为KN,弯矩的单位为KN.m;所有1、2、3轴号上的弯矩方向为逆时针、4、5、6轴号上的弯矩为顺时针,弯矩均作用在h方向上。 3、该建筑场地地表为一厚度为1.5m的杂填土层(容重为17kN/m3),其下为粘土层,粘土层承载力特征值为F ak=110kPa,地下水位很深,钢筋和混凝土的强度等级自定请设计此柱下条形基础并绘制施工图。 二、确定基础地面尺寸: 1、确定合理的基础长度: 设荷载合力到支座A的距离为x,如图1:则: x= ∑∑ ∑+ i i i i F M x F = 300 700 700 700 700 350 )5. 17 300 14 700 5. 10 700 7 700 5.3 700 0( + + + + + +? + ? + ? + ? + ? + =8.62m

图1 因为x=8.62m ? 2 1 a=0.5?17.5=8.75m , 所以,由《建筑地基基础设计规范》(GB50007-2002)8.3.1第2条规定条形基础端部应沿纵向从两端边柱外伸,外伸长度宜为边跨跨距的0.25:0.30倍取a 2=0.8m(与 4 1 l=0.25?3.5=0.875m 相近)。 为使荷载形心与基底形心重合,使基底压力分布较为均匀,并使各柱下弯矩与跨中弯 矩趋于均衡以利配筋,得条形基础总长为: L=2(a+a 2-x)=2?(17.5+0.8-8.62)=19.36m ≈19.4m a 1=L-a-a 2=19.4-17.5-0.8=1.1m 2、确定基础底板宽度b : 竖向力合力标准值: ∑Ki F =350+700+700+700+700+300=3450kN 选择基础埋深为1.8m ,则 m γ=(17?1.5+0.3?19)÷1.8=17.33kN/m 3 深度修正后的地基承载力特征值为: ()5.0-+=d f f m d ak a γη=110+1.0?17.33?(1.8-0.5)=132.529kN 由地基承载力得到条形基础b 为: b ≥ )20(d f L F a Ki -∑= ) 8.120529.132(4.193450 ?-?=1.842m 取b=2m ,由于b ?3m ,不需要修正承载力和基础宽度。 a2 a a1

洗涤塔设计说明

洗涤塔设计说明文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

洗涤塔设计明细 一、 设计说明 1、 技术依据:《通风经验设计》、《三废处理工程技术手册》、《风机手 册》等。 2、 风量依据:拫据业主提供风量。 3、 设备选择依据:以废气性质为前提,根据设计计算所得结果选择各种合理 有效的处理设备。 二、 基本公式 1)、洗涤塔选择: 风量、风速、及管经计算公式 Q = 60A ν 式中:Q 风量(CMM); A 气体通过某一平面面积(m 2); ν 流速(m/s); 根据业主设计规范要求,塔内流速:≦2m/s ,结合我司多年洗涤塔设计经验, 塔内速度取,ν ≦s 填充层设计高度: 则填充层停留时间>6 .15.1= 洗涤塔直径>2*6 .1*1416.3*601333= 其中Q=80000CMH=1333CMM ν =s 2)、泵浦选择 ○1流量设定 润湿因子>hr 则:泵浦流量(填充物比表面积*填充段截面积)>hr ξ>60 1000*)22.4*1416.3*100*1.02??????(>2307 L/min ○2扬程设定:

直管长度: ++4= 等效长度: 900弯头 3个 * 3 = 球阀 2个 * 2 = 逆止阀 1个 * 1 = 总长:+ + + =,取24m 扬程损失: 24 * = 喷头采用所需压力为, 为6m水柱压力。 所需扬程为: + + 6= 查性能曲线: 益威科泵浦KD-100VK-155VF,当扬程为12m时,流量为1200L/min,两台15HP则满足要求。 选用泵浦:2台15HP浦, 总流量为2400L/min 最高扬程: 12m

