当前位置:文档之家› 光接收机的结构及原理(精)

光接收机的结构及原理(精)

光接收机的结构及原理(精)
光接收机的结构及原理(精)

第三部分光接收机的结构及原理

在有线电视 HFC 网络中, 光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为 RF 信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光 /电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中, 无论是分离组件还是一体组件, 该部分的成本比重都比较大, 与光发射机的激光器一样, 不仅决定了光接收机的性能指标, 还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成, 除光接收组件外, 功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合, 整机也会有显著不同。有线电视技术发展到今天, 光接收机采用分离元件制作放大模块已不多见, 基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路, 它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源, 并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等, 另外再外加塑料密封,防止潮气、杂质的进入。

一、光接收机常用的放大模块介绍

能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有 14dB 、 18dB 、 20dB 、 22dB 、 27dB 等,用于单模块放大器的 34dB 的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的

不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名, 一般以推挽和功率倍增为主要区分, 同时附加增益的差异与器件工艺, 如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。

1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过, 根据集中极电流导通时间的长短, 通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器; 只

有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器; 在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中, 为了提高放大效率通常都需要把工作点移到截止区, 即采用半周导通的乙类工作状态, 这时若仍采用一个晶体管, 输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管, 使其中一只晶体管在正半周导通, 另一晶体管在负半周导通, 最后在负载上合成完整波形, 这就是推挽放大电路。下图是推挽放大电路的结构示意图:

输入信号经过高频传输变压器 B1, 反相加在晶体管 VT1和 V T2上, 被放大后各自在半个周期内产生半个波, 在变压器 B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点, 使变压器中流过电流减少, 从而体积可以做得较小, 进一步提高了放大器

的输出功率和效率;更为重要的是,偶次谐波的抵消,减少了放大器的非线性失真,对提高有线电视系统的非线性失真指标具有重要意义。在实际应用中,通常采用两组推挽电路并接的方法,构成桥式结构, 则每级推挽电路在负载上的直流电压可抵消, 从而简化电路结构。在推挽电路中, 两个极性相同晶体管的特性应尽可能一致, 两个极性相反晶体管的特性应尽可能互补, 才能最大限度的抵消输出信号中的偶次谐波失真, 若在电电路中引入负反馈, 非线性失真还可进一步减小。

下图是商用化模块常采用的电路结构。

该模块用了共射——共基极放大推挽输出, 4个 NPN 型晶体管两两接成共射—共基极组合放大电路,它们再通过输入、输出变压器接成推挽电路。共射—共基电路的特点是:简单高效,在选定最佳 e 极电流的情况下,此电路能有效的减小集电极非线性及 e — b 结非线性。此电路采用低射极电阻和高并联电阻取得高增益, 又由于采用了低噪声晶体管使模块的噪声系数降到了尽可能低的程度。总之该电路集中了共射—共基组合电路和推挽电路的优点, 电路的工作频率得到提高,最大带宽目前做到 1GHZ ,对于 14— 22dB 增益的模块基本上采用一级推挽结构,对于 27—

34dB 的高增益放大模块通常采用两极推挽结构组成, 两级推挽的放大电路完全类似, 这样第一级推挽的放大增益可达 22dB ,二级放大增益可达 34dB 以上。

2.功率倍增放大模块的结构及原理。

功率倍增放大模块在光接收机中有大量应用,主要用于光接收

机的输出级,提高整机的带负载的能力。按增益的不同划分,通常有三种功率倍增模块:14dB 、 18dB 、 20dB 。其中 20dB 增益功率倍增模块较为常见。功率倍增模块的设计基础是用 2个普通的 IC 放大级并联。其输入端有一个分路器,输出端有一个合成器,理论上其各引入大约 3dB 的损耗,因而送到每个 IC 放大级的输入信号比送到这个放大模块的输入信号低 3dB , 两个并联级各将信号放大, 它们的输出再合成起来,因为两个信号是同相位的,是电压相加,因此输出信号电平比用一级的增益提高了 6dB ,但在合成器中降低了 3dB 。由于每一个 IC 级的输入信号因分路器又降低了 3dB ,因此,所有这些的最终结果是倍功率增益放大器与其中任一个单独的IC 放大器的增益完全相同,然而每个 IC 实际工作在比额定输出低 3dB 的电平上,失真就降低了 6dB 。低失真是功率倍增放大技术的优点。但由于采用两个 IC 放大级并联,功率消耗就加倍了,同增益的功率倍增模块的工作电流是推挽放大模块的 2倍, 因而功率倍增模块的散热不容忽视, 下图是商用化的功率倍增模块常采用的放大电路,供参考。

3.砷化镓工艺与硅工艺的差别

砷化镓工艺放大模块是近几年才发展起来的,用砷化镓金属场效应管设计的模块具有优良的低噪声特性,同时具有优良的低失真特性, 其不足之处是抗冲击能力比较弱, 静电就能使之损坏, 输出能力有欠缺,主要是在高电平输出时出现硬压缩特性。为便于读者理解 Si 工艺和 GaAs 工艺,下表从多项技术指标加以比较:

关于两种工艺放大模块压缩特性的比较:一个理想的信号经过不同的放大器件,都会有或多或少、不同类型的失真现象。其压缩波形变化如下图所示:

Si 工艺的放大有软压缩, GaAs.MESFET 有硬压缩, 很显然硬压缩现象对信号本身的影响最明显, 即削顶现象, 通过傅立叶变换可以看出, 这样的波形含有很多失真分量, 严重时图像会出现干扰条纹; 而对于数字电视信号来讲,误码率会提高,图像会出现马赛克,甚至数据帧丢失。硅的软压缩特性要比 GaAs 的硬压缩特性好的多,尤其体现在动态幅度较大的数字信号传输中。

鉴于 GaAs 工艺放大具有优良的低噪声、低失真特性,而同时又有硬压缩的特性,目前 GaAs 技术在放大模块的应用中,为了克服 GaAs 技术的弱点, 发挥其放大优势, 一般都采用 GaAs+Si混合技术, 并不采用单一的 GaAs 工艺构建放大模块。当然在光接收组件中的前置放大器由于处于小信号放大状态, 可以采用纯 GaAs 工艺放大。 Ga As+Si混合技术通常是在模块的输入级和放大级采用 GaAs 工艺的管芯或贴片放大管,而在模块的输出级采用 Si 材料放大管,这种结构的放大模块具有实出的优点:(1在输入级采用 GaAs 放大管可以降低噪声的引入获得理想的噪声系数

Nf 。(2在放大级采用 GaAs 放大管可以保证模块的线性指标和非线性指标。(3在输出级采用 Si 材料放大管,可以保证模块的输出能力和抗冲击能力,克服 GaAs 放大管负载能力比较低、比较脆弱的缺陷。(4 GaAs+Si混合技术可以有效的改善纯GaAs 技术的硬压缩特性,使模块的压缩性能比较

平缓, 减少信号失真, 特别对于数字信号的传输可以有效的降低误码率。实验表明 GaAs MESFET 技术在 46dBMV 时,就会出现拐点,压缩特性急剧变差, CTB 、CSO 指标明显下降, 采用 GaAs+Si混合技术可有效提高模块的输出电平。

二、光接收机的结构及原理。

目前市场上的光接收机主要有两个大的分类:光接收机、光工作站;而光接收机又分为两种:一种是二端口光接收机,另一种是四端口光接收机。在 HFC 网络光接点的设备中,二端口光接收机占有相当大的比重。因而此处以两端口光接收机为例介绍其功能及原理。针对于二端口光接收机是指有 2个主输出端口, 可能还同时具有一个或二个测试端口。不同品牌的二端口光接收机, 其内部功能及工艺相差较大, 但其基本功能结构是一致的, 常见的二端口光接收机的结构如下图所示:

