当前位置:文档之家› 催化裂化装置烟气脱硫塔腐蚀问题浅析

催化裂化装置烟气脱硫塔腐蚀问题浅析

催化裂化装置烟气脱硫塔腐蚀问题浅析
催化裂化装置烟气脱硫塔腐蚀问题浅析

催化裂化装置烟气脱硫塔腐蚀问题浅析

摘要:近些年,随着国家对环保要求的提高,对炼化行业带来了巨大的考验,

为了保证催化裂化装置烟气排放达标,满足国家环保要求,催化裂化装置相继增

上了烟气脱硫脱硝环保项目,现在比较常用的是湿法脱硫。在脱硫塔运行过程中,脱硫塔及塔内构件的腐蚀问题始终伴随着装置的生产。本文对催化裂化装置脱硫

塔及塔内构件的腐蚀形式及采取的措施做了简要的分析。

关键词:EDV、腐蚀、结垢

前言:

吉林石化炼油厂催化裂化三车间烟气脱硫治理采用杜邦-贝尔格公司的EDV 液相湿法洗涤工艺技术。

具体流程为:烟气水平地进入EDV气体清洗系统的急冷单元,烟气通过来自

于两个BELCO G400喷嘴的喷淋液体进行急冷和饱和。烟气通过高密度的水帘将

水滴喷淋成雾状,以错流的形式移动,覆盖了整个气体单元,并且均匀地冲洗着

内壁。在急冷/喷雾塔中,根据反应(1)脱除氧化硫,同时生成了一些酸性亚硫酸盐,并且然后亚硫酸盐反应(2)。酸性硫酸盐和亚硫酸盐通过反应(3) 和(4)被部分

氧化成硫酸盐。

(1)SO2 + NaOH → NaHSO3

(2)NaHSO3 + NaOH → Na2SO3 + H2O

(3)NaHSO3 + ? O2 + NaOH → Na2SO4 + 2H2O

(4)Na2SO3 + ? O2 → Na2SO4

离开急冷/喷雾塔的吸附剂,烟气被分布到17层EDV过滤模块。为每个过滤

模块提供的1个BELCO F-130喷嘴向下喷,并且进入文丘里氏扩散单元。由这些

喷嘴产生的水喷雾将进一步收集小粉尘颗粒和水滴凝聚形成的酸性喷雾。在文丘

里氏扩散单元,饱和气体膨胀产生水膜冷凝在微粒上,并且凝结成块。经过过滤

模块后,烟气进入CYCLOLAB集成系统中,这个集成系统包括11个 CYCLOLAB装置,位于急冷/喷雾塔中。每个CYCLOLAB装置将分离由于离心力产生的烟气中的

剩余水滴。CYCLOLAB装置用分离的水均匀地刷洗内壁而进行自行清洗,并且水

直接被排放到每个CYCLOLAB装置的底部。脱除水滴的烟气流入到烟囱中。

本装置烟气脱硫项目2014年11月建成投产,脱硫塔及塔内构件采用奥氏体

不锈钢316L制造,脱硫塔本体为爆炸焊接复合板,符合NB/T 47002.1-2009标准[1],复合板级别为B2级。在本项目投用前检查及2015年检修过程中,未发现腐

