当前位置:文档之家› 一起锅炉正压燃烧的原因分析及整改措施(正式)

一起锅炉正压燃烧的原因分析及整改措施(正式)

一起锅炉正压燃烧的原因分析及整改措施(正式)
一起锅炉正压燃烧的原因分析及整改措施(正式)

编订:__________________

单位:__________________

时间:__________________

一起锅炉正压燃烧的原因分析及整改措施(正式)

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-2547-13 一起锅炉正压燃烧的原因分析及整

改措施(正式)

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

一、锅炉故障概况:

南平市某一电缆股份有限公司的一台SZL4—2.5—AⅡ锅炉20xx年2月开始持续有半年时间出现正压燃烧,经多次整改无效(包括炉膛清灰、清焦,烟管、省煤器蒸汽吹灰,除尘器、省煤器清灰门及烟道系统法兰对接的缝隙漏风整改等),企业设备管理人员认为是因炉墙、隔烟墙及炉膛后拱大修后引起烟气阻力变大了,造成引风机引风量不够,而锅炉车间管理人员却认为是由于石膜除尘器运行五年后,烟气阻力变大了,需要整改处理,意见各不相同。该公司委托南平市锅检所对锅炉故障原因进行技术分析鉴定,以尽快排除故障,恢复锅炉正常生产供汽。

二、故障原因鉴定分析

1、锅炉房现场勘察情况如下:

根据派人跟班锅炉运行记录及了解到的第一手材料来看,由于该企业昼夜生产供汽一样,生产任务紧,硫化车间和炼胶车间同时用汽,用汽量大,当班司炉工为了满足生产供汽,把引风机的调风门开到最大,鼓风机调风门开到最小,煤层厚度从原来80mm调到100~120mm。结果炉膛的火焰从拨火门和观火门“吐”出来,炉门都烧红、烧裂了,可汽压仍上不去,只停留在1.0~1.2MPa之间,锅炉蒸发量达不到4T/h。企业只有一台2T/h的备用炉,蒸发量满足不了生产需要,为了生产,只好让这台锅炉带病运行。结果,从出渣机排出来的煤渣是黑黑的,出渣含碳量很高,煤没有燃尽。另一方面,司炉工怕排污影响生产,所以基本上不能按正常的次数排污,排污量也无法达到。这样锅炉运行一段时间,水垢就产生了。锅炉结水垢就势必对压力和蒸发量造成影响,形成锅炉运行的恶性循环。

2、鉴定方案制定

根据锅炉运行跟班记录及所掌握的材料,鉴定组制定了故障原因分析鉴定方案,首先从(1).是否锅炉设计、制造不合理;(2).是否司炉工缺乏工作经验误操作;(3).是否引风机引风量不够或辅机不配套;(4).是否烟风道、除尘系统出现漏风或灰堵等几个方面进行调查和检测分析。

3、首先查锅炉设计制造是否合理

据厂方设备管理技术人员及锅炉车间主任介绍,锅炉在1998年初安装并投入运行至20xx年上半年,运行一直正常,没有出现正压燃烧现象。核对该锅炉的所有原始设计、制造资料(包括总图、本体图、烟风道图、制造质量证明书、设计说明、安装使用说明等)、锅炉铭牌。排除了锅炉设计,制造不合理的问题。

4、排除司炉工误操作的可能

进一步了解情况,司炉工都是经培训持证的,有一定的运行操作经验,司炉班长素质高,能力强,从事司炉工作有十几年,如何调整鼓、引风的比例、调风门大小,如何控制煤层厚度等,有一定的经验,从

我们现场对司炉工实际操作技能的考核结果来看,还是满意的,所以基本上排除司炉人员误操作的可能性。

5、检查鼓风机、引风机是否配套

先查看鼓风机铭牌,其型号为:4-72,NO.4A,流量:4020-7420 M3/h,全压:204-134 mmH2O,功率:5.5KW(Y132S1-2)。按4T/h燃煤锅炉供风量估算,额定负荷时鼓风量为4500-5000M3/h,所配的鼓风机,其风量、风压均可满足锅炉总图设计要求。故鼓风机配套。

再查看引风机铭牌,其型号为:AGY4-12,NO。7,1,流量:13305M3/h,全压:2726Pa(278mmH2O)功率:18.5KW(Y180M-4),实际配22KW电机,转速:1800转/分。根据锅炉厂提供的资料,烟气系统总阻力为250---260 mmH2O(除尘器采用水膜除尘器时需增加20-30 mmH2O。另根据设计要求,风机选型时,风量应有10%、风压应有20%的富余量。参照技术参数,根据厂方设备技术人员及锅炉车间主任介绍,锅炉在1998年初安装并投入运行至20xx年上半年,运行一直正常,没有

出现正压燃烧现象。亦可得出所配套的引风机,其风量与风压基本满足锅炉总图上设计要求。故引风机是配套的。

6、再查看烟道系统法兰对接及除尘器、省煤器的清灰门缝隙

从现场的检查情况来看,烟道是用3mm板制作,没有腐蚀、破损及漏风,烟道系统法兰对接处的缝隙均用石棉绳衬垫严紧密封,也不会漏风,除尘器及省煤器的清灰门的缝隙也用石棉绳堵塞严密。所以,排除了烟道系统由于漏风使引风机抽短路的可能。

三、查找省煤器或除尘器是否出现灰堵现象。

由于鉴定方案中提出的四个问题,只剩下省煤器、除尘器以及烟道是否灰堵问题了,所以必须从省煤器与除尘器以及烟道上是否灰堵查找问题。

1、用规格为500mmU型玻璃管差压计对烟道系统的各段进行烟气阻力测试。

如图一所示,在烟道系统上开A、B、C、D、E、5个口,并用Φ10mmx1.5mm×100mm铜管与之接口(焊

接),保证与烟道的烟气相连通。其方法是U型玻璃管差压计注水至250mm刻度处,然后用Φ10×1mm透明塑料软管(两条长3~5M)与之相连在一起,测定点分别为A、B、C、D、E,分别测AB段、BC段、CD段及DE 段各段的阻力和引风压降,测试结果汇总表一。2、故障原因分析结果

从表一的数据分析,整改前省煤器烟气进口处的实测引风压头为:55 mmH2O±3 mmH2O,而炉膛与烟管束烟气阻力为99.2 mmH2O,要克服这些阻力还差44.2mmH2O,故正压燃烧。

从另一组数据看,省煤器实测烟气阻力为:115 mmH2O±5mm,而锅炉厂提供的省煤器阻力为38.4 mmH2O,很明显省煤器的阻力比设计要求大77mmH2O。所以,故障原因应该是铸铁省煤器的灰堵或者是铸铁省煤器组件结构不合理,引起阻力超过原设计值。

再看除尘器整改前烟气阻力为75 mmH2O±5mm,而锅炉厂设计除尘器阻力要求是100 mmH2O以下,除尘器生产厂家提供技术参数为80 mmH2O-100 mmH2O,