从上图可以看出两端口光接收机主要由:光接收组件、光功率指示、前后级

RF 功率放大、频响校正器、正反向增益调节与均衡调节器、回传放大、回传发射组件,输出插件等组成,采用同种上述基本结构的光接收机, 其主要差别在整机的工艺水平、各功能组件的布局安排的差异,任何一台二端口光接收机都能找到上述各功能组件。鉴于目前 HFC 网络光点的覆盖范围越来越小, AGC 控制已无用武之地,在市场上具有 AGC 功能的二端口光接收机已很少见。下面分别讲述光接收机各功能组件的原理及功能。

1.光接收组件。前面已经详细讲述了光接收组件的不同种类及

特点。鉴于光接收组件已完全实现国产化, 在光接收的应用中也只有分离组件与集成一体组件的区别, 下面为集成一体组件与分离组件的差异。

从上面的比较可以看出,集成一体化组件具有明显的优势, 是有线电视技术发展的趋势, 除了一般性指标外, 集成一体化组件兼有温度控制功能。单从这一功能来说, 在分立组件中由于 PIN 管距离前置放大相对较远,其受前置放大温度的影响相

对较轻,温度对 PIN 管的影响的矛盾并不十分突出。如果集成一体组件中没有温控电路, 由于 PIN 管与前置放大紧密结合,虽然有模块的底座散热条散热, P IN 管的温升仍然比较明显,尤其是组件中配置大电流、高增益的前置放大,温升就越大,目前绝大部分国产组件都没有温控电路,而且有些生产厂家为了寻找卖点, 采用大增益的前置放大器, 导致组件的工作电流较大, 从而使组件的温升变大, 影响 PIN 管的性能。进口的名牌组件目前已有大部分产品采用温控功能电路, 保证组件的温升对 PIN 管的影响最小。带温度补偿电路的光接收模块具有明显的优点:组件性能随温度变化小, 噪声系数指标得到较好的改善, 相对于指标的优化,成本就非常低。为了说明问题,下面对组件有无温控的性能作一对比:

目前在高档光接收机中都采用具有温度补偿功能的集成组件,以提高整机的环境适应性。

2、光功率指示

光功率指示是光接收机的附属功能电路, 虽然有无该电路并不影响光接收机的性能指标, 但光功率指示却有助于光接收机的使用者方便的操作与故障判断。显示准确的光功率指示功能电路起到了光功率计的作用, 对于系统维护具有重要的意义, 尤其是对于没有光功率计的用户, 有光功率指示意义非同一般。目前光功率指示电路有三种不同的档次:(1用一只发光二极管指示光功率的有无。其显示原理是:光

功率指示单元功能电路(一般为集成运放构成的比较器自动跟踪检测光探测器的工作电流, 并将它转换成电压, 该电压与基准电压进行比较,一旦检测电压高于基准电压,就说明有光功率指示,即驱动发光二极管点亮, 指示有光功率。基准电压的设置各厂家并不一致,有的设置为 -5dB ,也有的可能设置的更低。针对于 -5dB 的情况作一说明,由于输入光功率大, PIN 管的工作电流变大,将电流的变化转换成电压的变化,如果光接收机的输入光功率在 -5dB 时对应的检测电压为 0.5V ,则基准电压就设置为略低于 0.5V 的值(如设置为 0.48V ,设置值低是考虑比较器的精度,一旦检测电压大于基准电压 0.48V ,比较器就驱动发光二极管发光,表明有光功率输入,如果输入光功率太低(小于 -5Db , 指示电路将指示无光功率输入。这种光功率指示比较粗糙, 如果设置基准光功率为 -5dB , 只要输入光功率大于 -5dB ,指示发光二极管就一直点亮,无法判断光功率的真实值, 后期维护中光功率是否变化浮动也无从知道。在低档光接收机中都采用这一种光功率指示。

(2用多只发光二极管粗略的指示光功率的变化。其显示原理是, 采用多只比较器跟踪检测电路检测到的工作电压, 驱动各档的发光二极管点亮, 以指示光功率的变化, 这种功率指示采用的发光二极管越多, 指示精度相对就越高。有的产品采用4只发光二极管分别指示 -5dB 、 -2dB 、 0dB 、 2dB ,也有的产品用 8只发光二极管,分别对应指示光功率的值为 -5 dB 、 -4 dB 、 -3 dB 、 -2 dB 、 -1 dB 、 0 dB 、+1 dB 、 +2 dB ,即便是采用多只发光二极管指示光功率也有两种档次。第一种指示是采用简单的比较器构成指示电路,如指示 -5 dB 、 -2 dB 、 0 dB 、 2 dB ,当光功率大于 -5dBm 、小于 -2dBm 时,只有 -5 dBm 指示亮,如果光功率大于 -2dBm ,则 -5、 -2指示二极管全点亮, 如果此时光功率在 0dBm 左右,则 -5、 -2、 0三只发光管全点亮。第二种指示是采用相对复杂的窗口比较器, 设定一定的电压范围作为比较的指示范围,针对于 8只发光二极管的指示,其设定依据通常是:在光功率值在 -4.5—

5.5范围时, -5指示二极管点亮,表示此时的光功率在 -5dBm 左右, 在光功率值在 -3.5— -2.5范围时, -2指示二极管点亮, 表示此时的光功率在 -2dBm 左右,依次类推;实际使用时, 在任意时刻只有一只发光二极点亮, 粗略的指示光功率的范围。而前一种指示通常是多只二极管点亮。给人的感觉好像是显示不准确。其实这两种显示虽然原理差不多, 但应用于光接收机整机, 效果却大不一样。

(3用数码管或液晶显示屏精确显示光功率。该种显示的原理是:检测单元电路检测到 PIN 管的准确工作电流值并把其转换成电

压,此电压经过模、数转换集成电路,变成可供数码管或液晶屏显示的数字量(a 、b……g 七个分量,然后进入驱动电路最后到达数码管或液晶屏精确显示即时的光功率值, 该种显示精度相当高, 一般显示精度在 0.01,显示单位因厂家产品不同而不同,有的以 MW 为单位,有的以 dBm 为单位。该种功率显示电路相对于前面用发光二极管指示的两种电路, 既有技术含量又有方便实用性。该种显示电路的成本相对较高, 一般都应用于高档光接收机中, 有些厂家为了吸引用户眼球, 在中低档光接收机中也有应用。如果光接收机中采用这种功率指示电路, 无论对施工调试还是后期的系统维护都有帮助, 相当于预置了一台光功率计在光接收机中。从实用性的角度出发, 用户在选择光接收机时, 也应对光功率指示有所注重, 尤其是对那些无光功率计的用户,数码管指示光功率确有重要意义。

3.光接收机的功率放大

在光接收机中,功率放大都采用集成一体化模块,依据信号的放大流程,前面一级放大通常都采用低噪声、推挽放大模块,后面一级都采用功率倍增模块。在光接收机中, 放大模块的质量好坏对光接收机的影响较大,放大模块的选择也决定了光接收机的档次与价位, 光接收机的输出电平的设定是由放大模块的增益决定的。由于后级功率倍增模块的增益可选的范围比较小,一般增益为 18dB 或 20dB 。因而光接收机的 RF 增益主要由前级推挽放大模块决定,其模块增益从 18dB 到 30dB 不等。在光接收机模块的选择上有多种方式:可采用硅放大模块、 GaAs 放大模块、进口模块、国产模块等诸多配置。