蚀现象及制造缺陷。

装置运行1095天后于2018年5月再次进行检修时,发现脱硫塔及塔内构件

出现多处腐蚀现象,主要集中在水滴分离器出口、滤清模块液相部位器壁、脱硫

塔底液相部位器壁。

二、腐蚀分析

1.滤清模块液相部位器壁及脱硫塔底液相部位器壁腐蚀分析

这两部分腐蚀有共同点主要发生在液相部位,并且腐蚀部位程不规则分布,

呈分散状排布。并且都呈现垢下腐蚀的特征,覆盖物坚硬,呈凸起状。面积大小

不均,最大垢块达400cm2,最小垢块4 c m2,清除表面垢层后,腐蚀部位呈现

黑色,较大垢块底部复层金属腐蚀较轻,普遍腐蚀厚度0.1-2.0mm,较小垢块底

部复层金属腐蚀较严重,腐蚀厚度均大于2.0mm,严重者达到复合板基层。不同点,腐蚀现象尤以塔底液相居多,达到总腐蚀面积95%以上。

脱硫塔防腐施工方案

脱硫塔防腐施工方案 1、工程概况 本工程为2×660MW机组脱硫岛脱硫塔内防腐工程。脱硫吸收塔1台,直径1米、塔体高度12米;主要工程量包括:脱硫塔本体内部玻璃鳞片防腐,以及部分出口烟道防腐,为此,特编制吸收塔防腐施工方案。 2、编制依据 2.1HG/T2640-94 《玻璃鳞片衬里施工技术条件》 2.2GB8923-98 《涂装前钢材表面锈蚀等级和除锈等级》 2.3GB50212-2002 《建筑防腐蚀工程施工及验收规范》 2.4GB50205-2001 《钢结构工程施工质量验收规范》 2.5GB/T3854 《纤维增强塑料巴氏硬度试验方法》 2.6GB/T 7692 《涂装作业安全规程涂漆前处理工艺安全及其通风净化》 2.7HG/T2641-94 《中碱玻璃鳞片》 2.8Q320282NNK16-2004 <江阴市大阪涂料有限公司乙烯酯玻璃鳞片企业标准> 2.9HG223-91《工业设备、管道防腐工程施工及验收规范》 2.10GB/T7760《硫化橡胶与金属粘合的测定?? 单板法》 2.11GB/T13288-91《涂装前钢材表面粗糙度等级的评定》(比较样块法) 2.12DIN 28051德国标准对金属构件的结构造型的要求 2.13DIN 28053德国标准《金属构件有机涂层和衬里对金属基体的要求》 2.14GB18241.4烟气脱硫衬里 2.15JIS-6940-1998日本工业标准《玻璃鳞片树脂衬里标准》 2.16防腐施工技术规范 a. 干膜测厚(ISO 2808) b. 粗糙度检查方法(ISO 8503-2) c. 钢体表面处理(ISO 8503-1) 3、施工单位工器具准备 3.1主要机具要求配置 表一施工机具 机具名称 功率 数量 说明 空压机 65KW 1 产气量:13m3/min 额定压力:0.8MPa ACR-32喷砂机 2 连续加砂式 轴流风机(防爆) 3KW 产风量:6000m3/h

几种催化裂化烟气脱硫技术的比较

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键设备 容器类吸收塔 低pH冷却器 分离器/吸收塔分离器胺吸收器 NaOH吸收器 再生器 (蒸汽气体塔) SO2脱除NaOH溶液 多层喷淋 第一填料部分使用胺 溶液NaOH溶液 外部文丘里洗涤 NaOH溶液 外部文丘里洗涤第二填料部分使用 NaOH溶液 粉尘颗粒物脱除 滤清模块中喷淋 (安装在吸收塔内部 的文丘里) 无外部文丘里洗涤外部文丘里洗涤 NOx脱除LoTOx无WGS+多种处理方案 NOx脱除反应试剂氧气/臭氧亚氯酸钠/ 次氯酸钠 SNCR:氨 CoNOx:氧气 催化添加剂 洗涤液循环泵有有有特殊设计/最好的质量 及可靠性 紧急情况下 液体排泄设施 需要需要不需要不需要净化处理需要需要需要需要 颗粒物脱除沉淀及过滤CANSOLV不提供沉淀及过滤沉淀及过滤 硫的脱除氧化为Na2SO4湿SO2被送至 硫磺车间 氧化为Na2SO4氧化为Na2SO4 热稳定性盐脱除不需要需要离子交换树脂不需要不需要 公用工程 补水新鲜水新鲜水及去离子水多种多种 碱新鲜碱新鲜碱新鲜碱新鲜碱或废碱氨试剂补充无每天需补充1%无无 Nox反应试剂氧气消耗量为O3加入 速率的10倍 无 亚氯酸钠/ 次氯酸钠 消耗量最低 能耗 SO2及颗粒物脱除能耗一般一般一般最低NOx脱除能耗高无Nox脱除技术一般最低蒸汽消耗无高无无