而实测阻力没有超过设计标准要求。故除尘器没有存在问题(当然由于煤灰都积结在省煤器及炉膛里,少量灰尘进入除尘器,故烟气经过除尘器的压降会偏小)。所以原因分析结果是省煤器灰堵引起,必须拆除省煤器清灰检查处理。

3、整改方案及实施

故障原因找到了,为减少省煤器的烟气阻力,彻底清除灰垢,锅炉必须停止运行,对铸铁省煤器进行拆卸检查,清理灰垢处理,厂方接到我们出具故障原因鉴定结论后,立即组织有关人员,安排一天时间进行抢修,我们派人到现场进行指导,并要求重新组装省煤器后应进行水压试验(因运行满6年),查看省煤器是否出现泄漏。

4、整改结果是令人满意的

经拆卸省煤器检查时,发现铸铁省煤器的鳍片大量积灰,有潮湿迹象,进一步拆卸省煤器组件(从上而下)至第八、九排时,发现该铸铁省煤器的烟气侧由于腐蚀而出现穿孔微泄漏缺陷,吸附大量灰垢造成积灰

堵塞,使省煤器的烟道截面积变小,烟气阻力变大。因腐蚀而积结的灰垢有一部分是十分坚硬的,而且均积在省煤器的鳍片之间,要清除这部分灰垢很困难,省煤器组件拆卸后,逐个用人工清理,将穿孔微泄漏缺陷的二排不要了,剩下的12排重新组装,并做水压试验。经整改后锅炉重新投入运行,两天后走进锅炉房一看,炉膛的火焰不从拨火门和观火门“吐”出来了,炉门烧红、烧裂的迹象不见了,锅炉房地面是干净的,从锅炉出渣看出煤炭已完全燃烧。重新检测,省煤器的烟气阻力恢复到35mmH2O(见表一),锅炉恢复正常的负压运行,整改的结果是令人满意的。

5、造成省煤器灰堵的原因作进一步分析

我们知道,一般常用的锅炉燃料中,或多或少都含有硫,这部分硫在燃料燃烧过程中大部分生成SO2,在一定的条件下(如在烟气中有过剩氧存在的情况下)其中有一部分SO2会进一步氧化成SO3,SO3遇到烟气中的水蒸汽能与之结合,生成硫酸蒸汽。气态的硫酸对金属的影响一般不大,但当硫酸蒸汽凝结成液体酸

时,将对金属面产生严重的腐蚀作用。燃料中的硫在燃烧过程中形成的硫酸蒸汽能否在锅炉尾部受热面上凝结,不仅取决于金属壁温的高低,也取决于烟气中所含硫酸蒸汽的露点高低,而硫酸蒸汽露点的高低是由烟气中SO3的含量多少决定的。锅炉在运行中,由于各种原因(如排烟温度过低、省煤器的进水温度低于50℃等)很容易产生积灰和低温腐蚀。积灰轻者,使引风机阻力增加,锅炉出力降低,重者可造成锅炉被迫停炉;腐蚀的结果,使受热面泄漏,损坏,严重时不得不经常成组更换受热面。所以考虑节能的同时也要考虑排烟温度不能太低。

四、结束语

造成锅炉尾部受热面灰堵和低温腐蚀的原因有两点:一是烟气中存在有三氧化硫(SO3);二是受热面的金属壁温低于烟气中的酸露点温度。当锅炉出现正压燃烧故障时,其原因是多方面的。不要单纯认为是引风机引风量不够,随便无根据更换大号的引风机。不仅将带来一次性投资浪费及长期运行费用增高,而且又

不能彻底解决正压燃烧的问题。我们应从炉膛、省煤器、烟风道、除尘系统出现灰堵或漏风等来查找原因。

请在这里输入公司或组织的名字

Enter The Name Of The Company Or Organization Here

燃气锅炉危害分析

燃气锅炉危害分析文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

燃气锅炉危险性分析 随着社会经济的高速发展,锅炉作为生产热能和动力的工艺设备,在现代工业、电力及人民生活中普遍使用,而燃气锅炉以它优质、环保、清洁的特点满足了人们对环境、安全、自动化的要求,所以很多工程已经采用了燃气锅炉作为其加热设备。但由于各种原因,燃气锅炉爆炸事故的频频发生,它不仅在经济方面造成大量损失,严重的使人们在身心甚至生命都受到威胁。所以研究燃气锅炉爆炸危险性及其预防措施是十分必要的。 1 燃气锅炉及其应用 1.1燃气锅炉结构简介 燃气锅炉包括燃气燃烧设备和锅炉本体两个系统。燃气燃烧设备主要指炉膛和燃烧器,也包括其他与燃烧过程有关的设备,它的主要作用是将一定数量的可燃气体和空气通入燃烧设备中,通过可燃气体的燃烧将化学能转变为热能,给锅炉本体提供持续的热能。锅炉本体就是借助燃烧设备提供的热能将水转化为水蒸汽,使其成为一定数量和质量(压力和湿度)的蒸汽。整个锅炉生产过程就是将一定数量的可燃气体和相应数量的空气送入炉内燃烧,燃烧所发出的热量传递给水,使水在定压下汽化而形成一定压力和温度的水蒸汽。 1.2燃气锅炉的应用 燃气锅炉作为一种产生热能和动力的工艺设备,广泛地应用于电力、机械、化工、纺织造纸等工业部门及宾馆、居民区采暖供热等方面。我国北方城市

由于需要采暖供热,在用锅炉数量更大。燃气锅炉已经逐步进入人们生活的周围。 2.燃气锅炉爆炸事故类型及其危害 燃气锅炉运行中出现的事故大致可分为三类: (1) 特大事故:锅炉中的主要受压部件——锅筒、管板等发生破裂爆炸的事故,这种事故常导致设备、厂房破坏和人身伤亡,造成重大损失。 (2) 重大事故:燃气锅炉无法维持正常运行而被迫停炉的事故,如缺水事故、炉膛爆炸事故等。这类事故虽不象特大事故严重,但也常常造成设备、厂房损坏和人身伤亡,并使燃气锅炉被迫停运,导致用汽部门局部或全部停工停产,造成严重经济损失。 (3) 一般事故:在运行中可以排除的事故或经过短暂停炉即可排除的事故,其影响和损失较小。 燃气锅炉事故属于工业热灾害三种主要事故类型中造成损失最大的爆炸事故。主要可分为两种爆炸原因,一是炉膛爆炸,另一种是炉体爆炸。燃气锅炉发生爆炸事故频率较高。 3.燃气锅炉的火灾危险性分析 3.1燃气的危险特性 燃气锅炉的燃料是可燃气体,主要是天然气或煤气。天然气和煤气的主要成分都是甲烷,还搀杂一些简单的烷烃,这些组分都是高度易燃易爆的气体,天然气的爆炸下限为4%,煤气的爆炸下限为6.2%,极易发生爆炸事故。