当光接收机在低电平输出时, 放大模块的指标对光接收机的整机指标影响不大, 如果光接收机实现高电平输出则放大模块的影响将是主要因素。前面已对各种不同种类的放大模块作了介绍。在选用光接收机时一定对模块的种类与档次有所选择, 才能买到即符合系统需要又货真价实的产品。

4. 光接收机的增益调节。光接收机的增益调节都是通过衰减器来实现,在实用化的产品中有两种形式的衰减器:固定衰减器、可调衰减器都有应用,还有的产品采用电调衰减器。(1固定衰减器, 固定衰减器是采用不同的固定电阻, 通过一定的电

路形式实现衰减值的变化, 按具体电路的不同有 T 型衰减器、π 型衰减器、 H 型

衰减器等多种实用产品。最常用的是 T 型和π 型两种。固定衰减器发展到现在,虽然电路形式没有改变,但从工艺外型上已有了质的飞跃,单从外型上看, 不看标志你一定把它当成工艺品而非衰减器, 在光接收机中, 凡是增益调节采用固定衰减器的, 都在衰减器的外型与颜色搭配上下了不少功夫,从整机的效果看起来,令人赏心悦目,任何一款衰减器都以美观大方为主体, 但是固定衰减器的接触稳定性也应引起注意,对于光接收机的增益调节来说,功能的实现是主体、接插稳定性不好,再好看的衰减器也是无用的。(2可调衰减器。可调式衰减器是用可调电阻代替固定电阻, 在一定范围内实现无级调节, 其良好的随意可调节性使之应用前景一片光明。早期的可调式衰减器从质量上、工艺上比较差, 很难做到无级调节, 而且调节的稳定性也不高, 衰减值经常因接触不良而自动变化, 曾几何时, 为了解决这个矛盾,

大量采用固定衰减器。近几年来无级可调式固定衰减器的质量和工艺水平有了大幅度的提高,为了增加调节的稳定性,不仅有 0— 20dB 变化的大范围可调衰减器,也有更精细稳定的 0— 10dB 的小范围调节衰减器, 与固定衰减器的多种多样的亮丽外型不同, 可调衰减器从一开始面市到今天, 大约几十年的时间, 其外型与色彩一直没有变化, 改进的只是指标质量,虽然可调衰减有调节方便,接触可靠的优点, 但在中高档光接收机中很少见它的影子, 主要原因是它没有固定衰减器的“ 点睛” 作用。从应用的角度来看,最好还是采用可调衰减器,毕竟用户买光接收机是为了使用, 而不是当花瓶欣赏, 这种现状也对可调衰减器生产厂家敲响了警钟, 不能光提高内在质量, 表面文章还是要做的。(3电调衰减器。电调衰减器是通过改变控制电压来

控制 PIN 管阻值的变化,实现衰减量的变化。电调衰减器一般都采用桥 T 型网络来实现。每个厂家的电调衰减器网络并不完全一致, 各有特色, 但基本功能的实现都是利用变阻二极管的变阻特性以及无源网络构成各种组态电路。由于电调衰减器需要一稳定的电压, 以实现调节的相对稳定性, 因此采用电调衰减器的光接收机都采用高精度稳压的开关电源,如果是采用模拟电源,当出现电压波动时,会引起光接收机输出增益的波动,甚至失控。鉴于电衰减器高要求及潜在弱点,所以在普通光接收机中并不多见,有些高档光接收机为了增加整机卖点, 通常采用电调衰减器。

5.光接收机的均衡调节。不像放大器非有均衡调节不可,光接收机可以不加均衡器, 由于光接收组件解调出来的电信号在整个工作

频段内是平坦的,没有斜率,因而也无须调节均衡。设有均衡调节只有一个作用, 那就是可以实现光接收机的半倾斜高电平输出, 提高光接收机的带负载能力。如果光接收机平坦输出,均衡器就没有用处。鉴于几乎所有的光接收机都加有均衡调节, 此处也讲一下均衡器。均衡器是有线电视系统一个必不可少的常用器件, 它是由电感、电容和电阻构成一个桥 T 型四端、高通网络, 通过调整电抗元件可以改变幅频特性的倾斜度,即对低频信号衰减大、高频信号衰减依次减小,正好和电缆的衰减特性相反。均衡器按工作频率(即截止频率可分为 550M 均衡, 750M 均衡等多种,按均衡量调节方式分,其又可分为固定衰减器与可调衰减器。在光接收机应用中主要有两种最常用, 即固定均衡器、可调均衡器,电调均衡器很少见。 (1固定式均衡器。固定均衡器是由电感、电容和电阻等无源器件组成。固定式均衡器通常是一个桥 T 型无源四端网络,其克服了可变均衡器桥 T 型衰减网络的不稳定性,得到了广泛的应用。其主要优点是电路简单、成本低廉、均衡量固定,靠换用不同均衡量的均衡器实现均衡调节。

(2可调均衡器。可调均衡器是在固定均衡器的基础上,用可调衰减网络代替固定衰减网络, 并增加阻抗匹配元件而成。可调均衡器可以实现连续均衡量的调整,使用非常方便,在光接收机中,固定均衡器, 可调均衡器都有应用。固定均衡器靠换用不同的均衡量的均衡器实现均衡调整, 为了实现整机的模组化设计, 均衡器在光

接收机中基本上都采用插件形式, 外封装一漂亮外壳, 即使是可调均衡也单独做成一个封装插件使用。鉴于均衡器在光接收机中不是为了实现

灵活连续可调, 以采用固定均衡器的产品占主流, 所配的均衡档位也很少,一般化 3DB 、 5DB 、 8DB 三种。

6. 光接收机的频响校正。频响校正单元电路是光接收机的必备电路, 由于光接收机中接收组件的阻抗匹配以及光探测器的平坦度差强人意,导致 RF 输出在工作带宽内平坦度不是很好,为了校正光接收机在整个工作带宽内的幅频特性, 每种光接收机都设有或简单或复杂的频响校正器。频响校正器将光接收机整个通带分成 3—6个点、段进行补偿, 使得光接收机的整个通带特性趋于平坦, 此电路的调整必须配有专门的标准光源及测试仪器才能完成, 用户在使用中切不可调节频响校正器的可调无件, 盲目的调节会导致光接收机的平坦度恶化。

7. 光接收机的双向滤波器。目前市场上的光接收机基本上都是双向光接收机,鉴于目前我国的现状,双向网没有普及,双向光接收机的设计也是有名无实, 双向滤波器都采用短路板代替, 实现下行信号的直通、回传通道预留功能, 虽然双向光接收机的双向功能目前不可用, 但双向滤波器作为光接收机中的一个重要组件, 也应有所了解。双向滤波器的指标对光接收机的影响较大,其不仅要有良好的平坦度、反射损耗指标,还要有极小的插损,不同厂家的产品,双向滤波器的插损有较大差异,如果插损过大,将浪费光接收机的增益。 8. 光接收机的回传组件。双向光接收机的回传组件一般包括回传功能放大, 回传增益均衡调节及回传光发射模块等组成, 鉴于商用化的产品中绝大多数是双向预留, 回传放大及均衡、增益均留有插件

接口, 当然回传光发射更是光有几个功能插孔在那里, 既然是双向光接收机,虽然是回传预留, 双向通道应该能正常工作才对,实际上有许多产品并没有对回传通道进行调试, 只是预留位置而已, 一旦真正实现双向回传功能,很多产品将无法升级改造,鉴于此,采购回传预留的双向光接收机, 一定注意对回传功能提出要求, 做到所采购的产品是真正的回传预留。回传光发射组件因回传功率的差异及回传数据或图像的不同, 采用不同档次的回传激光器, 目前可选的回传激光器主要有 FP 激光器、