条形基础计算书

A 轴柱下条形基础设计 基础布置及尺寸确定 本设计采用天然地基,地质资料如下表所示,本人计算A 轴条形基础 表9-1 地基土层物理力学指标综合表 表9-2 A 轴柱内力(恒载+活载标准值)统计 ∑=?+?=m kN M k · 32.61271.6558.9 ∑=?+?=kN N k 75.3335285.364521.521 ∑-=?+?-=kN V k 11.39)228.4511.6( 底层墙重: KN l g k 89.15964.21.245.06285.04.21.25.765.4812.7=???+????-??=∑ (1)条形基础沿三条纵向柱列分别设置。 (2)条形基础两端各伸出柱边外:

m m l 150.1,125.15.44 1 410取=?=,基础总长:6×+2×=29.3m (3)基础高度 1125mm ~75041~61=?? ? ??=l h ,取h=800 mm (4)基础梁宽 mm b 500100400100=+=+=柱宽 (5)基础埋深 m d 7.18.05.04.0=++= (6)基础底宽 ()2/59.127 .145 .0101925.019)5.02/4.0(18m kN r m =?-+?++?= 查规范,因为 e>,得0=b η,0.1=d η 2/11.1455.07.159.120.1130)5.0()3(m kN d r b r f f m d b ak a =-? ?+=-+-+=)(ηη ()() m d r f l N B G a k 03.145.01025.12011.1453.2989.15975.3335=?-?-?+= -+≥∑底层墙重 取B=2m 基础承载力验算 9.2.1 A 轴持力层承载力验算 基底平均压力: 2 2/11.145/80.8945 .01025.12023.2989.15975.3335m kN f m kN A G F p a k k k =<=?+?+?+=+= ()()2 22/13.1742.1/481.1002 3.298.011.3932.61680.896m kN f m kN lB h V M A G F w M A G F p a k k k k k k k kMax =<=??+?+ =+++=++= ∑∑ 综上,持力层地基承载力满足。 9.3 A 轴基础梁设计

某框架结构柱下条形基础设计

某框架结构柱下条形基础设计

————————————————————————————————作者:————————————————————————————————日期: ?

某框架结构柱下条形基础设计(倒梁法) 一、设计资料 1、某建筑物为7层框架结构,框架为三跨的横向承重框架,每跨跨度为7.2m ;边柱传至基础顶部的荷载标准值和设计值分别为:Fk =2665KN 、Mk=572K N?M、Vk=146KN ,F=3331KN 、M=715KN ?M、V=182KN ;中柱传至基础顶部的荷载标准值和设计值分别为:F k=4231KN 、Mk=481K N?M 、Vk=165KN,F=5289KN 、M=601KN ?M 、V=206KN 。 2、根据现场观察描述,原位测试分析及室内试验结果,整个勘察范围内场地地层主要由粘性土、粉土及粉砂组成,根据土的结构及物理力学性质共分为7层,具体层位及工程特性见附表。勘察钻孔完成后统一测量了各钻孔的地下水位,水位埋深平均值为0.9m,本地下水对混凝土无腐蚀性,对钢筋混凝土中的钢筋无腐蚀性。 3、根据地质资料,确定条基埋深d=1.9m; 二、内力计算 1、基础梁高度的确定 取h=1.5m 符合G B50007-2002 8.3.1柱下条形基础梁的高度宜为柱距的 11 ~48 的规定。 2、条基端部外伸长度的确定 据GB50007-2002 8.3.1第2条规定外伸长度宜为第一跨的0.25倍考虑到柱端存在弯矩及其方向左侧延伸0.250.257.2 1.8l m m =?= 为使荷载形心与基底形心重合,右端延伸长度为ef l ,ef l 计算过程如下: a . 确定荷载合力到E 点的距离o x :

深基础课程设计计算书 (1)

深基础课程设计计算书 学校:福建工程学院 层次:专升本 专业:土木工程____姓名:林飞____ 2016年09 月16 日

目录 一、外部荷载及桩型确定 (1) 二、单桩承载力确定 (1) 三、单桩受力验算 (4) 四、群桩承载力验算 (5) 五、承台设计 (6) 六桩的强度验算 (9)