锅炉燃烧过程控制系统设计毕业论文

锅炉燃烧过程控制系统设计毕业论文

毕业论文 锅炉燃烧过程控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

关于工业锅炉正压燃烧问题的探讨

关于工业锅炉正压燃烧问题的探讨 发表时间:2010-11-18T14:25:26.037Z 来源:《中小企业管理与科技》2010年7月上旬刊供稿作者:时大勇刘晓晶 [导读] 锅炉正常燃烧,包括均匀供给燃料、合理通风和调整燃烧三个基本环节 时大勇刘晓晶(白城市特种设备检验中心镇赉检验所) 摘要:对锅炉正压燃烧产生的原因和造成的危害进行分析,最后提出预防措施。 关键字:锅炉正压燃烧 引言 锅炉正常燃烧,包括均匀供给燃料、合理通风和调整燃烧三个基本环节,只要三者互相配合,协调一致即可达到安全经济、稳定运行目的。正常燃烧时炉膛负压一般维持在20-30帕(Pa),然而在实际运行过程中很多锅炉不同程度地出现正压燃烧问题,所谓锅炉正压燃烧就是锅炉在使用过程中炉膛中烟气压力大于大气压力。锅炉正压燃烧不仅严重恶化工作环境,而且对锅炉燃烧设备危害极大,经常造成事故,影响生产生活的正常进行。下面就对锅炉正压燃烧产生的原因、危害及预防措施谈一些看法加以探讨。 1 正压燃烧产生的原因 1.1 锅炉作业人员操作水平低。这些人员大部分来自企业下岗职工,只是在冬季烧一个采暖期,季节性很强,工作单位不固定,因此责任心差,加之操作技术低,对鼓、引风机的风量配比调节不当,造成锅炉正压燃烧。 1.2 烟道堵塞。烟道堵塞一般是由于烟道内的积灰或耐火材料脱落造成的(如DZ型锅炉一回程出口烟道、烟箱耐火砖或耐火材料脱落;SZ型锅炉对流管束间积灰或耐火材料落入)。烟道堵塞引起烟气流量减少、压力升高,炉膛出现正压。 1.3 尾部设计阻力和运行阻力过大。设计阻力是指锅炉安装时,没有考虑除尘器、省煤器、空气预热器等造成的阻力,所设计的烟道过长,转弯过多等导致的阻力。运行阻力是指锅炉运行时,由于烟道、烟囱底部集尘过多,锅炉后部的各检查孔、清灰孔未及时密闭也可引起阻力增加,烟气阻力增大而产生的正压燃烧。 1.4 漏风。烟道法兰接合处填料损坏且不严密,烟道管壁、墙壁开裂,后部的一些清灰门、烟道、除尘器、引风机等腐蚀磨损穿孔损坏造成大量冷空气的进入,使引风机超负荷运行,而产生正压燃烧。 1.5 引风机风量、风压不足。由引风机风量、风压不足造成锅炉的正压燃烧有两种情况,一种是由于对锅炉除尘的改造增大了烟气的阻力造成风压不足;另一种是由于引风机多年的使用造成引风机的叶片腐蚀磨损,使引风机风量、风压降低。 1.6 采用劣质烟煤。为确保供热量,加大燃烧,烟尘大增,使锅炉产生正压燃烧。烟质低劣,炉膛温度起不来,使炉膛出口烟气温度也低,致使烟气密度增加,引风机的设计排烟温度为180~200℃,压力为1个标准大气压,当排烟温度低于设计值时,烟气密度增大,风机则处于超设计负荷下工作;同时,为满足外界负荷,只有加大给煤量,这样也就增大了烟气排量。如风机设计选型时的富裕量小,建立炉膛负压就比较困难。 2 锅炉正压燃烧对锅炉造成的危害主要表现在如下几个方面 2.1 诱发事故,降低锅炉热效率。锅炉正压燃烧,炉膛内高温烟气就会沿炉墙裂缝进入锅炉的保温层将保温层烧坏,从而使锅炉(如下降管等)不可受热的承压部件受热,破坏了锅炉的水循环,诱发锅炉水冷壁爆管等事故的发生。如我县某企业一台DZW4-13型锅炉,由于锅炉正压燃烧使前下降管保温烧坏前部炉墙损坏,前下降管暴露于炉膛中强烈受热严重地破坏了锅炉水循环,造成一根水冷壁管爆管、六根水冷壁管过烧事故。同时,由于保温层的烧坏,增大了锅炉的散热损失,降低了锅炉热效率。 2.2 破坏锅炉煤层的正常燃烧。锅炉正压燃烧,就会使高温烟气在煤层中沿炉排前行,越过煤闸板在煤斗中钻出,使着火点前移进而引燃煤斗中的煤,造成煤斗烧坏事故,对此有的司炉工不得不经常在煤斗中浇水,破坏了炉膛中煤层的正常燃烧。 2.3 操作环境恶化。锅炉正压燃烧,就会使高温烟气从观火门、观察门等缝隙中钻出进入锅炉房,使操作人员受到烟气中的尘、毒、高温的侵害,恶化了操作环境。 2.4 浪费电能。由于锅炉的漏风使大量的冷空气混入烟气中,增加了烟气量,降低了烟气温度,造成引风机大大的超负荷,严重时会烧毁引风电机,因而造成用电量的增加,使电能浪费。 2.5 加剧了受热面的磨损。正压燃烧时,烟气流速增加,烟气流速对磨损的影响与速度的三次方成正比增加。因而加剧了受热面的磨损。 3 保证锅炉安全经济运行,避免正压燃烧的措施 一是提高设备作业人员的操作技能水平;二是加强对锅炉及辅助设备的维护、维修和保养;三是定期清理锅炉尾部受热面积灰;四是确保烟风道各密封处严密无漏点;五是锅炉及烟风管道系统在安装、改造时,一定要对管道阻力进行计算;六要尽可能选用和设计煤质相近的燃煤,由于煤质引起的正压燃烧,加装分层燃烧给煤装置可提高炉膛对煤的适应性。 总之,锅炉正压燃烧对锅炉造成的危害是很大的,严重地影响着锅炉的安全运行。因此锅炉检验、设备管理及操作人员要对锅炉正压燃烧现象引起高度的重视,对锅炉正压燃烧要及时地查明原因并加以排除,防止锅炉事故的发生,保证锅炉的安全经济运行。

