当前位置:文档之家› 雷达系统建模、仿真与信号处理初探

雷达系统建模、仿真与信号处理初探

雷达系统建模、仿真与信号处理初探
雷达系统建模、仿真与信号处理初探

september2007V01.38No.3(serialNo.128)航空电子技术AVlONICSTECHNOLOGY

信号处理技术到更为高效的信号处理技术:从地面静止目标成像发展到现在的地面运动目标检测(GMTI)成像等。准确的数学模型是研究SAR系统的基础,有效的仿真可以加快系统开发进程并验证算法的可靠性。据研究发现,以前的研究主要针对点目标同波信号进行数学建模,没有详细讨论面目标回波信号的建模过程。本文在前人工作的基础上,对面目标回波信号的数学模型进行了描述,并独立开发成功了sAR回波信号的计算机仿真程序。SAR的距离向高分辨率是通过脉冲压缩技术实现的,而方位向的高分辨率是通过合成孔径原理实现的。对sAR回波数据的信号处理过程,实质上是一个时间、空间二维的匹配滤波相关接收的过程。在一些近似的条件下,这个二维信号处理过程可以分解为两个一维的信号处理过程。我们通过分别在距离向与方位向对sAR回波信号进行相关处理,得到了目标的一维距离像及二维SAR图像。

2SAR系统与信号模型

设载有雷达发射机与接收机的飞行器沿直线运动。雷达在飞行过程中的不同位置向地面目标区域发射并接收脉冲。由于电波传播速度c远远大于1毛行器匕行速度v,可以近似认为雷达在发射与接收脉冲的过程中是静止的,即雷达工作在stopand90工作状态。因此,我们可以理解为雷达在运动过程中,在空中形成一个等效合成阵列天线,从而提高雷达方位向分辨率。就空中某一特定位置而言,雷达为提高距离向分辨率,通常采用发射线性调频(LFM)信号。这种信号具有尖锐的自相关特性,可以用来实现脉冲压缩。LFM的数学表达形式为:

r/、、

s(,):Re{,-Pcrf专1exp(,(2矾f+砌2))}(1)L\』/J

,,,、

其中,,.Pc硝二i是持续时间为丁的矩形脉冲:

L7’/

厶是载波频率:七=%是线性调频系数;B是调频带宽:丁是脉冲宽度。为了方便起见,我们通常取LFM的复基带表达形式来研究信号的时域与频域特性。不难发现。LFM的复包络为:

荆=朋甜(争p弦)㈩其傅立叶变换表达式为:

洳)=胁r(手PP删出

=匿扩2P。耐出(3)设脉宽丁=0.005埘s,调频带宽B=108舷,线性调频信号的时域波形与频谱分别如图l和图2所示。

若以飞行器飞行方向为】,轴,目标到航迹的垂直距离为X轴,建立如图3所示的直角坐标系。设目标f到航迹的垂直距离为x∥飞行器的位置为y;目标f的方位坐标为y。,则飞行器到目标f的实际距离为:

R幻孙y;)=拇而

≈小警]|㈤

合成孔径雷达系统建模、仿真与信号处理初探陈涛等2007年9月第38卷第3期(总第128期)

逆傅立叶变换来完成。图7给出了利用两个一维相关处理得到的目标二维SAR图像。这种近似的方法可以明显提高信号处理速度,但图像的分辨率受到限制。更好的方法是在二维频率域内完成二维相关处理。设目标回波信号的二维傅立叶变换为:

s箸”∞,,缈y)=曩,,y)b:”O,y)j

=f卜≯O,y).exp(_/qf一/缈yy蛔(15)

若s00,y)=s耐U,y;x。=10000,y。=o)为

参考信号,则目标重建过程可以表示为:

厂(f,y)=尉巩)kw)b:”(f,J,)】.气¨)b:(-,,一y强

(16)

一J

k‘u.J

距离向(m)

xlo.

图6目标的一维距离像

图7近似方法目标重建结果

图8是用二维频域处理得到的面目标成像结果。经过与图7比较可以看出,通过使用二维频域处理可以提高图像质量,但这是以更高的计算复杂度为代价的。

结论

图8二维频域方法目标重建结果

本文首先对SAR的工作原理、系统及信号模

型进行了探讨,建立了基于距离向与方位向的直角

坐标系模型。然后在此基础上,开发成功了SAR面目标回波的计算机仿真程序,并对仿真过程进行

了详细描述。最后利用不同的信号处理手段对仿真的SAR回波信号进行目标重建。二维时域相关处理简单、直观,但处理时间过长。基于近似的一维

处理方法和二维频域处理方法可以显著提高处理效率,但是存在图像质量降低和较高的处理复杂度等问题。所以应根据实际的应用,选择合适的成像处

理算法。必须指出,本文对SAR信号处理算法的讨论是较粗糙的,更加精细的算法有待进一步深入研究。

参考文献

【l】张澄波.综合孔径雷达:原理、系统分析与应用【M】.北京:科学出版社,1989

【2】保铮,邢孟道,王彤.雷达成像技术【M】.北京:电子工业出版社,2005.