一、 外部荷载及桩型确定 1、柱传来荷载:F= 3000kN 、M = 600kN ·m 、H = 60kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:400mm ×400mm 3)、桩身:混凝土强度等级 C30、c f =14.3 N/mm 2 、 4Φ16 y f =300 N/mm 2 4)、承台材料:混凝土强度等级C30、c f =14.3 N/mm 2 、 t f =1.43 N/mm 2 二、单桩承载力确定 1、单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0,配筋Φ16) ()() kN A f A f R S y p c 1.25298.8033004003.140.12=?+??=''+=? 2)、根据地基基础规范公式计算: ①、桩尖土端承载力计算: 粉质粘土,L I =0.60,入土深度为12.0m 由书105页表4-4知,当h 在9和16之间时,当L I =0.75时,1500=pk q kPa,当L I =0.5时,2100=pa q ,由线性内插法: 75 .06.01500 75.05.015002100--=--pk q 1860=pk q k P a ②、桩侧土摩擦力: 粉质粘土层1: 1.0L I = ,由表4-3,sik q =36~50kPa ,由线性内插法,取36kPa 粉质粘土层2: 0.60L I = ,由表4-3,sik q =50~66kPa ,由线性内插法可知,

洗涤塔设计

目录 (一) 设计任务 (1) (二) 设计简要 (2) 2.1 填料塔设计的一般原则 (2) 2.2 设计题目与要求 (2) 2.3 设计条件 (2) 2.4 工作原理 (2) (三) 设计方案 (2) 3.1 填料塔简介 (2) 3.2填料吸收塔的设计方案 (3) .设计方案的思考 (3) .设计方案的确定 (3) .设计方案的特点 (3) .工艺流程 (3) (四)填料的类型 (4) 4.1概述 (4) 4.2填料的性能参数 (4) 4.3填料的使用范围 (4) 4.4填料的应用 (5) 4.5填料的选择 (5) (五)填料吸收塔工艺尺寸的计算 (6) 5.1塔径的计算 (6) 5.2核算操作空塔气速u与泛点率 (7) 5.3液体喷淋密度的验算 (8) 5.4填料层高度的计算 (8) 5.5填料层的分段 (8) 5.6填料塔的附属高度 (9) 5.7液相进出塔管径的计算 (9) 5.8气相进出塔管径的计算 (9) (六)填料层压降的计算 (10) (七)填料吸收塔内件的类型与设计 (10) 7.1 填料吸收塔内件的类型 (10) 7.2 液体分布简要设计 (12) (八)设计一览表 (13) (九)对设计过程的评述 (13) (十)主要符号说明 (14) 参考文献 (17)

(二)设计简要 (1)填料塔设计的一般原则 填料塔设计一般遵循以下原则: ①:塔径与填料直径之比一般应大于15:1,至少大于8:1; ②:填料层的分段高度为:金属:6.0-7.5m,塑料:3.0-4.5; ③:5-10倍塔径的填料高度需要设置液体在分布装置,但不能高于6m; ④:液体分布装置的布点密度,Walas推荐95-130点/m2,Glitsh公司建议65-150点/m2 ⑤:填料塔操作气速在70%的液泛速度附近; ⑥:由于风载荷和设备基础的原因,填料塔的极限高度约为50米 (2)设计题目与要求 常温常压下,用20℃的清水吸收空气中混有的氨,已知混合气中含氨10%(摩尔分数,下同),混合气流量为3000m3/h,吸收剂用量为最小用量的1.3倍,气体总体积吸收系数为200kmol/m3.h,氨的回收率为95%。请设计填料吸收塔。 要求:综合运用《化工原理》和相关先修课程的知识,联系化工生产实际,完成吸收操作过程及设备设计。要求有详细的工艺计算过程(包括计算机辅助计算程序)、工艺尺寸设计、辅助设备选型、设计结果概要及工艺设备条件图。同时应考虑: ①:技术的先进性和可靠性 ②:过程的经济性 ③:过程的安全性 ④:清洁生产 ⑤:过程的可操作性和可控制性 (3)设计条件 ①:设计温度:常温(25℃) ②:设计压力:常压 (101.325 kPa) ③:吸收剂温度:20℃ (4)工作原理 气体混合物的分离,总是根据混合物中各组分间某种物理性质和化学性质的差异而进行的。吸收作为其中一种,它根据混合物各组分在某种溶剂中溶解度的不同而达到分离的目的。在物理吸附中,溶质和溶剂的结合力较弱,解析比较方便。 填料塔是一种应用很广泛的气液传质设备,它具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,操作时液体与气体经过填料时被填料打散,增大气液接触面积,从而有利于气体与液体之间的传热与传质,使得吸收效率增加。 (三)设计方案 (1)填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