DFB 激光器两种, FP 激光器通常无致冷功能,输出功率很小; DFB 激光器在小 4MW 时也无致冷功能,而大于 4MW 时, 因工作电流比较大, 都有温控电路。为了保证回传光功率的稳定, 回传光发射组件都对激光器设有自动功率控制电路。最后讲一个回传功能放大, 有的光接收机预留有放大模块插口, 在回传功能升级时采用放大模块进行功率放大, 而有的产品只留有几个插孔, 如果需要回传升级,回传组件将集成功率放大、增益均衡调节、光发射等功能单元,鉴于 GaAs 器件对数字信号的影响,回传功率放大采用何种器件将是一个难题, 尤其是散热, 因而采用这种形式的双向光接收机回传组件的质量可靠性是一个大问题。

9. 光接收机的电源网络模块。电源作为光接收机的能量供应部分, 在整个光接收机电路中起着举足轻重的作用。好的电源能够使光接收机的功能发挥的更出色, 光接收机采用的电源主要有两种, 一种是模拟电源,另一种是开关电源。(1模拟电源。模拟电源主要由变压器、整流、滤波、稳压等单元电路组成,模拟电源的稳压部分主

要用 78 系列三端稳压集成电路构成,由于在光接收机中采用功率倍增模块放大,整机的工作电流比较大,加上变压器的功率转换效率比较低,在炎热的夏季,将使光接收机的温升比较严重,如果光接收组件没有温控功能,将使光接收机指标劣化。鉴于模拟电源成本比较低,中低档的光接收机基本上都采用模拟电源。(2)开关电源。开关电源采用功率半导体作为开关元件,通过周期性的通断开关,控制开关元件的占空比来调整输出电压,其基本功能电路包括输入电路、功率变换电路、输出电路和控制电路四部分组成。开关电源具有效率高、稳压特性好等诸多优点,由于转换效率高,其发热量较小,特别适合光接收机使用。开关电源技术是成熟的,但各厂家生产的开关电源并不十分稳定,究其原因,选材是根本;为降低成本,在选材上没有做到最好,留有足够的余量,导致开关电源屡屡损坏,给用户带来麻烦。模拟电源虽然发热量大,但稳定性较好,这也是许多光接收机采用模拟电源的原因。在电源网络中,过压、过流保护是光接收机的关键功能电路,在光接收机的各个输出端口一般都加有气体放电管作为过压保护器件,同时在电源输入端口还设有压敏电阻作为辅助过压保护。在电源内部,通

常都加有热敏电阻与自复保险丝(或熔断型保险丝)作为过流保护器件。如果是采用开关电源,其控制电路还有过流保护功能电路,即使如此,野外型光接收机的过压保护还是不容忽视,有条件的用户最好给光接收机加上雷电保护器,增加光接收机的抗雷击能力。四端口光接收机是指光接收机具有四个独立的输出端口,每个端口的

指标及带户能力都是一致的。近年来 HFC 网络的普及及原有光网络的改造,导致光接点覆盖范围越来越小,每个光接点都通过光接收机直接带户,尽量少用或不用放大器,为了提高光接收机的负载能力,大量的采用四端口光接收机。目前在 CATV 网络中,四端口光接收机占有相当大的比重。四端口光接收机的常见结构如下图所示:光接收组件实现光信号的光电转换及低噪声前置放大,由于四端口光接收机中功能单元较多,为了节省空间,光接收组件一般都采用集成一体化组件,采用分离组件的少之又少。前级放大实现对信号的低噪声放大并补偿后面分配器的分配损耗。由于四端口光接收机一般都是高电平输出,加之后级功率倍增放大模块的功率增益都不是很高,因而前级放大的增益相对较高,一般在 22-27dBuv 之间,除了对该模块有低噪声要求外,对非线性指标也有较高要求,其非线性指标对整机的非线性贡献是比较大的。后级的功率放大模块基本上都采用功率倍增放大模块,根据输出最高电平的初始设计,可供选择的模块增益一般在20~25dBuv,在高档机型中前后级放大都采用 GaA s 工艺的模块,以适应高电平输出时对非线性指标的要求。光功率指示电路一般都采用多只发光二极管指示光功率,也有的产品采用数码管指示,鉴于整机空间的要求,光功率指示单元电路占用 PCB 空间越小越好。前级放大的输出通过一个二分配宽带线圈分成两路,分别放大。对于均衡及增益的设置,各机型并不完全一致,频响校正单元的位置也不相同,相对于整机的使用及调试的灵活性,其位置以上面所处的位置为佳。如果功能电路放在二分配器的前面,虽然会略省整

机成本,但无法实现实际系统现场的灵活运用,尤其是频响校正,如果设在二分配器的前面,将无法兼顾四个端口的平坦度调整,如上图,每两端口加一个频响校正器可有效的提高其效能。关于回传单元的功能应该以完备、高性能为准

则,因为四端口光接收机代表了 HFC 网络的最新技术发展方向,通过改造变成双向网最有现实意义。因而四端口光接收机的应用应注重回传单元的实用性,输出插件是实现各端口灵活调整的重要部件,通常分配插件、分支插件齐备,在实际应用中往往以分配输出为主。市场上的光接收机品种繁多,每个厂家的产品都各有特色,但其基本结构是一致的,不同的只是各功能电路的布局及生产工艺,还有元器件的点缀效果。总的说来,在质量合格的情况下,光接收机的美观只是表面文章的不同。掌握了光接收机的各功能电路的原理,对任何一款光接收机将不再陌生,相信操作与维护也没有问题。

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。

光接收机的结构及原理

第三部分光接收机的结构及原理 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的

不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和V T2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器

光刻原理

光 刻 工 艺 一、目的: 按照平面晶体管和集成电路的设计要求,在SiO 2或金属蒸发层上面刻蚀出与掩模板完全相对应的几何图形,以实现选择性扩散和金属膜布线的目的。 二、原理: 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的SiO 2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂溶解。然后利用光致抗蚀剂的保护作用,对SiO 2层或金属蒸发层进行选择性化学腐蚀,从而在SiO 2层或金属层上得到与光刻掩模板相对应的图形。 (一)光刻原理图 (一)光刻胶的特性: 1.性能,光致抗蚀剂是一种对光敏感的高分子化合物。当它受适当波长的光照射后就能吸收一定波长的光能量,使其发生交联、聚合或分解等光化学反应。由原来的线状结构变成三维的网状结构,从而提高了抗蚀能力,不再溶于有机溶剂,也不再受一般腐蚀剂的腐蚀. 2.组成:以KPR 光刻胶为例: 感光剂--聚乙烯醇肉桂酸酯。 溶 剂--环己酮。 增感剂--5·硝基苊, 3.配制过程: 将一定重量的感光剂溶解于环己酮里搅拌均匀,然后加入一定量的硝基苊,再继续揖拌均匀,静置于暗室中待用。 感光剂聚乙烯醇肉桂酸酯的感光波长为3800?以内,加入5·硝基苊后感光波长范围发生了变化从2600—4700 ?。 (二)光刻设备及工具: 在SiO 2层上涂复光刻胶膜 将掩模板覆盖 在光刻胶膜上 在紫外灯下曝光 显影后经过腐蚀得到光刻窗口