(下转第46页)

合成孔径雷达系统建模、仿真与信号处理初探

作者:陈涛, 龚诚, CHEN Tao, GONG Cheng

作者单位:中国航空无线电电子研究所,上海,200233

刊名:

航空电子技术

英文刊名:AVIONICS TECHNOLOGY

年,卷(期):2007,38(3)

被引用次数:0次

参考文献(3条)

1.张澄波综合孔径雷达:原理、系统分析与应用 1989

2.保铮.邢孟道.王彤雷达成像技术 2005

3.Mehrdad Soumekh Synthetic Aperture Radar Signal Processing with MATLAB Algorithms 1999

相似文献(5条)

1.学位论文陈文勋干涉合成孔径雷达的系统建模和数据仿真2009

当前对InSAR信号处理算法的研究,使用的数据主要有两个来源:实际数据和仿真数据。其中,仿真数据具有参数灵活可控,不受保密限制的特点,对于我国目前还处在设计阶段的InSAR系统而言,具有非常重要的意义。

本文对传统的SAR系统建模方法进行了细致地总结与归纳。在保留传统算法优点的前提下,结合InSAR自身特点,改良了分布目标地面建模以及雷达系统建模的方法,主要内容如下:提出了在保证单视图像对相关性的前提下,地面分布目标几何建模中小面元分割的法则;在散射建模中,对散射系数幅度的计算公式进行简化,并提出了通过相关性模型计算散射系数相位的方法;在传统SAR雷达系统建模的基础上,增加了基线、副天线这些InSAR系统独有的元素,并对其中的基线抖动进行了建模和研究;对于雷达天线的方向图的特性,根据仿真中实际要求的不同,提出了几种不同的建模方式。

本文对目前国际上代表性的InSAR数据仿真算法,对其进行了总结和归纳,得到了3个仿真级别:原始信号级(RSL)、单视图像级(SIL)和干涉相位级(IPL),并分别对他们的性能、对系统建模的要求等方面使用列表进行了总结。同时,对于传统的RSL(TD)方法,在保留了它精度高的特点的前提下,提出改进,得到了一种介于RSL和SIL的中间级别,大大提高了计算速度。本文完成了InSAR仿真系统的模块划分和流程设计,得到了一款可以适应各种仿真级别、各种散射模型、各种仿真条件的综合性仿真系统,并通过大量的测试,证明该仿真系统具有功能多样、结果可靠的特点。

2.学位论文简方军一种基于平台的SoPC软硬件协同设计与实现2006

合成孔径雷达(Synthetic Apenure Radar,sAR)实时成像是距离向与方位向二维匹配滤波过程,可实现全天时、全天候、大面积对地观察和高分辨率成像,在军事、经济和环境等领域有重要应用价值。SAP,实时成像数据规模大、计算复杂、处理精度要求高,片上可编程系统(system on a Programmable Chip,SOPc)是基于可编程逻辑器件(Programmable Logic Device,PLD)的SoC,是SAR实时成像系统研究的重要方向。平台是一个软硬件集成的结构,基于平台的设计(Platform-Based Design,PBD)是SoPC的重要设计方法,软硬件协同设计(Hardware-Software Co-design)为其核心技术之一。

本文围绕基于Chirp Scaling算法的SAP,实时成像的具体应用,系统地研究了基于平台的SAP,实时成像SoPC的软硬件协同设计与实现,对系统模型、平台设计、算法模拟与原型仿真、系统实现、性能优化以及系统评测等相关内容进行了深入的研究:

结合基于平台的SOPC系统的特点,提出了一种多约束处理流图模型(Multi-Constrain Process Graph Model,MCPGM)。增加了虚拟处理节点,用于描述实际应用中软件和硬件实现之间切换所需的通信开销;增加设计余量约束,提供了面向平台应用的设计余量分析;研究了MCPGM的软硬件划分问题。MCPGM具有较强的平台描述能力,适合基于平台的SoPC系统建模。