燃气锅炉运行的燃烧事故原因分析及应对措施

燃气锅炉运行的燃烧事故原因分析及应对 措施 民 鲁南铁合金发电厂 文章分析电厂燃气锅炉在运行中发生回火或脱火,灭火及炉膛爆炸事故维护管理,运行监视调整等各方面原因,提出了响应的预防措施,用以提高燃气锅炉安全运行控制水平,确保正常运行。 1、燃气锅炉的回火,脱火的原因及预防措施 影响回火、脱火的根本原因有:燃气的流速,燃气压力的高低,燃烧配置状况,结合各电厂燃气锅炉燃烧运行中回火或脱火,从实际可以看出,回火或脱火大多数是调节燃气流速,燃气压力判断不准确及燃烧设备配置状况差别。下面我主要从这两个方面来分析回火或脱火的原因 1.1回火将燃烧器烧坏,严重时还会在燃烧管道发生燃气爆炸,脱火能使燃烧不稳定,严重时可能导致单只燃烧器或炉膛熄火。气体燃料燃烧时有一定的速度,当气体燃料在空气中的浓度处于燃烧极限浓度围,且可燃气体在燃烧器出口的流速低于燃烧速度时,火焰就会向燃料来源的方向传播而产生回火。炉温越高火焰传播速度就越快,则越产生回火。反之,当可燃气体在燃烧器的流速高于燃烧速度时,会使着火点远离燃烧器而产生脱火,低负荷运行时炉温偏低,更易产生脱火。例如2#燃气炉,炉膛压力不稳定,忽大忽小,烟气中CO2和O2的表计指示有显著变化,火焰的长度及颜色均有变化,并且还有一只

燃烧器烧坏,说明有回火或脱火现象,影响安全运行,气体燃料的速度时由压力转变而来的,如若气体管道压力突然变化或调压站的调压器及锅炉的燃气调节阀的特性不佳,便会使入炉的压力忽高忽低,以及当风量调节不当等均有可能造成燃烧器出口气流的不稳定,而引起回火或脱火,经以上分析可知,我们采取控制燃气的压力,保持在规定的数值,为防止回火或脱火在燃气管上装了阻火器,当压过低时未能及时发现,采取防火器,可使火焰自动熄灭,得到很好效果。1.2在燃气锅炉的燃烧过程中,一旦发生回火或脱火,应迅速查明原因,及时处理。 1.2.1首先应检查燃气压力正常与否,若压力过低,应对整个燃气管道进行检查,若锅炉房总供气管道压力降低,先检查调节站调压器的进气压力,发现降低时及时与供气站联系,要求提高供气的压力;若进气压力不正常,则应检查调节器是否有故障,并及时加以排除,同时可以投入备用调压器并开启旁通阀。若采取以上措施仍无效,则应检查整个燃气管道中是否有泄漏,应关闭的阀门是否关闭,若仅炉前的燃气管道压力降低,则应检查该段管道上的各阀门是否正常,开度是否合适,是否出现泄漏情况。当燃气压力无法恢复到正常值时,应减少运行的燃烧器数据,降低负荷运行,直至停止锅炉运行。 1.2.2如若燃压过高,应分段检查整个燃气管道上的各调节阀是否正常,其次检查个燃烧器的风门开度是否合适,检查风道上的总风压和燃烧器前风压是否偏高等,并作出相应的调整。 2、燃气的锅炉灭火及预防

锅炉燃烧系统

锅炉燃烧系统 一、基本知识点 1、发电能源的种类 火力发电→发电的主要形式; 水利发电、核能发电; 新能源发电:地面太阳能发电、卫星太阳能发电、地面风能发电、高空风能发电、地壳热能发电、岩浆热能发电、潮汐发电、波浪发电、海水温差发电、核聚变能发电等。 2、火力发电厂的生产过程中能量转换形式及设备 燃料的化学能→蒸汽的热能(锅炉); 蒸汽的热能→机械能(汽轮机); 机械能→电能(发电机)。 3、锅炉的作用 使燃料在炉内燃烧放热,并将锅内工质由水加热成具有足够数量和一定质量(温度、压力)的过热蒸汽,供汽轮机使用。 4、锅炉四大系统 ①制粉系统→将初步破碎的原煤磨制成符合锅炉燃烧要求的细小煤粉颗粒【燃煤炉】; ②燃烧系统→使燃料燃烧放出热量,产生高温火焰和烟气; ③烟风系统→供应助燃氧气、排除燃烧产生的烟气; ④汽水系统→通过换热设备将高温火焰和烟气的热量传递给锅炉内的工质。 5、锅炉容量 锅炉额定蒸汽参数,额定给水温度并使用设计燃料时,每小时的最大连续蒸发量。 De =130t/h De=36.1kg/s 6、蒸汽参数 锅炉出口处的蒸汽温度和蒸汽压力。 t=500℃,t=813K p=13.5MPa 7、锅炉的燃料 煤(主要燃料)、油、气体以及其他可燃物(如生活垃圾)。

简单蒸汽动力装置流程图

二、锅炉燃烧系统 1、锅炉燃烧设备的组成 炉膛+燃烧器+点火装置 2、锅炉燃烧设备的发展方向 高效、低污染的燃烧技术和设备 3、与炉内燃烧过程相关的问题 (1) 受热面积灰、结渣; (2) 受热面金属表面的高温腐蚀; (3) 蒸发受热面中水动力的安全性; (4) 氧化氮等污染物的生成; (5) 火焰在炉膛容积中的充满程度。 4、高炉煤气与转炉煤气特性 高炉煤气:炼铁过程中产生的副产品,主要成分为:CO, C02, N 2、H 2、CH 4等,其中可燃成 分CO 含量约占25%左右,H 2含量约占1.5~1.8%、CH 4的含量很少,CO 2, N 2的含量分别占15%,55% 左右,热值不高,仅为3500KJ/m 3左右,燃点530~650℃。 主要性质:无色无味有剧毒易燃易爆。 转炉煤气:炼钢过程中,铁水中的碳在高温下和吹入的氧生成一氧化碳和少量二氧化碳的混合气体。回收的炉气含一氧化碳60~80%,二氧化碳15~20%。热值较高,为8000KJ/m 3左右,燃点650~700℃。 主要性质:无色无味有剧毒易燃易爆。 5、气体燃烧器 (1) 按燃烧方法【主要分类方式】: ▼ 扩散式燃烧器:煤气中不预混空气,一次空气系数01=α,燃气经燃烧器喷入炉内,借助扩散作用与空气边混合边燃烧; ▼ 大气式(半预混式)燃烧器:燃气中预先混入一部分空气,一次空气系数75.045.01-=α; ▼ 无焰式(预混式)燃烧器:燃气与空气完全预混,一次空气系数11≥α。 (2) 按空气供给方式: ▼ 自然引风式:靠炉膛负压将空气吸入炉膛;