1.曝光机--光刻专用设备。 2.操作箱甩胶盘--涂复光刻胶。 3.烘箱――烤硅片。 4.超级恒温水浴锅--腐蚀SiO2片恒温用。 5.检查显为镜――检查SiO2片质量。 6.镊子――夹持SiO2片。 7.定时钟――定时。 8.培养皿及铝盒――装Si片用。 9.温度计――测量温度。 图(二)受光照时感光树脂分子结构的变化 三、光刻步骤及操作原理 1.涂胶:利用旋转法在SiO2片和金属蒸发层上,涂上一层粘附性好、厚度适当、均匀的光刻胶。 将清洁的SiO2片或金属蒸发片整齐的排列在甩胶盘的边缘上,然后用滴管滴上数滴光刻胶于片子上,利用转动时产生的离心力,将片子上多余的胶液甩掉,在光刻胶表面粘附能力和离心力的共同作用下形成厚度均匀的胶膜。 涂胶时间约为1分钟。 要求:厚度适当(观看胶膜条纹估计厚薄),胶膜层均匀,粘附良好,表面无颗粒无划痕。 图(三)光刻工艺流程示意图

喷砂系统工作原理

喷砂系统工作原理 全自动机械回收式喷砂房是根据产品加工工艺流程及产品本身特性而设计的,适用于大型铸件锻件、焊接钢结构、工程机械、工业锅炉、化工机械、船舶修造等表面去氧化皮、除锈、强化,提高涂料的附着力等。其结构及配套设备主要由喷砂室、喷砂系统、磨料回收系统、通风和除尘系统、照明和电气控制系统六大部分组成 一、喷砂室 喷砂室是喷砂工人面对工件进行喷砂清理的地方。 喷砂室采用砖墙结构,防水性能好,且具有很好的防震效果。 室内采用耐磨橡胶皮保护,能有效保护室内设施。喷砂室地面铺设钢格栅,防止磨料在操作平台上积聚,对喷喷砂工人的安全造成威胁。磨料回收斗铺设钢板网,防止杂物进入喷丸系统。 为了喷砂工人的安全,喷砂室的两侧均设计有安全门,这是喷砂工人在遭遇危险时能及时逃生的需要。喷砂室两侧布置有观察窗,方便随时了解喷砂工人的作业情况。 该喷砂室建在室外,因此一定要注意做好防风挡雨的工作,防止雨水进入喷砂室,防止被雨淋湿的工件进入喷砂室。 二、喷砂系统 喷砂系统由喷砂机和喷砂工人的专用防护用具组成。 喷砂作业的工作效率和作业安全都与喷砂 作业机具有着密不可分的关系。该喷砂系统采用双腔连续工作型喷砂机为喷砂清理机具。 1、设备结构: (1)桶体 由二级料仓组成,上仓与下仓,以保证连续加砂。 (2)自动加砂: 由上仓料位感应器、下仓料位感应器及加料阀等组成。 (3喷砂部分 由进气阀、磨料阀、喷砂管、喷嘴等组成。 (4)控制部分 由电控箱及电缆线、气动遥控开关等组成。 2、设备工作原理; 该机为自动添料可供两人连续工作的喷砂机。 连续工作型喷砂机在上下两仓分别配有满仓料位仪和空仓料位仪。当下仓内的磨料料位下降到空仓料位仪的感应杆以下时,料位仪发出空仓信号,使上仓升压,控制上仓内的磨料流入下腔。在设定时间内,上仓进气阀自动关闭,上仓排气阀自动打开,上仓排气卸压,上仓加料阀打开(气缸控制),上仓添料备用。 连续工作型喷砂机与磨料储砂箱配套使用,当上仓料位升高到满仓料位仪感应杆的高度时,料位仪发出满仓信号,将加料阀关闭,停止加料。 3、设备性能特点 (1)该设备采用双仓结构,因此,可达到连续作业的要求,喷砂工作可连续作业,不需一般喷砂机的停机加砂,大大提高了喷砂效率。 (2)该设备配置了下仓空仓料位仪和上仓满仓料位仪,并与储砂箱加料阀、进气电气控制联动,以保证当下仓无料时,始终能得到补充;上仓料满时,加料阀会自动关闭。控制系统中设置了延时继电器,按照实际工作情况,延时继电器可调,以满足各种工况条件下使用。(3)该系统的气动遥控阀件都采用了汤姆森磨料阀,动作灵活、反应灵敏、耐磨性强,特别是气动遥控磨料阀采用超耐磨复合材料,寿命长、流量调节方便,磨料阀采用斜体45°结

光工作站的结构及原理

光工作站地结构及原理 第四部分光工作站地结构及原理 传统地广播分配网,随网络地改造,向通信式地双向交互网发展,光纤网络和无源电缆分配网将是网络架构地主导模式.网络地目标就是成为一个能为本地区(城市)提供多种信息业务服务地宽带多媒本通信平台;从目前地网络发展态势看起具有明显地特点:光纤向用户逐步延伸,光接点地服务半径越来越小,双向用户逐渐增多,放大器地应用越来越少,光接点以后地网络可靠性得到大幅度提高.随着用户对服务质量要求地提高,光接点最终将是无源分配网络,即不采用放大器,只由光接收设备提供高电平信号,覆盖结点周围用户.普通地光接收机将无法再胜任作为光接点接收设备地高要求,为适应这一发展,解决双向用户共享带宽地制约,提高网络服务质量,可升级地通信型光站应运而生,其将是宽带用户接入网地主导设备. 各个生产厂家推出地光工作站地具体结构及功能并不一致,作为光工作站其与光接收机有明显地区别.()按功能结构区分.光工作站一般具有多于个独立地高电平输出端口,每端输出电平一般要求大于,以适应直接用于用户分配,增加覆盖地要求.而光接收机地输出电平一般不高,既使是高电平输出光接收机,其最大输出也一般低于;光工作站具有完备地功能模块(或预留插口),而光接收机由于采用小外壳,功能模块单元相对很小,主要功能仅是实现光电转换,即使有回传发射模块,也相当简单,无法适应未来双向光接点地较高要求.()按可靠性区分.光工作站一般都采用高冗余度,通常都对关键地功能模块实现备份,常见地功能备份有如下几种:、电源备份,通常光工作站可插入两个高效开关电源,在一个电源出现故障时,内部控制单元可自动切换到另一个电源.、光备份,光备份有光接收备份、光发射备份.光接收备份:光工作站可插入个以上地光接收功能模块,分别接收不同路由地光信号,当一路出现故障时,控制单元将及时切换到另一路;光发射备份:光工作站可插入个以上地回传发射模块,