设计并实现了一种高性能的片内多总线结构的SoPC(Multi-Bus SoPC,MBSOPC),应用MBSoPC实现了SAR实时成像。设计实现了高效的异步总线桥,该桥采用高速异步HFO实现了数据快速突发传输。研究了可验证设计(DFV)方法,包括DFV状态机、对关联状态机之间设置状态同步点、设计影子寄存器实现不同存储空间的数据映射。DFV设计有效地验证了基于平台的系统设计,显著降低了验证复杂度,提高了验证效率。MBSoPC支持输入和输出并行,实现了高性能的数字信号处理,具有良好的扩展性。实际测试数据表明,片内三PLB总线结构SoPC,在相同的时钟频率条件下,处理性能是

基于片内三PLB总线结构的SoPC实现了SAIl实时成像Chirp Scaling系统,采用流水线和并行计算技术提高了成像性能。SAR实时成像SOPC系统采用了软硬件协同实现,其中固件实现系统的控制功能,软件完成因子预处理计算,硬件完成实时处理。研究了基于MPI的机群并行算法和性能优化,为SAR实时成像SoPC系统建立了算法设计、系统仿真和成像质量评测体系。详细讨论了SAR实时成像SoPC系统的主要功能单因子计算子系统是SAR实时成像SoPC系统的主要运算单元之一,在因子数值分析基础上,提出了一种适合采用软硬件协同实现的因子改进算法,降低了因子计算的复杂度,设计并实现了高性能的实时计算因子单元。实际运行结果表明,本文所提出的因子计算方法,在计算精度保持不变的前提下,统一了三个不同因子计算流程,显著提高了因子的计算效率。

最后对基于平台的SAR实时成像SoPC系统进行了成像质量和成像速度的系统评测。测试结果表明,SoPC系统成像质量满足应用需求,工作在50MHz时,能在22秒内同时完成两帧16384X16384短整型定点复数数据的SAR成像计算。

3.学位论文孙造宇星载分布式InSAR信号仿真与处理研究2007

星载分布式InSAR系统是将卫星编队技术与星载SAR技术相结合的新体制雷达系统。它通过多颗卫星编队飞行、协同工作来进行地面高程测量。相对于其它地面高程测量方式和其它InSAR系统,星载分布式InSAR系统具有自己独特的优点,因此正成为国内外关注的热点。本文瞄准这一前沿课题,系统地研究了星载分布式InSAR系统建模和信号仿真方法,星载分布式InSAR信号处理方法和星载分布式InSAR DEM三维重建方法。为未来的系统实现提供支持。

第二章研究了星载分布式InSAR系统建模和信号仿真方法。系统的模型包括几何模型和信号模型,对几何模型研究了系统的轨道模型、编队卫星相对运动规律以及星地间几何关系。星载分布式InSAR系统相对于传统InSAR系统具有立体基线、变基线、斜视、收发分置等新特点,针对这些新特点进行了InSAR信号的相干性分析。为了对星载分布式InSAR进行信号仿真,讨论了地面散射模型和小面单元模型,对三维地面场景进行电磁散射建模。利用上述模型研究了三维地面场景回波和图像仿真方法。针对星载分布式InSAR的同步问题,研究了同步误差的仿真方法。为了使仿真信号能同时体现表面散射去相干和体散射去相干,提出进一步将小面单元划分为体元,分析了小面单元和体元划分需要达到的条件。

第三章研究了星载分布式InSAR.回波成像及图像配准方法。星载分布式InSAR在一些构形下会出现双站的情况,这时要使用双站成像。提出了双站成像的双速直线距离模型,分析了距离模型存在误差时对成像的影响。基于此距离模型对距离.多普勒成像算法进行了改进。分析了同步误差对成像的影响。对于InSAR图像的配准,重点研究了亚像素级配准。讨论了亚像素级配准的两种方法:相关配准法和基于频谱差别的配准方法。对相关配准法提出利用chirp变换算法来提高计算效率,对频谱差别配准法提出从信号统计特征角度进行分析。

第四章研究了星载分布式InSAR信号滤波及解缠方法。InSAR信号滤波分为预置滤波和相位图滤波。研究了预置滤波的原理与方法,以及相位图滤波窗口尺寸的选择方法。预置滤波和相位图滤波都需要对干涉相位频率参数进行估计,故研究了最大似然法进行估计的方法。干涉相位图的解缠分为单基

重建方程组求取多幅干涉相位图之间的关系,并将这种关系运用到最大似然法和最小二乘法两种多基线解缠方法中。

第五章研究了星载分布式InSAR系统三维重建DEM的方法。讨论了星载分布式InSAR直接三维重建方法、测高和定位分别进行的三维重建方法、利用辅图像多普勒方程的三维重建方法。对这三种方法分析了输入参数误差到重建误差的传递系数。从传递系数可见,重建对基线测量精度要求很高,故提出了一种使用地面控制点情况下的三维重建方法,能大大降低对基线测量精度的要求。并对单控制点情况,分析了此时输入参数误差到重建误差的传递系数。