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键性能因素 设备高可靠性√有引起FCC运行不稳定的风险√√√ 对系统进行定制化设计√最优化的能源消耗√公用工程消耗-补充水√√√√补充水选择高灵活性√碱消耗量最低√ 界区内设备安装成本最低√界区外设备安装成本最低√脱除效率√√√√占地面积最小√系统复杂√√ 运行简单√√曾经引起FCC装置停车√√ 净化处理系统√√√增加硫磺车间载荷√ 需安装的设备数量多√ 设备安装之后提供技术支持√√√√为FCC提供优化,检修等服务√FCC再生器烟气回路工程服务√燃烧设备工程服务(CO锅炉及 其他加热器)√在FCC污染物控制领域拥有最丰 富的从业经验√

如何治理脱硫塔管路腐蚀泄露

如何治理脱硫塔管路腐蚀泄露 脱硫塔,是对工业废气进行脱硫处理的塔式设备。脱硫塔最初以花岗岩砌筑的应用的最为广泛,其利用水膜脱硫除尘原理,又名花岗岩水膜脱硫除尘器,或名麻石水膜脱硫除尘器。 优点是易维护,且可通过配制不同的除尘剂,同时达到除尘和脱硫(脱氮)的效果。现在随着玻璃钢技术的发展,脱硫塔逐渐改为用玻璃钢制造。相比花岗岩脱硫塔,玻璃钢脱硫塔成本低、加工容易、不锈不烂、重量轻,因此成为今后脱硫塔的发展趋势。 基于此,脱硫塔一旦出现磨损,尤其是管路腐蚀,修复十分困难。 传统的泄露治理中,因为技术的匮乏,和步骤的繁琐,所以修复过程十分困难。有的甚至要浪费大量的时间和费用。 某脱硫塔,脱硫液管路焊缝腐蚀渗漏,温度:30-40℃、管径:?700、材质:316L,介质:脱硫液及焦炉煤气;先前企业采用多种堵漏材料为其修复,效果不理想,渗漏部位逐渐出现裂纹泄露,严重影响者安全生产。 下图采用的是索雷碳纳米聚合物技术,是目前较为成熟和完善的一项技术。与传统工艺相比,修复操作要更简单,且不需要拆卸,缩短了维修周期,重要的是材料本身的特性,可以很好保护渗漏部位,避免二次腐蚀。 碳纳米聚合物现场修复脱硫塔管路腐蚀泄露的步骤: 1.做好施工前的准备工作,如工具、材料及需更换的备品备件。 2.检查设备渗漏处表面,去除影响施工操作的物体;用气焊枪对磨损部位表面除油,直到无火花四射为 止(现场不能动火可采用化学清洗)。 3.用磨光机、刺轮去除修复表面异物及氧化层,露出金属本色;用干净棉纱和无水乙醇反复、彻底清洗 表面,至无杂质痕迹。 4.将碳纳米材料严格按照比例调和,并搅拌均匀,直到没有色差。 5.将材料均匀的涂抹到渗漏部位及其周围,然后彻底打磨材料周围表面,并清洗干净。

催化裂化装置的主要设备

催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同 提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决 定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼 油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预 提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。 这种作用叫预提升。 为使油气在离开提升管后立即终止反应, 提升管出口均设有快速分离装置,其作用是使 油气与大部分催化剂迅速分开。快速分离器的 类型很多,常用的有:伞帽型,倒L型、T型、 粗旋风分离器、弹射快速分离器和垂直齿缝式 快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还 装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨 以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数 组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催 化荆后经集气室去分馏系统;由提升管快速分 离器出来的催化剂靠重力在沉降器中向下沉 降,落入汽提段。汽提段内设有数层人字挡板 和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所 需沉降高度确定,通常为9~12米。 汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般 是1.5~3分钟。 二、再生器