锅炉危险因素评价表

锅炉危险因素评价表 1)燃油、燃气锅炉热力系统的主要构成 燃油、燃气锅炉热力系统的主要构成中环形方集箱是承压的元件,其内盛有水(下集箱)和饱和蒸汽。上集箱上开有多个管座,并接装有主汽阀、安全阀、压力表和水位表、汽连管、压力控制器等。下集箱也在相应的短座上装有进水管、排污管、水位表、水连管等,控制压力和水位的传感元件也在集箱内。 2)危险、有害因素分析 由于司炉工误操作,水位计或自动给水装置失灵,以及省煤器浸漏大量跑水或排污阀关闭不严、止回阀故障等原因造成缺水事故。 严重缺水事故可导致受热面过热烧毁,降低受热面钢材的承载能力,金相发生劣化,炉管爆破,甚至造成锅炉爆炸。 司炉工失职、水位计故障、自动上水装置失灵也会造成满水事故。蒸汽大量带水会降低蒸汽品质甚至发生水击,损坏管道,破坏用汽设备。 而水质不符合要求,锅炉水含盐量达到临界量,或超负荷运行,用汽量突然增加,压力降低过快可造成汽水共沸,破坏水循环,恶化蒸汽品质,水击振动,影响用汽设备的安全运行。锅炉钢材或焊接质量低劣,角焊结构,水质不良严重腐蚀、结垢,水循环故障还可造成炉管爆破甚至爆炸等事故发生。 运行压力超过锅炉最高允许压力,钢板(管)应力增高超过极限值同时安全阀与超压连锁失灵也将造成超压爆炸。 点火不当,或熄火后炉膛内可燃物(油、气)未排除,其与空气混合达到爆炸极限下限,在点火或遇引爆能量的作用下,会发生炉膛爆炸。 3)预先危险性分析 综上所述,热力系统的主要危险因素是由于缺水、钢材质量不合格、焊接缺陷、超压等因素造成锅炉爆炸或管子爆破事故。 根据前述的主要危险、有害因素分析,该系统可能发生的事故或故障是: (1)位事故:缺水、满水、汽水共沸。 (2)爆炸事故 预先危险性分析见表 热力系统预先危险性分析

锅炉燃烧控制系统仿真

锅炉燃烧过程控制系统仿真 目的:通过该项目的训练,掌握串级控制、比值控制、前馈控制在锅炉燃烧过程控制系统的综合应用。 原理简述: 燃烧过程控制系统:燃油锅炉的燃烧过程控制主要由三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统以及炉膛负压控制系统。 1 、蒸汽压力控制和燃料空气比值控制系统 锅炉燃烧的目的是生产蒸汽供其他生产环节使用。一般生产过程中蒸汽的控制是通过压力实现的,后续环节对蒸汽的生产用量不同,反映在蒸汽锅炉环节就是蒸汽压力的波动。维持蒸汽压力恒定是保证生产正常进行的首要条件。 保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气的控制实现的。 因此,蒸汽压力是最终被控制量,可以根据生成情况确定; 燃料量是根据蒸汽压力确定的;空气供应量根据空气量与燃料量的合理比值确定。 2 、炉膛负压控制系统 锅炉炉膛负压过小时,炉膛内的热烟、热气会外溢,造成热量损失,影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会增加燃料损失、热量损失和降低热效率。 使外部大量冷空气进入炉膛,改变燃料和空气比值,

控制方案: 某锅炉燃烧系统要求对系统进行蒸汽压力控制。本项目采用燃烧炉蒸汽压力控制和燃料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。 已知控制系统传递函数: 燃料流量系统的数学模型:G(s)=s e s 31 122-+

空气流量模型:G(s)=s e s 21102-+ 引风量与负压关系模型:G(s)=s e s -+156 送风量对负压的干扰模型:G(s)=122 +s 并取: 燃料流量至蒸汽压力关系约为:G(s)=4 蒸汽压力至燃料流量关系约为:G(s)=1/4 燃料流量与控制流量比值:G(s)=2 空气流量与燃料流量比值:G(s)=1 实现步骤: 1、系统稳定性分析 作出伯德图,如果相角裕度Pm>0°或幅值裕度Gm>1,表示系统稳定。 (1) 燃料流量系统数学模型:G(s)=s e s 31122-+的伯德图: 空气流量数学模型G(s)=s e s 21102 -+的伯德图:

锅炉正压燃烧现象研究及探讨

锅炉正压燃烧现象研究及探讨 摘要:锅炉正压燃烧现象并不罕见,不过严重的话危害比较大,因此对于企业 而且其应当在了解正压燃烧现象的基础上制定相应的防范策略。本篇文章首先阐 述了正压燃烧现象,然后分析其造成的危害,接着详细论述正压燃烧现象的原因,最后针对正压燃烧现象提出相应的预防措施。 关键词:锅炉;正压燃烧;原因分析;预防对策 如果想要保障锅炉正常运行,燃料供给均衡、通风合理、燃烧恰当缺一不可,若是炉膛中气压过高,显著高于外界气压,就会产生正压燃烧现象。锅炉正压燃 烧不单单会对锅炉本身产生危害,而且还会严重影响相关工作人员的人身健康与 安全,所以必须正视这一问题。 1 锅炉正压燃烧现象 锅炉在运行使用过程中,炉膛内会产生一定的气压,若是外界低压低于炉膛 里面的气压,就会造成正压燃烧现象。一般来说,当锅炉发生正压燃烧现象的时候,炉膛之中的炉火会向外涌出,伴随炉火的还有大量的烟气,并且在炉火的作 用下炉门颜色变红,锅炉本身也会受到损伤。若是锅炉长时间处于正压燃烧状态,那么锅炉本身的形状会有所改变,炉墙因为燃烧而损坏脱落,锅炉内的保温材料 也会遭受损伤,炉排烧断卡死,严重的话还会发生锅炉倒塌等事故。 锅炉是否存在正压燃烧现象,需要操作人员对此进行判断。在进行判断的过 程中,操作人员可以在观察孔所在位置放上一根点燃的香烟或者是布条、纸条等,若是香烟烟气或者是布条、纸条朝着观察孔飘动,这意味着其并不存在正压燃烧 现象,反之这意味着其存在正压燃烧现象。 2 锅炉正压燃烧造成的危害 2.1 威胁相关工作人员人身安全 锅炉处于正压燃烧状态会导致自身损害,严重的话还会发生锅炉倒塌等危险 事故,那么对于相关工作人员来说自己的人身安全无法得到保障。除此之外,若 是锅炉处于正压燃烧状态,那么会导致大量温度比较高的烟气、灰尘等从锅炉内 涌出,充斥着锅炉房,使得锅炉房内的环境恶化,对于在锅炉房中工作的员工来说,自身的健康会受到危害。 2.2 损坏设备 一旦锅炉处于正压燃烧状态,那么很可能会使得大量温度比较高的烟气、灰尘、火焰从炉门中涌出,炉墙产生裂缝,烟气、灰尘以及火焰会从裂缝处到达锅 炉内的保温层,使得保温层遭受损伤,严重的话还会使得保温层整个烧毁。正压 燃烧会导致炉门变形、炉墙破裂与松动,保温层损毁,进一步来说会导致锅炉内 部的下降管暴露在空气中,火焰会对其直接进行加热,锅炉内的水循环无法正常 运行,进而产生一系列安全事故,像是炉管爆炸等等。除此之外,一旦锅炉的保 温层被烧毁,那么锅炉的保温效果大大降低,此时锅炉的热效率随之下降,其工 资效率较差。 3 锅炉正压燃烧现象原因分析 锅炉出现正压燃烧现象的原因有很多,某些情况下是由一种或者多种原因共 同作用,导致锅炉出现正压燃烧现象。一般来说,锅炉正压燃烧现象的产生主要 由下述五个方面的原因导致。 3.1 操作不规范 现阶段,我国很多锅炉操作人员专业能力比较差,因为这些人并没有系统地