4.会议论文曹鹏.田瑞丰.姚永信对抗合成孔径雷达干扰波形设计及仿真2008

合成孔径雷达能获得目标和场景的图像,并在此基础上进行目标识别。本文设计了一种对抗线性调频合成孔径雷达的干扰信号。这种干扰信号可以根据需要保护目标的具体分布情况,通过控制一些参数,改变其在SAR像上的分布。通过理论论证和计算机仿真,分析干扰波形的特性和干扰效果。

5.期刊论文韩文彬.王华兵.张德锋.何勇刚.HAN Wenbin.WANG Huabing.ZHANG Defeng.HE Yonggang逆合成孔径雷

达系统建模与仿真-电光与控制2010,17(12)

逆合成孔径雷达(ISAR)可以获得运动目标的高分辨图像,具有广阔的应用前景,然而ISAR研究面临着缺乏实验平台和数据支撑的困难.首先,介绍了ISAR成像原理;然后,按照ISAR成像流程,将仿真系统划分为引导信息、回波信号、信号处理、二维成像、宽带识别等模块,建立了各个模块所包含的数学模型与仿真模型;最后,设计了ISAR数学仿真系统的系统功能和模块交互结构,给出了系统实现.应用表明,该系统具有灵活的内部结构和较为通用的交互接口,有利于不同算法的内嵌,可以为ISAR技术研究提供仿真平台和仿真数据支撑.

本文链接:https://www.doczj.com/doc/753496081.html,/Periodical_hkdzjs200703009.aspx

授权使用:国防科技大学(gfkjdx),授权号:b379f7d1-5eea-46b8-9091-9eae00933c7e

下载时间:2011年3月22日

最新多普勒雷达系统仿真

多普勒雷达系统仿真

精品好文档,推荐学习交流 摘要 现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制解调技术一直是人们研究的一个重要方向。本文以MATLAB为软件平台,充分利用其提供的通信工具箱和信号处理工具箱中的模块,对数字调制解调系统进行Simulink设计仿真,并且进行误差分析。 数字化正交数字化正交调制与解调是通信系统中十分重要的一个环节,针对不同的信道环境选择不同的数字化正交数字化正交调制与解调方式可以有效地提高通信系统中的频带利用率,改善接收信号的误码率。本设计运用Simulink仿真软件对二进制调制解调系统进行模型构建、系统设计、仿真演示、结果显示、误差分析以及综合性能分析,重点对BASK,BFSK,BPSK进行性能比较和误差分析。在实际应用中,视情况选择最佳的调制方式。 本文首先介绍了课题研究的背景,然后介绍系统设计所用的Simulink仿真软件,随后介绍了载波数字调制系统的原理,并根据原理构建仿真模型,进行数字调制系统仿真,最后对设计进行总结,并归纳了Simulink软件使用中需要注意的事项。本文的主要目的是对Simulink的学习和对数字调制解调理论的掌握和深化,为今后在通信领域继续学习和研究打下坚实的基础。 关键字:排通信系统,Simulink仿真,数字化调制解调,BASK,BFSK

精品好文档,推荐学习交流 ABSTRACT TheThe Modern communication systems require communication distance, large communication capacity, good transmission quality, as one of its key technologies modem technology has been an important direction for researchers. In this paper, MATLAB software platform, providing full use of its communications toolbox and signal processing toolbox module, digital modulation and demodulation system Simulink design simulation and error analysis. Modulation and demodulation is a very important part of the communication system, for different channel environment to select different modulation and demodulation system can effectively improve the spectrum efficiency in a communication system, improve the bit error rate of the received signal. This design using Simulink simulation software binary modulation and demodulation system modeling, system design, simulation demo showed that the error analysis and comprehensive performance analysis, focusing on the BASK, BFSK, BPSK performance comparison and error analysis. In practice, as the case may select the best modulation. This paper describes the background of the research, then describes the system design using Simulink simulation software, then introduced the carrier digital modulation system of principles, and build a simulation model based on the principle of digital modulation system simulation, and finally the design summary and induction Simulink software matters that need attention. The main purpose of this paper is to study and Simulink digital modem theory of mastery and deepening for the future to continue learning and research in the field of communication and lay a solid foundation. Key Words: queuing theory, demand management, telecom offices

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

雷达信号检测

科研报告 课程名称:信号检测与估值 题目:匹配滤波器在雷达信号中的应用院(系):信息与控制工程学院 专业方向:信号与信息处理 姓名:许娟 学号:1508210675 任课教师:毛力 2015 年1月14日