催化裂化装置脱硫脱硝环保措施及效果分析

催化裂化装置脱硫脱硝环保措施及效果分析 摘要现在社会空气污染问题相当严重,催化裂化装置在排放烟气过程当中会出现不可避免的粉尘浓度超标问题。为在真正意义上实现对上述现象的解决,我们需要从催化装置烟气脱硫设置应用方面着手,实现对合适烟气脱硝技术的选择。本文主要针对催化裂化装置脱硫脱硝环保措施以及结果进行进一步探究。主要是在选择适合本装置脱硝技术的基础,实现对预期效果的满足,这不仅可实现对空气污染问题的有效解决,同时也可将更为良好的生存环境提供给人们。 关键词催化裂化;烟气脱硫;烟气脱硝 这些年来气候恶劣问题日益严重,全球面对的主要环境问题集中在温室效应、酸雨以及臭氧层破坏几个方面,这会对人类长期发展目标的实现造成制约。很多因素对环境造成污染,天然气及石油和煤等燃料的大规模使用都会在一定程度上加剧環境污染的程度。从催化裂化装置脱硫脱硝环保措施着手可实现对上述问题的不断改善,这可充分说明催化裂化装置脱硫脱硝环保措施的重要性。 1 FP-DNSNOx催化裂化烟气多效净化剂 FP-DNSNOx催化裂化烟气多效净化剂由北京某公司生产,为独家产品,已经得到相关质量管理体系的认证。其活性组分为金属氧化物,在助燃以及降低NOx排放的功能过程中都起着较为重要的作用。 1.1 技术原理NOx FP-DNSNOx催化裂化烟气多效净化剂有大量的金属氧化物存在,这也是其活性组分,金属氧化物在高温水热环境以及两器中会发生不可避免的还原反应。反应的主要对象为NOx,这是导致N2出现的主要原因。对烟气中NOx含量的降低有积极作用。 1.2 实施过程NOx 我们主要分为两个阶段对FP-DNSNOx催化裂化烟气多效净化剂进行加入,第一阶段速度较快,进而保障其在最短的时间内实现在自身作用与价值的发挥。第二阶段的加入较为平稳,在衡量其是否进入平稳阶段时,可借助助剂在系统总藏量中所占据的比例。快速阶段的助剂加入次数为每天三次,60kg,平稳阶段加入次数依旧为每天三次,但是每次加入次数有所改变,为10kg。催化剂小型加料器是FP-DNSNOx催化裂化烟气多效净化剂过程当中所借助的主要工具,然后在再生器密相床上进行直接补充。 1.3 烟气多效净化剂实施效果 烟气多效净化剂实施效果可通过以下数据进行直观体现。NOx在烟气多效

大气污染控制工程课程设计——脱硫塔

《大气污染控制工程》 课程设计 学院:生态与环境学院 专业班级:环境工程 年级: 学号: 姓名: 指导教师: 完成日期:

目录 摘要 (1) 1. 背景介绍 (2) 1.1. 硫氧化物污染 (2) 1.2. 燃煤脱硫技术 (3) 1.2.1. 燃烧前脱硫 (3) 1.2.2. 燃烧中脱硫 (3) 1.2.3. 燃烧后脱硫 (3) 1.3. 湿法脱硫技术 (3) 1.3.1. 石灰石/石膏湿法脱硫 (3) 1.3.2. 氧化镁法脱硫 (4) 1.3.3. 双碱法脱硫 (4) 1.3.4. 氨法脱硫 (4) 1.3.5. 海水脱硫 (4) 2. 石灰石/石膏湿法脱硫技术 (5) 2.1. 主要特点 (5) 2.2. 反应原理 (5) 2.2.1. 吸收剂的反应 (5) 2.2.2. 吸收反应 (5) 2.2.3. 氧化反应 (6) 2.2.4. 其他污染物 (6) 2.3. 工艺流程 (7) 3. 设计任务与目的 (8) 3.1. 任务 (8) 3.2. 目的 (8) 3.3. 设计依据 (8) 4. 脱硫系统的设计 (9) 4.1. 脱硫系统设计的初始条件 (9) 4.2. 初始条件参数的确定 (9) 4.2.1. 处理风量的确定 (9) 4.2.2. 燃料的含S率及消耗量 (10) 4.2.3. 进气温度的确定 (10) 4.2.4. SO2初始浓度的确定 (10) 4.2.5. SO2排放浓度的确定 (10) 5. 脱硫系统的设计计算 (11) 5.1. 参数定义 (11) 5.2. 脱硫系统的组成及主要设备选型 (12) 5.2.1. SO2吸收系统 (12) 5.2.2. 烟气系统 (18) 5.2.3. 石灰石浆液制备系统 (20) 5.2.4. 石膏脱水系统 (21) 6. 参考文献 (25)