锅炉燃烧器烧损原因分析及防治

1000MW超超临界 锅炉燃烧器烧损原因分析及防治 曾昕 (中电投前詹港电有限公司,广东揭阳522031) 【摘要】在我国的电力产业得到了迅速发展的情况下,我国已经在1000MW超超临界锅炉方面得到了应用,并在逐渐的满足社会的需求。煤粉燃烧器在锅炉设备当中是比较重要的一个构成燃烧器的烧损对于炉内的燃烧情况有着很大的影响,故此防治这一情况显得格外重要。本文主要就1000MW超超临界锅炉的燃烧损坏原因进行分析,并结合实际找出防治措施,希望能够对此领域的学术发展起到一定的促进作用。【关键词1 1000MW超超临界锅炉燃烧器防治 在1000MW超超临界锅炉燃烧器的烧损情况发生时,最为常见的就是造成火焰的中心发生偏斜,这样就会带来高温腐蚀以及水冷壁结焦这些后果,对于锅炉的安全运行以及在经济方面的损失造成很大影响,这在检修的工作量也会大幅度的增加,所以需采取有效的防治措施来加以应对。 1 1000MW趄趄临界锅炉燃烧器的烧损原因分析 对于1000MW超超临界锅炉燃烧器的烧损原因,笔者根据相关的资料对某电厂的这一设备进行了分析。该电厂的有一号和二号机组,在2012年开始正式的投人使用,在使用不久就发生了烧损的情况,最为常见的就是燃烧器钝体板的脱落进入到了排渣的系统,在这一机组的运行时限不断的增长的情况下,在锅炉的燃烧火焰中心开始发生了偏斜,在锅炉的左右侧主以及再蒸汽温度方面出现了偏差,在空气的预热器的进口烟气的温度也发生了偏差。这些情况和燃烧器的烧损以及钝体板的脱落有着密切的联系[11。 在燃烧器的具体烧损的原因方面主要体现在燃烧器的区域温度过高,在这一机组负荷1000MW的时候通过远红外辐射高温仪进行对炉膛的温度进行测试,Sit情况如下图1所示,通过这一图形的分布可以发现,炉膛内的火焰中心的温度偏高,高温的烟气对于燃烧器的辐射换热增强,但是在燃烧器的周界冷风的量却不足,这就造成了燃烧器的喷口温度比较高,从而对燃烧器造成了烧损的情况 外就是在这一机组的运行调整的方面。首先就是煤粉的着火距离比较近,由于通风的阻力较大所以进口的一次风量要比设计值要低,这样就会造成着火的距离比较近,进而造成燃烧器的烧损情况发生,还有就为为了能够对机组的用电率得到有效的降低,对于锅炉内的氧气含量的控制不够,二次风的风速也不高这样也会造成燃烧器的烧损。由于煤质的变化因素也会产生一定的影响,入炉煤的煤质挥发份的变化范围比较大,对于设计的煤种相差甚远,在挥发份得到提高之后一次风喷口的煤粉着火的距离就会变近。在磨煤机停运的时候在对应的燃烧器周界的风开度比较小,一次风的喷口没有得到及时的冷却,这就会使得燃烧器发生烧损的情况。 这也和设备的质量有很大的关系,由于燃烧器的钝体板的制造工艺没有达到标准以及燃烧器的喷口耐磨的强度不够等都会使得燃烧器发生烧损的情况。还有在燃烧器的设计方面的因素也要得到重视,这主要就是对于材料以及结构和停运燃烧器周界风设计的控制值参数这几个重要的方面^ 2 1000MW趄趄临界锅炉燃烧器的烧损问題防治措施 针对以上对于1000MW超超临界锅炉燃烧器的烧损问题原因的分析,笔者对其制定了相应的防治措施。首先要在燃烧器设备进行加强监督以及维修,在发现了燃烧器的烧损情况之后,要对其及时的加以更换或者是修补,针对那些脱落的燃烧器钝体板也要及时的进行更换在钝体板和一次风喷口的接触地方截贴比较耐磨的陶瓷〖3]。对于钝体板的材质要选取高质量的,使用新的安装工艺,从而来解决燃烧器的钝体板脱落以及磨损这些情况,这样能够有效的防治燃烧器的烧损问题,同时还婆能够在燃烧器进口煤粉管壁温的维护方面得到加强,在测量的准确性上要能够得到确保。在停炉的这一阶段,对燃烧器和辅助的二次风安装的角度要进行严格的检查,从而能够对炉膛的设计切圆的准确性得到保证,对于锅炉的一次风速的冷热调匀实验和二次风冷态挡板特性试验要积极的完成做好,从而来保证炉膛的火焰中心不发生偏斜。 对于燃烧器的运行调整要得到有效的加强,对于燃尽风门开度以及二次风门要能够进行合理的控制,这样能够使得风箱的差压值以及炉膛的差压值保持在设计值的最近距离,从而对于燃烧器的周界风量满足冷却以及燃烧的相关标准,对于锅炉的各个负荷段的氧气体积的分数要能够将其控制在设计值的最近范围内,这样能够对各个层级的二次风喷口的低风速进行防止,从而对燃烧器起到保护的作用。对于停运燃烧器的周界风门开度的控制曲线要进行优化,加强对停运燃烧器进口煤粉管壁温的监视,还要根据磨煤机的负荷对一次风母管压力以及一次风流量进行合理的控制。 在设计的方面就要依照着燃烧器的区域温度对材料进行选择,增加在耐热以及耐磨的性能,对于燃烧器的周界风喷口的截面积要能进行合理的设计,另外就是要能够对燃烧器的钝体板结构的设计要进行优化。 3结语 总而言之,在1000MW超超临界锅炉燃烧器的烧损问题上要进行多方面的考虑分析,在找到烧损的原因基础上有针对性的进行对其解决,要能够根据事故的现场和运行的数据来进行分析烧损的原因,从而提出合理化的建议,如此才能够有效的解决烧损的真正问题。参考文献: [1]郝振.双尺度低氮燃烧技术在600MW燃煤锅炉上的应用[J].中国电业(技术版).2014,(02). [2]张耀.低氮燃烧改造在亚临界机组的应用研究[J].中国电业(技术版),2014,(02). [3]刘伟,束继伟,金宏达.电站锅炉管式空预器积灰堵塞的原因分析及解决措施[J].黑龙江电力,2014.(01).