投影光刻机对准系统功能原理

投影光刻机对准系统功能原理 投影光刻机对准系统功能原理 1 对准系统简介 对准系统的主要功能就是将工件台上硅片的标记与掩膜版上的标记对准,其标记的对准精度能达到±0.4μm(正态分布曲线的3σ值)。因为一片硅片在一个工艺流程中的曝光次数可能达到30次,而对准精度直接影响硅片的套刻精度,所以硅片的对准精度非常的关键。 由于对准系统对硅片标记的搜索扫描有一定的范围,它在X方向和Y方向都只能扫描 ±44μm,所以硅片被传送到工件台上进行对准之前,需要在预对准工件台上先后完成两次对准,即机械预对准和光学预对准,以便满足精细对准的捕捉范围。注意:本文所提到的对准都是所谓的精细对准。 PAS2500/10投影光刻机对准系统主要由三个单位部分构成:照明(对准光源)部分,双折射单元和对准单元。这三个单元与掩膜版、硅片、以及投影透镜的相对位置如图1所示,在图中可以看出,对准系统中用了两个完全相同的光路,这是为了满足对准功能的需要。 1.1 对准系统的光学结构和功能 由于对准系统中的两条完全相同,所以在下面的介绍中只详细地阐述了其中的一条光路。在对准系统中,照明部分的主要部件就是激光发射器,它产生波长为633nm的线性极化光,避免在硅片对准的过程中使硅片被曝光(硅片曝光用的光为紫外光)。然后对准激光将通过一系列的棱镜和透镜进入双折射单元,该激光将从双折射单元底部射出,通过曝光的投影透镜照到硅片的标记上;而经过硅片表面的反射后由原路返回,第二次经过双折射单元,由双折射单元的顶部射出,再经过聚焦后对准到掩膜版的标记上。 在对准单元内,硅片的标记图象和掩膜版标记的图象同时通过一个调制器后,将被聚焦到一个Q-CELL光电检测器上。此调制器是用来交替传送两个极化方向的硅片标记图象,Q-CELL 光电检测器将对硅片的标记的每个极化方向图象分别产生一个电信号,由此产生的电信号的振幅取决于该极化方向硅片标记的图象与掩膜版标记图象在Q-CELL的显示比例。 硅片上的对准标记如图2所示,标记分为四个象限,每个象限有8μm或8.8μm的对准条,其中有两个象限的对准条用来对准X向,另外两个象限用来对准Y向。而Q-CELL光电检测器的每一个单元对应标记的一个象限,当在Q-CELL检测器的每一个单元中,两个极化方向的标记图象的能量都相等的时候,就表明硅片与掩膜版的标记完全对准了。从图1中可以看到对准光束在经过对准单元的时候被分成了两束,一束激光将通过调制器到达Q-CELL 光电检测器,而另一束激光则以视频的形式反馈到操作台。通过操作台上的视频监视器可以直观的看到标记的移动和对准不同标记时位置的相对变化。虽然是两个不同极化方向的硅片标记与掩膜版标记同时对准,但是由于它们是同步的,彼此之间几乎看不到有何不同,所以只有一个极化图象被显示。 1.2 对准系统的电路部分 对准系统的电路部分主要的功能是: 1、产生一个信号去驱动光学调制器。 2、处理Q-CELL光电检测器产生的信号。 光学调制器的驱动:该调制器信号要求频率为50Hz的正弦信号,其振幅要求能满足对最大的Q-CELL检测信号起调制作用。 Q-CELL检测信号的处理:在对准的时候,工件台将首先沿X轴向缓慢地带动E-CHUCK上的硅片移动,进行X轴向对准,当硅片标记上X向光栅与对应的掩膜版上X向光栅对准时,

发电机原理概述

1.概述 电能是现代社会最主要的能源之一。发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机的分类可归纳如下: 直流发电机、交流发电机;同步发电机、异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 2.结构及工作原理 发电机通常由定子、转子、端盖、机座及轴承等部件构成。 定子由机座.定子铁芯、线包绕组、以及固定这些部分的其他结构件组成。 转子由转子铁芯(有磁扼.磁极绕组)滑环、(又称铜环.集电环).风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 汽轮发电机与汽轮机配套的发电机。为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过1.2米。而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以5~10万千瓦以上的汽轮发电机都采用了冷却效果较好的氢冷或水冷技术。70年代以来,汽轮发电机的最大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机发展史上产生一个新的飞跃。 3.水轮发电机 由水轮机驱动的发电机。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构(见图)。由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的最大容量已达70万千瓦。 柴油发电机由内燃机驱动的发电机。它起动迅速,操作方便。但内燃机发电成本较高,所以柴油发电机组主要用作应急备用电源,或在流动电站和一些大电网还没有到达的地区使用。柴油发电机转速通常在1000转/分以下,容量在几千瓦到几千千瓦之间,尤以200千瓦以下的机组应用较多。它制造比较简单。柴油机轴上输出的转矩呈周期性脉动,所以发电机是在剧烈振动的条件下工作。因此,柴油发电机的结构部件,特别是转轴要有足够的强度和刚度,以防止这些部件因振动而断裂。此外,为防止因转矩脉动而引起发电机旋转角速度不均匀,造成电压波动,引起灯光闪烁,柴油发电机的转子也要求有较大的转动惯量,而且应使轴系的固有扭振频率与柴油机的转矩脉动中任一交变分量的频率相差20%以上,以免发生共振,造成断轴事故。 柴油发电机组主要由柴油机、发电机和控制系统组成,柴油机和发电机有两种连接方式,一为柔性连接,即用连轴器把两部分对接起来,二为刚性连接,用高强度螺栓将发电机钢性连接片和柴油机飞轮盘连接而成,目前使用刚性连接比较多一些,柴油机和发电机连接好后安装在公共底架上,然后配上各种传感器,如水温传感器,通过这些传感器,把柴油机的运行状态显示给操作员,而且有了这些传感器,就可以设定一个上限,当达到或超过这个限定值时控制系统会预先报警,这个时候如果操作员没有采取措施,控制系统会自动将机组停掉,柴油发电机组就是采取这种方式起自我保护作用的。传感器起接收和反馈各种信息的作用,真正显示这些数据和执行保护功能的是机组本身的控制系统。 4.风力发电机原理 是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。

光刻机和光掩膜版

十三章 光刻II 光刻机和光掩膜版 前几章讲述了光刻胶材料的性质和工艺技术。在这一章里,我们介绍如何将图形转移到硅片表面上,包括以下内容:a)将图形投影到硅片表面的装置(即光刻对准仪或光刻翻版机),由此使得所需图形区域的光刻胶曝光。 b)将图形转移到涂有光刻胶的硅片上的工具(即光掩模版和中间掩模版)。在介绍光刻机或掩模版之前,把用以设计和描述操作光刻机的光学原理简要地说明一下。它们是讲明光掩模板和中间掩模版的基础。 在讨论光学原理之前,有必要介绍一下微光刻硬件的关键。那就是把图形投影到硅表面的机器和掩模版的最重要的特征:a)分辨率、b)图形套准精度、c)尺寸控制、d)产出率。 通常,分辨律是指一个光学系统精确区分目标的能力。特别的,我们所说的微图形加工的最小分辨率是指最小线宽尺寸或机器能充分打印出的区域。然而,和光刻机的分辨率一样,最小尺寸也依赖于光刻胶和刻蚀的技术。关于分辨率的问题将在微光刻光学一章中更彻底的讲解,但要重点强调的是高分辨率通常是光刻机最重要的特性。 图形套准精度是衡量被印刷的图形能“匹配”前面印刷图形的一种尺度。由于微光刻应用的特征尺寸非常小,且各层都需正确匹配,所以需要配合紧密。

微光刻尺寸控制的要求是以高准度和高精度在完整硅片表面产生器件特征尺寸。为此,首先要在图形转移工具〔光刻掩模版〕上正确地再造出特征图形,然后再准确地在硅片表面印刷出〔翻印或刻蚀〕。 加工产率是重要但 不是最重要加工特征。例 如,如果一个器件只能在 低生产率但高分辨率的 光刻机制版,这样也许仍 然是经济的。不过,在大 部分生产应用中,加工和 机器的产率是很重要的, 也许是选择机器的重要因素之一。 1.微光刻光学 在大规模集成电路的制造中。光刻系统的分辨率是相当重要的,因为它是微器件尺寸的主要限制。在现代化投影光刻机中光学配件的质量是相当高的,所以图形的特征尺寸因衍射的影响而受限制,而不会是因为镜头的原因(它们被叫做衍射限制系统)。因为分辨率是由衍射限度而决定的,那就必须弄明白围绕衍射限度光学的几个概念,包括一致性、衍射、数值孔径、调频和许多重要调节转换性能。下几节的目的就是要简要和基本地介绍这些内容。参考资料1·2讲得更详细。 衍射·一致性·数值孔径和分辨率 图(1):一束空间连续光线经过直的边缘时的光强 a)依据几何光学b)散射