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石 - 石膏湿法脱硫系统 设计 (内部资料) 编制: x xxxx 环境保护有限公司 2014年 8 月 1.石灰石 - 石膏法主要特点 ( 1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达 95%以上。(2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于 3%的高硫燃料,还是含 硫量小于 1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到 90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石 - 石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触 ,循环浆液吸收大部分 SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→ H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+(结晶) H+ +HCO3-→ H2CO3(中和) H2CO3→ CO 2+H2O 总反应式: SO2+ CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分 HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→ CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) 4)其他污染物

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

催化裂化的装置简介及工艺流程样本

催化裂化装置简介及工艺流程 概述 催化裂化技术发展密切依赖于催化剂发展。有了微球催化剂,才浮现了流化床催化裂化装置;分子筛催化剂浮现,才发展了提高管催化裂化。选用适当催化剂对于催化裂化过程产品产率、产品质量以及经济效益具备重大影响。 催化裂化装置普通由三大某些构成,即反映/再生系统、分馏系统和吸取稳定系统。其中反映––再生系统是全装置核心,现以高低并列式提高管催化裂化为例,对几大系统分述如下: (一)反映––再生系统 新鲜原料(减压馏分油)通过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提高管反映器下部,油浆不经加热直接进入提高管,与来自再生器高温(约650℃~700℃)催化剂接触并及时汽化,油气与雾化蒸汽及预提高蒸汽一起携带着催化剂以7米/秒~8米/秒高线速通过提高管,经迅速分离器分离后,大某些催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带催化剂后进入分馏系统。 积有焦炭待生催化剂由沉降器进入其下面汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部空气(由主风机提供)接触形成流化床层,进行再生反映,同步放出大量燃烧热,以维持再生器足够高床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后催化剂经淹流管,再生斜管及再生单动滑阀返回提高管反映器循环使用。 烧焦产生再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带大某些催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高并且具有约5%~10%CO,为了运用其热量,不少装置设有CO锅炉,运用再生烟气产

几种催化裂化烟气脱硫技术

几种催化裂化烟气脱硫技术 一、主要技术简介 目前催化裂化烟气污染物排放控制技术可分别为干法、湿法两大类,进一步又可分为采添加脱SOx、NOx助剂,催化原料预处理技术,增设烟气脱SOx、脱NOx设施三类。国外工业运行的催化裂化烟气脱SOx技术以湿法为主,吸收剂(洗涤液)有钠碱、氢氧化镁Mg(OH)2和海水等。湿法洗涤脱SOx设施一般由吸收(洗涤)单元和废液净化处理单元组成,前者是烟气脱硫技术的核心。应用较多的有诺顿公司的VSS技术,DuPont BELCO公司的EDV和LABSORBTM 技术、Hamon公司的WGS技术、Shell公司的CANSOLV技术等。 1.1 ExxonMobil公司WGS技术 1974年,当时在Exxon公司工作的John Cunic先生(先就职于美国诺顿公司)开发了第一套FCCU烟气洗涤技术,将喷射式文丘里管JEV应用到催化裂化烟气脱硫装置上。也就是现在由Hamon公司出售的WGS技术(ExxonMobil 授权Hamon工程公司进行WGS技术的出售及设计工作)。 优点:采用JEV(喷射式文丘里管)时压降低。 缺点:采用HEV(高性能文丘里管)时压降高。 1.2 DuPont BELCO公司的EDV技术 该技术于1994年完成第一套商业应用。EDV由急冷喷嘴、多层吸收喷嘴及滤清模块(滤清模块有多个文丘里组成)水珠分离器组成。上世纪90年代,诺顿公司主要给ExxonMobil公司升级维护WGS系统,ExxonMobil公司又不允许将其WGS洗涤技术推广到其他石化企业,造成90年代到2000年,DuPont BELCO 公司销售了多套EDV系统。 优点:业绩较多 缺点:系统在添加滤清模块的情况下压降会升高,可达4-7Kpa 1.3 CANSOLV公司的CANSOLV技术 CANSOLV公司1997年成立于加拿大,CANSOLV再生脱硫2002年开始第一套工业化商业运行。CANSOLV再生胺法脱硫系统有两部分组成洗涤-吸收和再生-净化,在炼油厂成功业绩全世界只有1套,它主要由以下几点