基础工程课程设计计算书

基础工程课程设计 说明书 二零一三年六月 土木工程

某框架结构条形基础设计计算书 一、工程概况 威海近郊五层两跨钢筋混凝土框架结构(相当于七层以上民用建筑),车间有三排柱,柱截面尺寸为400×600mm2,平面图如图1。作用在基础顶面的荷载特征值如表1,弯矩作用于跨度方向。室内外高差0.30m。 图1混凝土框架结构平面图 表1 荷载效应特征值 二、地质资料 1.综合地质柱状图如表2,地下水位在细砂层底,标准冻深为2m; 2.冻胀类别为冻胀。

表2 综合地质柱状图 三、设计要求 1.设计柱下钢筋混凝土条形基础; 2.计算该条形基础相邻两柱的沉降差; 3.绘制基础平面图(局部),基础剖面图,配筋图。 四、设计步骤 1.考虑冻胀因素影响确定基础埋深; 2.持力层承载力特征值修正; 3.计算基础底面尺寸,确定基础构造高度; 4.计算条形基础相邻两柱的沉降差; 5.按倒梁法计算梁纵向内力,并进行结构设计; 6.计算基础的横向配筋及翼缘高度; 7.绘制施工图。

五、工作量 1. 设计柱下钢筋混凝土条形基础; 2. 计算该条形基础相邻两柱的沉降差; 3. 完成课程设计计算说明书一份; 4. 完成铅笔绘制2号施工图一张; 5. 配合教师安排进行答辩。 六、内力计算 (一) 确定基础埋深 根据地质资料进入土层1.2m 为粘土层,其基本承载力特征值为147kPa ak f =,可知其为最优持力层,基础进入持力层大于30cm 。又有考虑冻胀因素的影响,根据规范可知,其设计冻深d z 应按下式计算:0 2.0 1.00.90.95 1.71m ...zs zw ze d z z ψψψ=???==,基础 埋深应在设计冻深以下,据此可初步确定基础埋深为2.3m 。根据基础埋深 2.3m>0.5m d =需进行持力层承载力特征值的深度修正,持力层为黄褐色粘性土层。液性指数 2618 0.50.853418 p L L p w w I w w --= = =<--,又0.70.85 e =<,查表可得,承载力修正系数0.3, 1.6b d ηη==,基础底面以上土的加权平均重度m γ= 317 1.2190.8 17.8kN/m 2.0 ?+?=, 条形基础的基础埋深一般自室内底面算起,室内外高差为0.3m ,取 2.30.3 2.6m d =+=, 则可得修正值为:(0.5)147 1.617.8(2.60.5)206.81kPa a ak d m f f d ηγ=+-=+??-=。 (二) 确定基础梁的高度、长度和外伸尺寸 根据规范要求,柱下条形基础梁的高度应该取为柱距的1/81/4倍 ,又有此处柱距取为6500mm ,故可得到基础梁的高度(1/81/4)6200(7751550)mm h =?=,取 1500mm h =,即为 1.5m h =。根据构造要求,条形基础端部外伸长度应为边跨跨距的1/41/3倍,故考虑到柱端存在弯矩及其方向,可以得到基础端部左侧延伸 1(1/4 1/3)(1/41/3)6200(1550 2067)m m l l ==?=,取1 2.0m l =。计算简图如图 2所示:

独立基础设计计算书

课程设计说明书 课程名称:基础工程课程设计 设计题目:柱下独立基础设计 专业:道桥班级:道桥1001 学生姓名: 豹哥学号: 1000000000 指导教师:周老师 湖南工业大学科技学院教务部制 2012年 12 月 9 日