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

燃气锅炉火灾爆炸危险性分析

燃气锅炉火灾爆炸危险性分析及其预防措施 随着社会经济的高速发展,锅炉作为生产热能和动力的工艺设备,在现代工业、电力及人民生活中普遍使用,而燃气锅炉以它优质、环保、清洁的特点满足了人们对环境、安全、自动化的要求,所以很多工程已经采用了燃气锅炉作为其加热设备。但由于各种原因,燃气锅炉爆炸事故的频频发生,它不仅在经济方面造成大量损失,严重的使人们在身心甚至生命都受到威胁。所以研究燃气锅炉爆炸危险性及其预防措施是十分必要的。 一、燃气锅炉及其应用 1.1燃气锅炉结构简介 燃气锅炉包括燃气燃烧设备和锅炉本体两个系统。燃气燃烧设备主要指炉膛和燃烧器,也包括其他与燃烧过程有关的设备,它的主要作用是将一定数量的可燃气体和空气通入燃烧设备中,通过可燃气体的燃烧将化学能转变为热能,给锅炉本体提供持续的热能。锅炉本体就是借助燃烧设备提供的热能将水转化为水蒸汽,使其成为一定数量和质量(压力和湿度)的蒸汽。整个锅炉生产过程就是将一定数量的可燃气体和相应数量的空气送入炉内燃烧,燃烧所发出的热量传递给水,使水在定压下汽化而形成一定压力和温度的水蒸汽。 1.2燃气锅炉的应用 燃气锅炉作为一种产生热能和动力的工艺设备,广泛地应用于电力、机械、化工、纺织造纸等工业部门及宾馆、居民区采暖供热等方面。我国北方城市由于需要采暖供热,在用锅炉数量更大。燃气锅炉已经逐步进入人们生活的周围。 2.燃气锅炉爆炸事故类型及其危害 燃气锅炉运行中出现的事故大致可分为三类: (1)特大事故:锅炉中的主要受压部件——锅筒、管板等发生破裂爆炸的事故,这种事故常导致设备、厂房破坏和人身伤亡,造成重大损失。 (2)重大事故:燃气锅炉无法维持正常运行而被迫停炉的事故,如缺水事故、炉膛爆炸事故等。这类事故虽不象特大事故严重,但也常常造成设备、厂房损坏和人身伤亡,并使燃气锅炉被迫停运,导致用汽部门局部或全部停工停产,造成严重经济损失。 (3)一般事故:在运行中可以排除的事故或经过短暂停炉即可排除的事故,其影响和损失较小。 燃气锅炉事故属于工业热灾害三种主要事故类型中造成损失最大的爆炸事故。主要可分为两种爆炸原因,一是炉膛爆炸,另一种是炉体爆炸。燃气锅炉发生爆炸事故频率较高。 3.燃气锅炉的火灾危险性分析 3.1燃气的危险特性 燃气锅炉的燃料是可燃气体,主要是天然气或煤气。天然气和煤气的主要成分都是甲烷,还搀杂一些简单的烷烃,这些组分都是高度易燃易爆的气体,天然气的爆炸下限为4%,煤气的爆炸下限为6.2%,极易发生爆炸事故。 3.2炉膛爆炸火灾危险性 炉膛爆炸是由于可燃气体漏入并与空气混合形成爆炸性混合物,这种混合物处在爆炸极限范围时一接触到适当的点火源就会发生爆炸事故。伴随着化学变化,炉

锅炉正压燃烧原因分析及对策

锅炉正压燃烧原因分析及对策 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

锅炉正压燃烧原因分析及对策 许治国 (郑州铁路局安全监察室 450052) 摘要:本文主要阐述了锅炉正压燃烧的判断方法,分析了产生锅炉正压燃烧的各种原因,并提出了解决和避免锅炉正压燃烧的方法、措施及对策。 关键词:锅炉、正压燃烧、对策、通风、引风机 引言:锅炉正压燃烧是锅炉工作中常见的故障,它影响锅炉正常运行,损坏锅炉及附属设备,降低锅炉出力,加大设备日常维护及保养的难度,有时还危机操作人员的人身安全,因此正确对待锅炉正压燃烧问题,是保证锅炉安全运行的必要前提条件。 在《特种设备安全监察条例》中,给出了锅炉如下定义:是指利用各种燃料,电或其它能源,将所盛装的液体加热到一定的参数,并对外输出热能的设备,其范围规定为容积大于或者等于30L的承压蒸汽锅炉;出口压力大于或等于0.1Mpa,且额定功率大于或等于0.1MW的承压热水锅炉、有机热载体锅炉。从锅炉定义不难看出,锅炉是一种密闭承压的容器,是一种涉及生命安全,危险性、破坏性极大的特种设备。因此锅炉是否能正常工作,是避免锅炉事故的前提条件,而锅炉正压燃烧是锅炉房常见问题之一,所以解决和避免锅炉正压燃烧问题是保证锅炉安全运行的关键。 所谓锅炉正压燃烧,就是指锅炉炉膛内的气压大于一个正常气压(即外界气压)。锅炉正压燃烧主要表现为:向炉外冒火,四周冒烟,造成炉门发红,炉体损坏加剧,长期正压运行导致炉体变形,炉墙烧损脱落,保温材料损失,炉排烧断卡死,甚至发生炉拱、炉墙倒塌等严重事故。结果:燃料燃烧不充分,不能达到锅炉额定工况。判断锅炉是否正压燃烧的方法是:站在炉门旁,点燃一支香烟或拿一条软布条(软纸条)放在观察孔处,如果烟柱或布条(纸条)向观察孔走或飘动,证明锅炉非正压燃烧运行,反之锅炉正压燃烧运行。 一、锅炉正压燃烧原因分析

锅炉空气预热器二次燃烧事故的原因分析参考文本

锅炉空气预热器二次燃烧事故的原因分析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锅炉空气预热器二次燃烧事故的原因分 析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、前言 辽宁省华锦化工集团盘锦乙烯有限责任公司开工锅炉 BF-1101B回转式空气预热器(GAH)曾先后2次因发生二次 燃烧事故而损坏。为吸取事故教训,笔者对空气预热器着 火原因、现象进行了分析,并提出了相应的预防措施及解 决办法。 二、事故经过 20xx年1月14日零时58分,该公司BF-110lB炉因

火焰监测器检测不到火焰信号而报警联锁停车,紧接着工艺人员对B炉实施恢复点火过程中,又因其他仪表故障而多次使B炉吹扫点火失败。2时左右,就在继续对B炉进行吹扫点火期间,总控人员发现锅炉系统报警盘上的GAH 停车报警,于是立即通知现场检查确认。检查中发现空气预热器换热元件已经冒烟着火,支撑板被烧得通红,并且蓄热板多半因严重过热而熔化变形,有的已脱落在烟道内。各种现象表明GAH为二次燃烧,现场立即做紧急处理。检修后虽能勉强再用,但GAH转子终因严重过热而产生了明显位移,并导致漏风严重、周边过渡卡磨、电机频繁超载眺闸等一系列不良后果,初定择期进行检修或更换。而该炉在1997年12月,就曾因锅炉超负荷运行时间过长,已发生过2起空气预热器二次燃烧事故,事故造成空气预热器全部烧毁。