发电机原理图解

固定磁场交流发电机原理模型 发电机是根据电磁感应原理来发电的,发电机首先要有磁 场,现在用一对磁铁来产生发电机的磁场,磁力线从北极到南 极。 在磁场内放入矩形线圈,线圈两端通向两个滑环,滑环通过 电刷连接到输出线上,输出线端连有负载电阻。 当线圈旋转时,根据电磁感应原理,线圈两端将会产生感应 电动势,当磁场是均匀的,矩形线圈作匀速旋转时,感应电势 按正弦规律变化,在负载电阻上有正弦交流电通过。动画中绿 色小球运动的方向表示感应电流的方向、运动的速度表示感应 电流的大小。 旋转磁场交流发电机原理模型 在这个模型中磁场是不动的,线圈在磁场中旋转产生感应电 势。在实际发电机中产生感应电势的线圈是不运动的,运动的 是磁场。产生磁场的是一个可旋转的磁铁,也就是转子,线圈 在磁铁外围,与磁铁转轴同一平面。当磁铁旋转时产生旋转磁 场,线圈切割磁力线产生感应电动势。 由于空气的磁导率太低,在旋转磁铁的外围安上环型铁芯, 也就是定子,可大大加强磁铁的磁感应强度。在定子铁芯的内 圆有一对槽,线圈嵌装在槽内。为了看清线圈电流与转子的运 动关系,把定子变成半透明的。当磁铁旋转时,线圈切割磁力 线感生交流电流。 真正发电机的转子是电磁铁,转子上绕有励磁线圈,通过滑 环向励磁线圈供电来产生磁场。把定子与线圈安在转子外围, 一个单相交流发电机原理模型就组成了。 转子作匀速旋转时,线圈就感生交流电流,画面中绿色小球 运动的方向表示感应电流的方向、运动的速度表示感应电流的 大小。 三相交流发电机原理模型

实际应用的都是三相交流发电机,其定子铁芯的内圆均匀分布着6个槽,嵌装着三个相互间隔120度的同样线圈,分别称之为A相线圈、B相线圈、C相线圈。装上转子就组成了一台三相交流发电机原理模型。 画面中的三相交流发电机采用星形接法,三个线圈的公共点引出线是中性线,每个线圈的引出线是相线。 当转子匀速旋转时三个线圈顺序切割磁力线,都会感生交流电动势,其幅度与频率相同。由于三个线圈相互间隔120度,它们感应电势的相位也相差120度。在画面上有每根相线的输出电势波形。 汽轮发电机的构造 这里介绍汽轮发电机的构造,是由蒸汽轮机或燃气轮机推动的发电机。发电机主要由转子与定子组成,由于汽轮机的转速很高,故汽轮发电机的转子是两极的,额定转速每分钟3000转,输出50赫兹的三相交流电。 这是转子铁芯构造示意图,在铁芯圆周上开有一些槽,嵌有励磁绕组,在圆周两侧各有一段槽距大的面称为大齿,就是磁极(图1所示)。励磁绕组两端通过集电环(滑环)接到励磁电源,在转子圆周两侧就形成北极与南极,旋转时就产生旋转磁场。 由于转子圆周上没有凸出的磁极(不像原理模型中的转子),称之为隐极式转子。 图2为嵌有励磁绕组的转子模型,为降低发电机的温度,在转子两端还装有风扇。 定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽(图3所示)。 在槽内嵌放定子的三相绕组。每相绕组由多个线圈组成,按一定规律对称排列。(图4所示)。使定子铁芯透明可看清绕组的分布(图4所示)。 转子插在定子内部,定子与转子的相对位置如图5所示。 定子固定在发电机的机座(外壳)内,转子由机座两端的轴承支撑,可在定子内自由旋转。集电环在机壳外侧,和碳刷架一同装在隔音罩内。在发电机外壳下方有发电机出线盒,发出的三相交流电从这里引出(图6所示)图7是发电机外观图 下载动画可观看发电机结构动画。 多磁极发电机原理模型 多磁极发电机的转子有多对磁极, 图1是有3对磁极的转子模型。由于每个磁极都是从转子上明显凸起,称之为凸极式转子。每个磁极上都 绕有励磁线圈,形成南北相间的6个磁极,励磁电源通过滑环向励磁线圈供电。 该模型的转子有3对磁极,旋转一周磁场将循环3个周期,每旋转120度磁场变化1个周期。定子内园周有 18个槽

带钢抛丸机结构及工作原理

结构及工作原理 1. 本机主要由下列部件组成 抛丸室与室体防护板、抛丸器、弹丸循环系统、托辊机构、转刷、吹刮丸机构、气动系统、电气控制系统等。 2. 机器的工作原理 被清理的工件由用户提供的动力压辊机构拉紧送至抛丸室,由两台清理机组成,第一台粗抛、第二台精抛,抛丸机每台设4台抛丸器分别对着带钢的上表面或下表面),将清理工件的弹丸加速,击打带钢的外表面。使带钢在运行过程中将带钢表面上的氧化皮或锈斑清除掉,清理后的混合弹丸由两套纵、横向螺旋输送器送至提升机下部,经提升机由螺旋输送器将弹丸送入分离器内,分离器将锈氧化皮等混合物分开,合格弹丸经闸门进入抛丸器继续使用;中间弹丸(未完全分离干净)回室体内再循环;破碎弹丸及灰尘排出并进入废料箱(用户自备)。 3. 各部件主要结构 3.1抛丸器由钢板焊接而成,采用无型钢骨架结构,室体内衬有金属防护板,用耐磨的包铸螺母固定在室体上。 室体上共设八扇维修工作门,门体上侧设有触点开关,无论那扇门开启时,抛丸器都不启动。结构及工作原理 1. 本机主要由下列部件组成 抛丸室与室体防护板、抛丸器、弹丸循环系统、托辊机构、转刷、吹刮丸机构、气动系统、电气控制系统等。 2. 机器的工作原理

被清理的工件由用户提供的动力压辊机构拉紧送至抛丸室,由两台清理机组成,第一台粗抛、第二台精抛,抛丸机每台设4台抛丸器分别对着带钢的上表面或下表面),将清理工件的弹丸加速,击打带钢的外表面。使带钢在运行过程中将带钢表面上的氧化皮或锈斑清除掉,清理后的混合弹丸由两套纵、横向螺旋输送器送至提升机下部,经提升机由螺旋输送器将弹丸送入分离器内,分离器将锈氧化皮等混合物分开,合格弹丸经闸门进入抛丸器继续使用;中间弹丸(未完全分离干净)回室体内再循环;破碎弹丸及灰尘排出并进入废料箱(用户自备)。 3. 各部件主要结构 3.1抛丸器由钢板焊接而成,采用无型钢骨架结构,室体内衬有金属防护板,用耐磨的包铸螺母固定在室体上。 室体上共设八扇维修工作门,门体上侧设有触点开关,无论那扇门开启时,抛丸器都不启动。 结构及工作原理 1. 本机主要由下列部件组成 抛丸室与室体防护板、抛丸器、弹丸循环系统、托辊机构、转刷、吹刮丸机构、气动系统、电气控制系统等。 2. 机器的工作原理 被清理的工件由用户提供的动力压辊机构拉紧送至抛丸室,由两台清理机组成,第一台粗抛、第二台精抛,抛丸机每台设4台抛丸器分别对着带钢的上表面或下表面),将清理工件的弹丸加速,击打带钢的外表面。使带钢在运行过程中将带

GPS接收机的结构和工作原理

GPS接收机的组成及工作原理 目录 第一节 GPS接收机的分类 第二节 GPS接收机组成及工作原理第三节 GPS接收机的构成 第四节注意事项 第五节常见问题及解决方法