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1、石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别就是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论就是含硫量大于3%的高硫燃料,还就是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,就是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2、反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中与) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其她污染物

脱硫塔防腐方案

施工方案 第一种:喷涂聚脲 1、SPUA聚脲弹性体特点。 (1)100%固含量,无挥发性有机物,符合环保要求。 (2)涂层致密,连续,无接缝,伸缩率高。 (3)耐寒、耐温稳定并耐潮湿,在摄氏-50-100℃长期可使用。 (4)耐老化,使用寿命可长达50年或以上。 (5)具有高强度弹性、韧性、耐磨性。 (6)具有卓越耐海水、耐盐露腐蚀性。 (7)具有良好耐化学介质腐蚀性、耐油性。 2、SPUA-2102聚脲弹性体超重防腐材料理化性能。 3、喷涂SPUA-2102聚脲弹性体防腐涂层技术要求。 (1) 底材处理达到Sa2.5级。 (2)滚涂PR600聚脲底漆,涂层厚度50μm±10μm。 (3)喷涂SPUA-2102聚脲弹性体防腐涂层厚度1.0 mm±0.2mm。 (4)SPUA-2012是双组份包装材料,施工前开动搅拌机充分搅拌均匀。 (6)按照美国卡仕码GRACO设备《操作手册》要求调试设备,设备工作压力、温度,电流在正常状态。 (7)按喷枪操作规程喷涂,调整喷枪与喷涂面距离,使涂层表面平整无缺陷。(8)为保证喷涂层的厚度均匀性,喷枪移动速度要适中,不能有漏涂和欠喷现象。 (9)喷涂时应按从上至下,先侧面,后底面的施工顺序,连续喷涂,一次性成形。 (10)避免在刮风下雨的环境下施工。 4、、SPUA-2102聚脲弹性防腐涂层施工质量控制。

(1)外观检查:进行目测,要求漆膜不漏涂、欠涂,基本平整。 (2)涂层厚度检验:用涂层测厚仪检查,涂层厚度1.0mm±0.2mm为合格。(3)致密性检验(电火花检漏):用6000V的直流电火花检验仪检测,探头检验移动速度为100mm/S,试验中无电火花出现及报警声,则检验合格。 (4)将以上检验结果填写报告单,认定合格或返修。 5、SPUA-2102聚脲弹性体防腐涂层在室外阳光照射环境下使用,须喷涂耐紫外线面漆,面涂厚度70-80μm。SPUA-2102紫外光面涂喷涂方法与一般防腐油漆施工方法相同。 第二种:氟橡胶涂料 喷砂除锈封闭底涂涂料中间涂料两道专用面涂涂料两道验收 1、产品简介:作为一种合成橡胶,氟橡胶具有卓越的耐化学品、耐油、耐温性能,长期使用温度达200°C以上。 2、产品特点:氟橡胶从化学结构上具有高氟含量、强C-F键、无不饱和键等特点,从而具有杰出的耐温性和优异的耐油性。稳定、硫化性能稳定、力学性能稳定等特点。 3、安全说明:氟橡胶在260℃以下热稳定性良好。在260~300℃的环境下长时间放置,会发生微量的分解,其主要分解产物为有毒的氟化氢和氟碳有机化合物。高于320℃时,产品分解速度明显加快。当氟橡胶遇到火时,也会释放出有毒的氟化氢和氟碳有机化合物。建议在加工与使用过程中,环境温度不应超过260℃。由于氟橡胶在硫化过程中也会产生含有氟化氢等的微量有毒气体,在加工现场必须安装通风设备。在加工过程中,应避免将氟橡胶与金属粉末或10%以上的胺类物质混合,否则会有剧烈反应,并伤及设备和人。