目录 1 引言 (2) 1.1 基础课程设计目的 ....................................................................................................... 2 1.2 基础课程设计基本要求 .. (2) 1.2.1 说明书(计算书)的要求 ................................................................................. 3 1.2.2 基础施工图纸的要求 .. (3) 2、柱下独立基础设计 (3) 2.1 设计资料 ....................................................................................................................... 3 2. 2独立基础设计 (4) 2.2. 3.求地基承载力特征值 a f (4) 2.2.4.初步选择基底尺寸 (5) 2.2.5.验算持力层地基承载力 ....................................................................................... 5 2.2.6.计算基底净反力 ................................................................................................... 6 2.2.7.基础高度(采用阶梯形基础) ............................................................................... 6 2.2.8.变阶处抗冲切验算 ............................................................................................... 7 2.2.9.配筋计算 ............................................................................................................... 8 2.2.11.确定B 、A 两轴柱子基础底面尺寸 ................................................................... 9 2.2.12.B 、A 两轴持力层地基承载力验算 .................................................................. 10 2.2.13. 设计图纸 (10) 3. 主要参考文献 ........................................................................................................................... 12 附录 (13) 钢筋表..................................................................................................................................... 13 课程设计任务书 ..................................................................................................................... 14 致谢词 .. (20)

(完整版)桩基础设计计算书

目录 1设计任务 (2) 1.1设计资料 (2) 1.2设计要求 (3) 2 桩基持力层,桩型,桩长的确定 (3) 3 单桩承载力确定 (3) 3.1单桩竖向承载力的确定 (3) 4 桩数布置及承台设计 (4) 5 复合桩基荷载验算 (6) 6 桩身和承台设计 (9) 7 沉降计算 (14) 8 构造要求及施工要求 (20) 8.1预制桩的施工 (20) 8.2混凝土预制桩的接桩 (21) 8.3凝土预制桩的沉桩 (22) 8.4预制桩沉桩对环境的影响分析及防治措施 (23) 8.5结论与建议 (25) 9 参考文献 (25)

一、设计任务书 (一)、设计资料 1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。承台底面埋深:D =2.1m。

(二)、设计要求: 1、桩基持力层、桩型、承台埋深选择 2、确定单桩承载力 3、桩数布置及承台设计 4、群桩承载力验算 5、桩身结构设计和计算 6、承台设计计算 7、群桩沉降计算 8、绘制桩承台施工图 二、桩基持力层,桩型,桩长的确定 根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。 根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。桩长21.1m。 三、单桩承载力确定 (一)、单桩竖向承载力的确定: 1、根据地质条件选择持力层,确定桩的断面尺寸和长度。 根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层, 采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层 1.0m;镶入承台0.1m,桩长21.1 m。承台底部埋深 2.1 m。 2、确定单桩竖向承载力标准值Quk可根据经验公式估算: Quk= Qsk+ Qpk=μ∑qsikli+qpkAp Q——单桩极限摩阻力标准值(kN) sk Q——单桩极限端阻力标准值(kN) pk u——桩的横断面周长(m) A——桩的横断面底面积(2m) p L——桩周各层土的厚度(m) i q——桩周第i层土的单位极限摩阻力标准值(a kP)sik q——桩底土的单位极限端阻力标准值(a kP) pk 桩周长:μ=450×4=1800mm=1.8m