匹配滤波器在雷达信号中的应用 摘要 本文介绍了雷达系统及有关匹配滤波器的主要内容,着重介绍与分析了雷达系统信号处理的脉冲压缩(匹配滤波)现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,最后实现对雷达目标的检测。关键词:雷达系统脉冲压缩

Abstract This paper introduces the radar system and the main content of the matched filter, this paper introduces and analyses emphatically the signal processing of the pulse compression radar system (matched filtering) of modern radar technology, by pulse compression radar system to solve the contradiction between the radar range and distance resolution,finally the realization of the radar target detection. Keywords:pulse compression radar system

雷达系统建模与仿真报告模板.doc

设计报告一十种随机数的产生 一概述 . 概论论是在已知随机变量的情况下,研究随机变量的统计特性及其参量,而随机变量的仿真正好与此相反,是在已知随机变量的统计特性及其参数的情况下研究如何在计算机上产生服从给定统计特性和参数随机变量。 下面对雷达中常用的模型进行建模: 均匀分布 高斯分布 指数分布 广义指数分布 瑞利分布 广义瑞利分布 Swerling 分布 t分布 对数一正态分布 韦布尔分布 二随机分布模型的产生思想及建立 . 产生随机数最常用的是在(0,1) 区间内均匀分布的随机数,其他分布的随机数可利用均匀分布随机数来产生。 均匀分布 1>( 0, 1)区间的均匀分布: 用混合同余法产生(0,1)之间均匀分布的随机数,伪随机数通常是利用递推公式产生的,所用的混和同余法的递推公式为: x n 1 = x n +C(Mod m)

其中,C是非负整数。通过适当选取参数 C可以改善随机数的统计性质。一般取作小于 M的任意奇数正整数,最好使其与模 M互素。其他参数的选择 (1)的选取与计算机的字长有关。 (2) x(1) 一般取为奇数。 用Matlab 来实现,编程语言用 Matlab 语言,可以用 hist 数的直方图(即统计理论概率分布的一个样本的概率密度函数) 函数画出产生随机,直观地看出产 生随机数的有效程度。其产生程序如下: c=3;lamade=4*200+1; x(1)=11; M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M); end; x=x./M; hist(x,10); mean(x) var(x) 运行结果如下: 均值 =方差= 2> (a,b )区间的均匀分布: 利用已产生的( 0,1)均匀分布随机数的基础上采用变换法直接产生(a,b)均匀分布的随机数。 其概率密度函数如下: 1 p( x) b a a x b 0 x a, x b 其产生程序如下: c=3;lamade=4*201+1; a=6;b=10; x(1)=11;M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M);

雷达系统仿真matlab代码.docx

% ====================================================== =====================================% % 该程序完成16个脉冲信号的【脉压、动目标显示/动目标 检测(MTI/MTD)】 % ====================================================== =====================================% % 程序中根据每个学生学号的末尾三位(依次为XYZ)来决定仿真参数,034 % 目标距离为[3000 8025 9000+(Y*10+Z)*200 8025],4个目标 % 目标速度为[50 0 (Y*10+X+Z)*6 100] % ====================================================== =====================================% close all; %关闭所有图形 clear all; %清除所有变量 clc; % ====================================================== =============================% % 雷达参 数 % % ====================================================== =============================% C=3.0e8; %光速(m/s) RF=3.140e9/2; %雷达射频 1.57GHz Lambda=C/RF;%雷达工作波长 PulseNumber=16; %回波脉冲数 BandWidth=2.0e6; %发射信号带宽带宽B=1/τ,τ是脉冲宽度TimeWidth=42.0e-6; %发射信号时宽 PRT=240e-6; % 雷达发射脉冲重复周期(s),240us对应 1/2*240*300=36000米最大无模糊距离 PRF=1/PRT; Fs=2.0e6; %采样频率

数字信号处理作业答案

数字信号处理作业

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。试利用)(~1k X 确定)(~2k X 。(76-4)

2. 研究两个周期序列)(~n x 和)(~n y 。)(~n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000) ()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

雷达信号处理的MATLAB仿真

11目录 1. 设计的基本骤 (1) 1.1 雷达信号的产生 (1) 1.2 噪声和杂波的产生 (1) 2. 信号处理系统的仿真 (1) 2.1 正交解调模块 (2) 2.2 脉冲压缩模块 ............................................... 2.3 回波积累模块 ............................................... 2.4 恒虚警处理(CFAR)模块 (4) 结论 (11)