锅炉自动燃烧控制系统

锅炉自动燃烧控制系统 1、实时数据采集 能够对锅炉本体和辅助设备各种运行数据(包括总供回水温度、压力、流量、省煤器进出口水温度﹑压力烟气温度、除尘器进出口烟气温度压力、鼓引风压力、炉膛温度压力含氧量、煤层厚度、室外温度、鼓引风炉排电机频率速度电流状态、除渣除尘状态) 等信号通过总线进行动态采集,控制中心能够实时监控到锅炉本体﹑锅炉上煤﹑除渣等辅助设备的运行情况。 2、完整的报警机制 当锅炉调节系统发生异常情况时或报警时,上位机人机界面自动接受控制系统器发送报警信号,将报警状态及异常点在上位机上进行显示,并诊断提出相应问题大概原因,提供相应的处理办法提示,系统自动能把报警分为高中低三种报警级别,低级别的报警只做提示用,当发生低级别报警时不影响燃烧自动调节,中级别报警发生时需要做相应处理,高级别报警发生时系统能立即连锁停炉,并发出尖锐声光报警和相关提示信息,等待工程师处理后再次投入运行,所有报警系统会自动的写入永久数据库备份,供以后随时查询和故障诊断和决策处理。 报警内容有: 系统报警 包括DCS控制器自诊断硬件或致命软件命令错误

自动启动燃烧失败 通讯建立连接失败 数据报警 炉膛温度超高低报警 炉膛负压超高低报警 锅炉出口温度超高低报警 锅炉出口压力超高低报警锅炉回水温度﹑压力超高低报警 引风机风压高低报警 鼓风机风压高低报警 高级别报警 引风机变频器(电流﹑电压﹑故障)超速等报警 连锁控制保护报警 鼓风机变频器(电流﹑电压﹑故障)超速等报警 上煤系统综合保护报警 炉排机变频器(电流﹑电压﹑故障)超速等报警 除渣系统综合保护报警 3、循环水控制系统 循环水是锅炉系统与外界交互的接口,循环系统通过泵不断的把热水源源不断的输送给用户或热站,把经过热释放后的二次低温水循环到锅炉系统再加热。我们采用保持循环水进、出口温差恒定,通过改变循环流量来控制热负荷的方式,是一种新方式。

锅炉的危险因素分析

编号:SY-AQ-07922 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 锅炉的危险因素分析 Risk factors analysis of boiler

锅炉的危险因素分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 根据工艺要求和可行性研究报告介绍,本工程锅炉采用 Q=65t/h燃煤蒸汽锅炉3台,本锅炉系统属于危险单元,锅炉发生事故的主要危险因素有: 1.锅炉炉管爆漏、受热面腐蚀 锅炉水冷壁、过热器和省煤器管道爆漏约占全部锅炉设备事故的40%-60%,甚至70%,引起锅炉炉管爆漏的原因较多,其中腐蚀、过热、焊接质量差是主要原因。 锅炉受热面的腐蚀主要是管外的腐蚀和水品质不合格引起的管内化学腐蚀。当腐蚀严重时,可导致腐蚀爆管事故发生。 过热器是锅炉承压受热面中工质温度和金属最高的部件,而汽侧换热效果又相对较差,所以过热现象多出现在这个受热面中。受热面过热后,管材金属温度超过允许使用的极限温度,发生内部组织变化,降低了许用应力,管子在内压力下产生塑性变形,使用寿

命明显减少,最后导致超温爆破。因此,超温意味着降低安全系数或减少使用寿命,应严格控制蒸汽温度的上限。 锅炉主体是由焊接组装起来的,每个受热面的每一根管子都有多个焊口,一台大型锅炉整个受热面焊口数量多的达几万个。而受热面又是承受高压的设备,焊接缺陷主要有裂纹、未焊透、未熔合、咬边、夹渣、气孔等,这些缺陷存在于受热面金属基体中,使基体被割裂,产生应力集中现象。在介质内压作用下微裂纹的尖端、末焊透、未熔合、咬边、夹渣、气孔等缺陷处的高应力逐渐使基体开裂并发展成宏观裂纹,最终贯穿受热面管壁导致爆漏事故。因此,焊接质量的好坏对锅炉安全运行有着重大的影响。 2.锅炉灭火放炮 锅炉灭火放炮是指锅炉灭火后,炉膛中积存的可燃混合物瞬间爆燃,使炉内压力突然升高,超过了炉墙设计承受能力,而造成冷壁、刚性梁及炉顶、炉墙破坏的现象。锅炉灭火放炮严重影响安全经济运行,进而造成巨大经济损失。 3.压力容器爆炸

锅炉燃烧过程控制系统的Simulink仿真 (2)

锅炉燃烧过程控制系统的Simulink仿真 燃烧过程控制系统概述 燃烧蒸汽锅炉的燃烧过程主要由三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统和炉膛负压控制系统。[6]如图1是燃烧过程控制系统示意图,图2是原理方框图,图3是燃烧过程控制特点。 图1燃烧过程控制系统示意图

图2原理方框图 图3 燃烧过程控制特点 2.1蒸汽压力控制系统和燃料空气比值系统 燃油蒸汽锅炉燃烧的目的是为后续的生产环节提供稳定的压力。一般生产过程中蒸汽的控制是通过调节压力实现的,随着后续环节的蒸汽用量不同,会造成燃油蒸汽压力的波动,蒸汽压力的波动会给后续的生产造成不良的影响,因此,维持蒸汽压力恒定是保证生产正常进行的首要条件。 保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃料产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气实现的。因此,各个控制环节的关系如下:蒸汽压力是最终被控量,根据生成量确定;燃料量根据蒸汽压力确定;空气供应量根据空气量与燃料量的比值确定。控制量如图4所示。图5为燃烧炉蒸汽压力控制系统和燃料空气比值控制系统结构简图。图6为燃烧炉蒸汽压力控制系统和燃料空气比值控制系统框图。

图4控制量示意图 图5燃烧炉蒸汽压力控制系统和燃料空气比值控制系统框图

图6燃烧炉蒸汽压力控制系统和燃料空气比值控制系统框图 2.2炉膛负压控制系统 所谓炉膛负压:即指炉膛顶部的烟气压力。炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。大多数锅炉采用平衡通风方式,使炉内烟气压力低于外界大气压力,即炉内烟气负压,炉膛内烟气压力最高的部位是炉堂顶部。当炉负压过大时,漏风量增大,吸风机电耗,不完全燃烧损失、排烟热损失均增大。甚至使燃烧不稳定甚至灭火炉负压小甚至变为正压,火焰及飞灰将炉膛不严处冒出,恶化工作燃烧造成危及人身及设备安全。故应保持炉膛负压在正常范围内。[7] 保证炉膛负压的措施是引风量和送风量的平衡。如果负压波动不大,调节引风量即可以实现负压控制;当蒸汽压力波动较大时,燃料用量和送风量波动也会很大,此时,经常采用的控制方法为动态前馈-反馈控制,如图4所示。前馈控制的基本概念是测取进入控制过程的干扰信号,在炉膛负压控制系统中,由于蒸汽压力波动较大时,燃料用量和送风量的波动会较大,所以通过测取引风量,就可以的到干扰信号,利用反应较快的动态前馈控制,就可以很好的减小干扰信

相关主题
文本预览
相关文档 最新文档