炼油生产安全技术—催化裂化的装置简介类型及工艺流程

编订:__________________ 单位:__________________ 时间:__________________ 炼油生产安全技术—催化裂化的装置简介类型及工 艺流程 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8978-61 炼油生产安全技术—催化裂化的装置简介类型及工艺流程 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、装置简介 (一)装置发展及其类型 1.装置发展 催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。 20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。 1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。1965年我国自己设计制造施工的Ⅳ型催化装置在抚顺石油二厂投产。经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。截止1999年底,我国催化裂化加工能力达8809。5×104t/a,占

一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。 随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。 2.装置的主要类型 催化裂化装置的核心部分为反应—再生单元。反应部分有床层反应和提升管反应两种,随着催化剂的发展,目前提升管反应已取代了床层反应。 再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级)。从反应与再生设备的平面布置来讲又可分为高低并列式和同轴式,典型的反应—再生单元见图

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

石灰石石膏湿法脱硫系统的设计计算

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。(4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分

SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其它污染物 烟气中的其它污染物如SO3、Cl-、F-和尘都被循环浆液吸收和捕集。SO3、HCl和HF与悬浮液中的石灰石,按以下反应式发生反应: SO2+H2O→2H++SO32- Ca CO3 +2HCl<==>CaCl2 + H2O+ CO2 Ca CO3 +2HF <==>CaF2 +H2O+ CO2 3.工艺流程

催化裂化装置的主要设备催化裂化装置的主要设备

催化裂化装置的主要设备 催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。这种作用叫预提升。 为使油气在离开提升管后立即终止反应,提升管出口均设有快速分离装置,其作用是使油气与大部分催化剂迅速分开。快速分离器的类型很多,常用的有:伞帽型,倒L型、T型、粗旋风分离器、弹射快速分离器和垂直齿缝式快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催化荆后经集气室去分馏系统;由提升管快速分离器出来的催化剂靠重力在沉降器中向下沉降,落入汽提段。汽提段内设有数层人字挡板和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所需沉降高度确定,通常为9~12米。汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般是1.5~3分钟。 二、再生器

催化裂化烟气脱硫工艺及污水处理方案

烟气脱硫污水处理方案 目前国催化裂化装置湿法烟气脱硫工艺有美国BELCO?公司的EDV工艺、德国GEA-Bischoff公司的EP-Absorber工艺、美国诺顿(NORTON)公司的文丘里洗涤脱硫工艺(VSS),所有烟气脱硫装置运行过程中排放的脱硫后废水为COD高的含盐污水,主要污染物为硫酸钠、亚硫酸钠溶液及固体颗粒物,成熟的烟气脱硫工艺都有配套的污水处理单元(PTU)来处理脱硫废水,经处理后的脱硫废水直接进入外排污水管网。 现总结几个公司烟气脱硫主要工艺和污水处理工艺。 德国GEA-Bischoff公司的EP-Absorber工艺——昌邑石化烟气脱硫介绍:

昌邑石化烟气脱硫除尘工艺流程图 外部氧化喷射系统图 昌邑石化烟气脱硫除尘单元采用德国GEA-Bischoff 公司 EP-Absorber 脱硫除尘一体化技术对烟气中的二氧化硫和粉尘处理,由二氧化硫吸收系统、静电除尘系统和烟囱三部分组成。废水处理单元采用德国 GEA Bischoff 公司专用的排液处理技术(PTU)处理脱硫除尘废水,主要有澄清器、汽提塔、砂滤几部分组成。 为使排出废液COD 更低,从吸收器底部池中抽取液体至外部氧吸收器

化系统氧化,再回流至吸收器池中。外部氧化系统由空气喷射器和高压泵等组成,液体被高压泵输送至动力喷嘴,通过喷嘴喷射后,体变成液滴,随后与喷射空气充分混合,使溶解在循环液中的亚硫酸盐与空气发生氧化反应。在空气喷射器之后,含有非常细微分散气泡的循环液回流至吸收器池内,在这些气泡上升至池面的过程中,残余的氧进一步与循环液发生氧化反应。 经PTU单元后外排废水排放指标 脱硫除尘进入PTU单元处理,悬浮的颗粒催化剂经压滤成饼作为固体排放物进行处理,清液经处理后外排至市政污水管网。 固体废物排放主要为脱硫除尘塔外排废液经脱水后产生的泥渣以及脱硝产生的废催化剂。脱硫废渣产生量1693t/a,主要成分为硫酸钠、亚硫酸钠、亚硫酸氢钠,经过滤后,进行无害化填埋。废催化剂属于危险固体废物,送至具有危险固体废物回收资质的单位进行回收。

脱硫塔烟气系统

本体.吸收塔为圆柱形,尺寸为Φ15.3×36.955m,结构如图8-1 所示。 由锅炉引风机来的烟气,经增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从塔顶侧向离开吸收塔。塔的下部为浆液池,设四个侧进式搅拌器。氧化空气由四根矛式喷射管送至浆池的下部,每根矛状管的出口都非常靠近搅拌器。烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区的下部设置一合金托盘,托盘上方设三个喷淋层,喷淋层上方为除雾器,共二级。塔身共设六层钢平台,每个喷淋层、托盘及每级除雾器各设一个钢平台,钢平台附近及靠近地面处共设六个人孔门。 图8-1 吸收塔本体1-烟气出口2-除雾器3-喷淋层4-喷淋区5-冷却区6-浆液循环泵7-氧化空气管8-搅拌器9-浆液池10-烟7进口11-喷淋管12-除雾器清洗喷嘴13-碳化硅空心锥喷嘴 技术特点该FGD 装置吸收塔采用美国B&W公司开发并具有多年成功运行经验的带托盘的就地强制氧化喷淋塔,该塔具有以下特点: 1)吸收塔包括一个托盘,三层喷淋装置,每层喷淋装置上布置有549 +122 个空心锥喷嘴,流量为51. 8m3/h 的喷嘴549 个,喷嘴流量为59.62m3/h 的122 个,进口压头为103.4KPa,喷淋层上部布置有两级除雾器。 2)液/气比较低,从而节省循环浆液泵的电耗。 3)吸收塔内部表面及托盘无结垢、堵塞问题。 4)优化了PH 值、液/气比、钙/硫比、氧化空气量、浆液浓度、烟气流速等性能参数,从而保证FGD 系统连续、稳定、经济地运行。 5)氧化和结晶主要发生在吸收塔浆池中。吸收塔浆液池的尺寸保证能提供足够的浆液停留时间完成亚硫酸钙的氧化和石膏(CaSO4.2H2O)的结晶。吸收塔浆池上设置4 台侧进式搅拌器使浆液罐中的固体颗粒保持悬浮状态并强化亚硫酸钙的氧化。 6)吸收塔浆池中的混合浆液由浆液循环泵通过喷淋管组送到喷嘴, 形成非常细小的液滴喷入塔内。 7)在吸收塔浆池的溢流管道上设置了吸收塔溢流密封箱,它可以容纳吸收塔在压力密封时发生的溢流。密封箱的液位由周期性地补充工艺水来维

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

相关主题
文本预览
相关文档 最新文档