1 设计的基本骤 雷达是通过发射电磁信号,再从接收信号中检测目标回波来探测目标的。再接收信号中,不但有目标回波,也会有噪声(天地噪声,接收机噪声);地面、海面和气象环境(如云雨)等散射产生的杂波信号;以及各种干扰信号(如工业干扰,广播电磁干扰和人为干扰)等。所以,雷达探测目标是在十分复杂的信号背景下进行的,雷达需要通过信号处理来检测目标,并提取目标的各种信息,如距离、角度、运动速度、目标形状和性质等。 图3-6 设计原理图 2 信号处理系统的仿真 雷达信号处理的目的是消除不需要的信号(如杂波)及干扰,提取或加强由目标所产生的回波信号。雷达信号处理的功能有很多,不同的雷达采用的功能也有所不同,本文是对某脉冲压缩雷达的信号处理部分进行仿真。一个典型的脉冲压缩雷达的信号处理部分主要由A/D 采样、正交解调、脉冲压缩、视频积累、恒虚警处理等功能组成。因此,脉冲压缩雷达信号处理的仿真模型.

2.1 正交解调模块 雷达中频信号在进行脉冲压缩之前,需要先转换成零中频的I 、Q 两路正交信号。中频信号可表示为: 0()()cos(2())IF f t A t f t t π?=+ (3.2) 式(3.2)中, f 0 为载波频率。 令: 00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.3) 则 00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.4) 在仿真中,所有信号都是用离散时间序列表示的,设采样周期为T ,则中频信号为 f IF (rT ) ,同样,复本振信号采样后的信号为 f local =exp(?j ω 0rT ) (3.5) 则数字化后的中频信号和复本振信号相乘解调后,通过低通滤波器后得到的基带信号f BB (r ) 为: 11 000{()cos()}(){()sin()}()N N BB IF IF n n f f r n r n T h n j f r n r n T h n ωω--==-----∑∑ (3.6) 式(3.6)中, h (n ) 是积累长度为N 的低通滤波器的脉冲响应。 根据实际的应用,仅仅采用以奈奎斯特采样率进行采样的话,得不到较好混频信号和滤波结果,采样频率f s 一般需要中心频率的4 倍以上才能获得较好的信号的实部和虚部。当采样频率为f s = 4 f 0时,ω0 T = π/2,则基带信号可以简化为 110(){()cos()}(){()sin()}()22N N BB IF IF n n f r f r n r n h n j f r n r n h n ππ --==-----∑∑ (3.7) 使用Matlab 仿真正交解调的步骤: (1) 产生理想线性调频信号y 。 (2) 产生I 、Q 两路本振信号。设f 0为本振信号的中心频率,f s 为采样频率,n 为线性 调频信号时间序列的长度,则I 路本振信号为cos(n2πf 0/f s ),同样,Q 路本振信 号sin(n2πf 0/f s )。当f s = 4 f 0 时,I 、Q 两路本信号分别为cos(πn/2)和sin( n π /2)。 (3) 线性调频信号y 和复本振信号相乘,得到I 、Q 两路信号。

雷达系统中杂波信号的建模与仿真

1.雷达系统中杂波信号的建模与仿真目的 雷达的基本工作原理是利用目标对雷达波的散射特性探测和识别目标。然而目标存在于周围的自然环境中,环境对雷达电磁波也会产生散射,从而对目标信号的检测产生干扰,这些干扰就称为雷达杂波。对雷达杂波的研究并通过相应的信号处理技术可以最大限度的压制杂波干扰,发挥雷达的工作性能。 雷达研制阶段的外场测试不仅耗费大量的人力、物力和财力,而且容易受大气状况影响,延长了研制周期。随着现代数字电子技术和仿真技术的发展,计算机仿真技术被广泛应用于包括雷达系统设计在内的科研生产的各个领域,在一定程度上可以替代外场测试,降低雷达研制的成本和周期。 长期以来,由于对杂波建模与仿真的应用己发展了多种杂波类型和多种建模与仿真方法。然而却缺少一个集合了各种典型杂波产生的成熟的软件包,雷达系统的研究人员在需要用到某一种杂波时,不得不亲自动手,从建立模型到计算机仿真,重复劳动,造成了大量的时间和人力的浪费。因此,建立一个雷达杂波库,就可以使得科研人员在用到杂波时无需重新编制程序,而直接从库中调用杂波生成模块,用来产生杂波数据或是用来构成雷达系统仿真模型,在节省时间和提高仿真效率上的效益是十分可观的。 从七十年代至今已经公布了很多杂波模型,其中有几类是公认的比较合适的模型。而且,杂波建模与仿真技术的发展己有三十多年的历史,己经有了一些比较成熟的理论和行之有效的方法,这就使得建立雷达杂波库具有可行性。 为了能够反映雷达信号处理机的真实性能,同时为改进信号处理方案提供理论依据,雷达杂波仿真模块输出的杂波模拟信号应该能够逼真的反映对象环境的散射环境。模拟杂波的一些重要散射特性影响着雷达对目标的检测和踉踪性能,比如模拟杂波的功率谱特性与雷达的动目标显示滤波器性能有关;模拟杂波的幅度起伏特性与雷达的恒虚警率检测处理性能有关。因此,杂波模拟方案的设计是雷达仿真设计中极其重要的内容,杂波模型的精确性、通用性和灵活性是衡量杂波产生模块的重要指标。 2.Simulink简介 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