氯气洗涤塔的计算培训课件D

氯气洗涤塔的计算

1.本装置采用40×40×4.5的瓷拉西环,堆放形式采用底部整砌上部乱堆,因此采用Eckert通用关联图计算泛点气速及填料层压降,即按气液负荷计算横坐标L/G(γg/γL)1/2,由此值查到图中的泛点线,得到纵坐标μF2Φψ/g (γg/γL)μL0.2,然后求得μF值。 μF:泛点空塔气速 m/s g:重力加速度m/s2 a/ε3:干填料因子m-1 γg:气相重度kg/m3 γL:液相重度kg/m3 μL:液相粘度cp L:液相流量kg/h G:气相流量kg/h ε:填料空隙率 m3/ m3 σL:液相表面张力dyn/cm de:填料通道的当量直径m 2.现有6万吨/年离子膜氯气洗涤塔 g=9.81 m/s2,a/ε3=305 m-1,γg=1.989 kg/m3,γL=995 kg/m3,L=88000 kg/h ,G=γgV,V=4121 m3/ h,Φ=350 m-1,ψ=γ水/γL=1(近似),μL=1cp 则L/G(γg/γL)1/2=[88000/(1.989×4121)](1.989/995)1/2=0.48 查图:得纵坐标为:0.045 则μF2Φψ/g(γg/γL)μL0.2=0.045 μF=[(0.045 gγL)/ (ΦψγgμL0.2)]1/2=0.79m/s 空塔气速取:μ=70%μF=70%×0.79=0.55 m/s 则:初估塔径:D=[V/(0.785μ)]1/2=1628mm 根据容器圆整后取:1700 mm 则实际空塔气速为:V/(0.785D2)=4121/(0.785×1.72×3600)=0.50m/s 3. 7万吨/年离子膜氯气洗涤塔 V=4877 m3/ h,L=100000kg/h, 则L/G(γg/γL)1/2=[100000/(1.989×4877)](1.989/995)1/2=0.46 查图:得纵坐标为:0.046 则μF2Φψ/g(γg/γL)μL0.2=0.046 μF=[(0.046 gγL)/ (ΦψγgμL0.2)]1/2=0.80m/s 空塔气速取:μ=70%μF=70%×0.80=0.56 m/s 则:初估塔径:D=[V/(0.785μ)]1/2=1755mm 根据容器圆整并考虑一定的余量后取:2000 mm 则实际空塔气速为:V/(0.785D2)=4877/(0.785×22×3600)=0.43m/s 填料层高度同6万吨/年离子膜取:6m。 横坐标:L/G(γg/γL)1/2=[100000/(1.989×4877)](1.989/995)1/2=0.46 纵坐标:μF2Φψ/g(γg/γL)μL0.2=(0.432×350/9.81)×(1.989/995)×1=0.0132 查得:压降ΔP/Z=15mmH2O/m填料则填料层总压降为:15×6=90mmH2O,即:900pa 。

墙下条形基础设计例题.

《地基与基础》课程设计任务书 一、设计目的 1、了解一般民用建筑荷载的传力途径,掌握荷载计算方法; 2、掌握基础设计方法和计算步骤,明确基础有关构造; 3、初步掌握基础施工图的表达方式、制图规定及制图基本技能。 二、设计资料 工程名称:中学教学楼,其首层平面见附图。 建筑地点: 标准冻深:Z0 = 地质条件:见附表序号 工程概况:建筑物结构形式为砖混结构,采用纵横墙承重方案。建筑物层数为四~六层,层高3.6m,窗高2.4m,室内外高差为0.6m。教室内设进深梁,梁截面尺寸 b×h=250×500mm,其上铺钢筋混凝土空心板,墙体采用机制普通砖MU10, 砂浆采用M5砌筑,建筑物平面布置详见附图。 屋面作法:改性沥青防水层 20mm厚1:3水泥砂浆找平层 220mm厚(平均厚度包括找坡层)水泥珍珠岩保温层 一毡二油(改性沥青)隔气层 20mm厚1:3水泥砂浆找平层 预应力混凝土空心板120mm厚(或180mm厚) 20mm厚天棚抹灰(混合砂浆), 刷两遍大白 楼面作法:地面抹灰1:3水泥砂浆20mm厚 钢筋混凝土空心板120mm厚(或180mm厚) 天棚抹灰:混合砂浆20mm厚 刷两遍大白 材料重度:三毡四油上铺小石子(改性沥青)0.4KN/m2 一毡二油(改性沥青)0.05KN/m2 塑钢窗0.45KN/m2 混凝土空心板120mm厚 1.88KN/m2 预应力混凝土空心板180mm厚 2.37KN/m2 水泥砂浆20KN/m3 混合砂浆17KN/m3 浆砌机砖19KN/m3 水泥珍珠岩制品4KN/m3 钢筋混凝土25 KN/m3

屋面、楼面使用活荷载标准值 附表—2 黑龙江省建筑地基基础设计规范地基承载力特征值表

相关主题
文本预览
相关文档 最新文档