雷达信号matlab仿真

雷达信号matlab仿真

雷达系统分析大作 作 者: 陈雪娣 学号:0410420727 1. 最大不模糊距离: ,max 1252u r C R km f == 距离分辨率: 1502m c R m B ?= = 2. 天线有效面积: 22 0.07164e G A m λπ == 半功率波束宽度: 3 6.44o db G θπ == 3. 模糊函数的一般表示式为 () ()()2 2* 2 ;? ∞ ∞ -+= dt e t s t s f d f j d πττχ 对于线性调频信号 ()21 j t p p t s t ct e T T πμ??= ? ??? 则有: ()()2 21 ;Re Re p j t T j t d p p p t t f ct ct e e dt T T T πμπμτ χτ∞+-∞????+= ? ? ? ????? ? () ()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ? ? ? ???????=- ? ?????+- ? ? ? ? 分别令0,0==d f τ可得()()2 2 0;,;0τχχd f ()() sin 0;d p d d p f T f f T πχπ=

()sin 1 ;01 1p p p p p T T T T T τπμττχττπμτ?? ??- ? ? ? ???????=- ? ?????- ? ?? ? 程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

雷达系统建模与仿真报告

设计报告一 十种随机数的产生 一 概述. 概论论是在已知随机变量的情况下,研究随机变量的统计特性及其参量,而随机变量的仿真正好与此相反,是在已知随机变量的统计特性及其参数的情况下研究如何在计算机上产生服从给定统计特性和参数随机变量。 下面对雷达中常用的模型进行建模: ● 均匀分布 ● 高斯分布 ● 指数分布 ● 广义指数分布 ● 瑞利分布 ● 广义瑞利分布 ● Swerling 分布 ● t 分布 ● 对数一正态分布 ● 韦布尔分布 二 随机分布模型的产生思想及建立. 产生随机数最常用的是在(0,1)区间内均匀分布的随机数,其他分布的随机数可利用均匀分布随机数来产生。 2.1 均匀分布 1>(0,1)区间的均匀分布: 用混合同余法产生 (0,1)之间均匀分布的随机数,伪随机数通常是利用递推公式产生的,所用的混和同余法的递推公式为: 1 n x =n x +C (Mod m )

其中,C是非负整数。通过适当选取参数C可以改善随机数的统计性质。一般取作小于M的任意奇数正整数,最好使其与模M互素。其他参数的选择 (1) 的选取与计算机的字长有关。 (2) x(1)一般取为奇数。 用Matlab来实现,编程语言用Matlab语言,可以用 hist 函数画出产生随机数的直方图(即统计理论概率分布的一个样本的概率密度函数),直观地看出产生随机数的有效程度。其产生程序如下: c=3;lamade=4*200+1; x(1)=11; M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M); end; x=x./M; hist(x,10); mean(x) var(x) 运行结果如下: 均值 = 0.4948 方差 = 0.0840 2> (a,b)区间的均匀分布: 利用已产生的(0,1)均匀分布随机数的基础上采用变换法直接产生(a,b)

数字信号处理上机作业

数字信号处理上机作业 学院:电子工程学院 班级:021215 组员:

实验一:信号、系统及系统响应 1、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 2、实验原理与方法 (1) 时域采样。 (2) LTI系统的输入输出关系。 3、实验内容及步骤 (1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。 (2) 编制实验用主程序及相应子程序。 ①信号产生子程序,用于产生实验中要用到的下列信号序列: a. xa(t)=A*e^-at *sin(Ω0t)u(t) b. 单位脉冲序列:xb(n)=δ(n) c. 矩形序列: xc(n)=RN(n), N=10 ②系统单位脉冲响应序列产生子程序。本实验要用到两种FIR系统。 a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③有限长序列线性卷积子程序 用于完成两个给定长度的序列的卷积。可以直接调用MATLAB语言中的卷积函数conv。 conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。调用格式如下: y=conv (x, h) 4、实验结果分析 ①分析采样序列的特性。 a. 取采样频率fs=1 kHz,,即T=1 ms。 b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。 程序代码如下: close all;clear all;clc; A=50; a=50*sqrt(2)*pi; m=50*sqrt(2)*pi; fs1=1000; fs2=300; fs3=200; T1=1/fs1; T2=1/fs2; T3=1/fs3; N=100;

matlab仿真脉冲多卜勒雷达的信号处理分析

matlab仿真脉冲多卜勒雷达的信号处理

目录 目录-------------------------------------------------------- 1 第一章绪论-------------------------------------------------- 3 1.1 雷达起源 ---------------------------------------------- 3 1.2 雷达的发展历程 --------------------------------------- 4 第二章原理分析----------------------------------------------- 6 2.1 匹配滤波器原理 --------------------------------------- 6 2.2 线性调频信号(LFM) ---------------------------------- 8 2.3 LFM信号的脉冲压缩----------------------------------- 10 第三章多目标线性调频信号的脉冲压缩------------------------- 14 第四章仿真结果分析------------------------------------------ 16 4.1 时域图分析 ------------------------------------------ 16 4.2 回波信号频域图分析 ---------------------------------- 17 4.3 压缩信号图分析 -------------------------------------- 19 4.4 多目标压缩信号图分析 -------------------------------- 21 第五章问题回答--------------------------------------------- 23 第六章致谢与总结------------------------------------------- 24 附录(Matlab程序)------------------------------------------ 25

数字信号处理作业+答案讲解

数字信号处理作业 哈尔滨工业大学 2006.10

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~ 2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~ 1k X 是周期性的,周期为N ,而)(~ 2k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列 )(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~ k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~ n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~ k X 和)(~ k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

现代数字信号处理及应用仿真题答案

仿真作业 姓名:李亮 学号:S130101083

4.17程序 clc; clear; for i=1:500 sigma_v1=0.27; b(1)=-0.8458; b(2)=0.9458; a(1)=-(b(1)+b(2)); a(2)=b(1)*b(2); datlen=500; rand('state',sum(100*clock)); s=sqrt(sigma_v1)*randn(datlen,1); x=filter(1,[1,a],s); %% sigma_v2=0.1; u=x+sqrt(sigma_v2)*randn(datlen,1); d=filter(1,[1,-b(1)],s); %% w0=[1;0]; w=w0; M=length(w0); N=length(u); mu=0.005; for n=M:N ui=u(n:-1:n-M+1); y(n)=w'*ui; e(n)=d(n)-y(n); w=w+mu.*conj(e(n)).*ui; w1(n)=w(1); w2(n)=w(2); ee(:,i)=mean(e.^2,2); end end ep=mean(ee'); plot(ep); xlabel('迭代次数');ylabel('MSE');title('学习曲线'); plot(w1); hold; plot(w2); 仿真结果:

步长0.015仿真结果 0.10.20.30.4 0.50.60.7迭代次数 M S E 学习曲线

步长0.025仿真结果

步长0.005仿真结果 4.18 程序 data_len = 512; %样本序列的长度 trials = 100; %随机试验的次数 A=zeros(data_len,2);EA=zeros(data_len,1); B=zeros(data_len,2);EB=zeros(data_len,1); for m = 1: trials a1 = -0.975; a2 = 0.95; sigma_v_2 =0.0731; v = sqrt(sigma_v_2) * randn(data_len, 1, trials);%产生v(n) u0 = [0 0]; num = 1; den = [1 a1 a2]; Zi = filtic(num, den, u0); %滤波器的初始条件 u = filter(num, den, v, Zi); %产生样本序列u(n) %(2)用LMS滤波器来估计w1和w2 mu1 = 0.05; mu2 = 0.005; w1 = zeros(2, data_len);

数字信号处理作业-答案

数字信号处理作业-答案

数字信号处理作业

DFT 习题 1. 如果)(~ n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1 k X 表示)(~ n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2 k X 表示)(~ n x 的离散傅里叶级数之系数。当然,)(~ 1 k X 是周期性的,周期为N ,而)(~ 2 k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2 k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~ n w 定义为)()()(~~ ~ n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~ n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地,由于)(~ n y 的周期为M ,其离散傅里叶级数之系数)(~ k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=0 0)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、雷达工作原理 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、线性调频(LFM)信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。 LFM信号的数学表达式: (2.1)

其中c f 为载波频率,()t rect T 为矩形信号: (2.2) 其中B K T =是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 (图2.1.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0)) 将式1改写为: (2.3) 其中 (2.4) 是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心

相关主题
文本预览
相关文档 最新文档