第一节 GPS接收机的分类 根据GPS用户的不同要求,所需的接收设备各异。随着GPS定位技术的迅速发展和应用领域的日益扩大,许多国家都在积极研制、开发适用于不同要求的GPS接收机及相应的数据处理软件。 1、按用途分可分为: (1)导航型接收机:①车载型 ②航海型 ③航空型 ④星载型 (2)测地型接收机 (3) 授时型接收机 2、按接收机的载波频率分类(或者说按接受机的卫星信号频率分类) (1)单频接收机 (2)双频接收机 3、按接收机的通道数分类: (1)多通道接收机 (2)序贯通道接收机 (3)多路复用通道接收机 4、按工作原理分类: (1)码相关型接收机 (2)平方型接收机 (3)混合型接收机 (4)干涉型接收机 5、按接收卫星系统分类 (1)单星系统 (2)双星系统 (3)多星系统 6、按接收机的作业模式分类 (1)静态接收机 (2)动态接收机 7、按接收机的结构分类 (1)分体式接收机 (2)整体式接收机 (3)手持式接收机 目前生产GPS测量仪器的厂家有几十家,产品有几百种,但拥有较为成熟产品的不外乎几家,在我国测绘市场占有份额较大的有Trimble、Leica、Ashtech、Javad(Topcon)、Thales(DSNP)加拿大诺瓦太(NoVAteL)等。我国的南方测绘仪器公司和中海达测绘仪器公司也已经有了自己的GPS产品,北京、苏州光学仪器厂也已开始了GPS设备的研制与开发工作。

手动喷砂机的设计和工作原理之令狐文艳创作

令狐文艳 手动喷砂机的设计与工作原理 一、手动喷砂机用途: 上海良时专业设计制造的手动喷砂机,专用于小批量产品(重量小于20kg)工件外表面湿喷砂处理,达到表面光饰、清除毛刺、氧化皮等要求,亦可用于电镀前处理,如有其它的特别要求,需要重新设计手动湿喷砂机。 二、工作原理: 本机采用吸入式喷砂,即利用压缩空气负压将机内磨液贮箱里的砂水混合料通过输砂管吸入喷枪内,然后随压缩空气流由喷嘴高速射到工件表面,达到湿喷砂加工目的。 三、喷砂特点: 1.砂液循环使用,耗砂低,喷嘴磨耗小,成本低。

2.密闭性佳,不会产生粉尘污染。 3.操作简单,故障少、密闭式空间,噪音低。 4.具窗口清洗功能,使用时视线佳。 5.不锈钢制之机身,经久耐用。 6.配备清水清洗枪,可手动清洗工件。 7.工作区域内设置有过滤网,目的是为了防止工人在上班工作时不小心或者由于机器故障的原因,较大杂物掉入高压砂泵槽内,损坏高压砂泵的叶片,造成不应有的损失而影响正常的生产。 四、加工范围: 适用于小批量产品(每次加料约15~20kg)表面湿喷砂。 五、喷砂介质:

46#~120#白刚玉、棕刚玉、玻璃珠等多种砂料。 六、加工效率: 使用φ8mm喷嘴时,理论喷砂效率约2~3m2/分钟,实际喷砂效率以产品喷砂效果定。 七、喷砂加工流程: 本机喷砂加工时,工人只进行开关机的操作和装入工件的工作,其余完全由机器完成,其工作程序如下: 1.喷砂前,工人应检查机舱底部的磨液是否全部将砂泵的叶轮淹没,水和砂料的比例是否符合喷砂的工艺要求,然后打开总电源开关,启动照明开关,启动排雾风扇。 2.喷砂前工人将一定量的工件放入机舱内(工件放入量由加工工件的大小而定,最重≤20kg)后关闭舱门。 3.启动主机电源,操作者用手握牢喷枪,然后用脚踩住气囊开关启动喷枪,用喷枪按所需角度方位对工件进行喷砂。

光接收机的结构和原理

光接收机的结构和原理 2009-08-31 20:20:03| 分类:电子通信时代| 标签:|字号大中小订阅 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块 则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推 挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和VT2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器的输出功率和效率;更为重要的是,偶次谐波的抵消,减少了放大器的非线性失真,对提高有线电视系统的非线性失真指标具有重要意义。在实际应用中,通常采用两组推挽电路并接的方法,构成桥式结构,则每级推挽电路在负载上的直流电压可抵消,从而简化电路结构。在推挽电路中,两个极性相同晶体管的特性应尽可能一致,两个极性相反晶体管的特性应尽可能互补,才能最大限度的抵消输出信号中的偶次谐波失真,若在电电路中引入负反馈,非线性失真还可进一步减小。 下图是商用化模块常采用的电路结构。 该模块用了共射——共基极放大推挽输出,4个NPN型晶体管两两接成共射—共基极组合放大电路,它们再通过输入、输出变压器接成推挽电路。共射—共基电路的特点是:简单高效,在选定最佳e极电流的情况下,此电路能有效的减小集电极非线性及e—b结非线性。此电路采用低射极电阻和高并联电阻取得高增益,又由于采用了低噪声晶体管使模块的噪声系数降到了尽可能低的程度。总之该电路集中了共射—共基

汽轮发电机工作原理

汽轮发电机结构及工作原理 发电机通常由定子、转子、端盖及轴承等部件构成。 定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组 成。 转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及 转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引 出,接在回路中,便产生了电流。 汽轮发电机与汽轮机配套的发电机。为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过 1.2米。而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以 5~10万千瓦以上的汽轮发电机都采用了冷却效果较好

的氢冷或水冷技术。70年代以来,汽轮发电机的最大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机发展史上产生一个新的飞电磁感应定律 励磁机就是一个小功率的直流发电机,一般都为几十伏,励磁电压一般不变,即使变动也很小,而励磁电流的大小由磁场变阻器或自动励磁调节器调节,它的作用是将发出来的直流电供发电机转子磁极饶组励磁电流以产生磁场.励磁电流在发电机空载时改变其大小可以改变发电机的端电压,在发电机并网带负荷时改变其大小可以改变发电机 的无功功率. 电磁感应定律: 只要穿过回路的磁通量发生变化电路中将产生感应电动势。感应电动势的大小,跟穿过这一电路的磁通量变化成正比。导体回路中感应电动势e 的大小,与穿过回路的磁通量的变化率成正比, 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,Δ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s. ε为产生的感应电动势,单位为V. 1.[感应电动势的大小计算公式]

Nikon光刻机对准系统功能原理

Nikon光刻机对准系统功能原理 投影光刻机对准系统功能原理 1 对准系统简介 对准系统的主要功能就是将工件台上硅片的标记与掩膜版上的标记对准,其标记的对准精度能达到±0.4μm (正态分布曲线的3σ值)。因为一片硅片在一个工艺流程中的曝光次数可能达到30次,而对准精度直接影响硅片的套刻精度,所以硅片的对准精度非常的关键。 由于对准系统对硅片标记的搜索扫描有一定的范围,它在X方向和Y方向都只能扫描±44μm,所以硅片被传送到工件台上进行对准之前,需要在预对准工件台上先后完成两次对准,即机械预对准和光学预对准,以便满足精细对准的捕捉范围。注意:本文所提到的对准都是所谓的精细对准。 PAS2500/10投影光刻机对准系统主要由三个单位部分构成:照明(对准光源)部分,双折射单元和对准单元。这三个单元与掩膜版、硅片、以及投影透镜的相对位置如图1所示,在图中可以看出,对准系统中用了两个完全相同的光路,这是为了满足对准功能的需要。 1.1 对准系统的光学结构和功能 由于对准系统中的两条完全相同,所以在下面的介绍中只详细地阐述了其中的一条光路。在对准系统中,照明部分的主要部件就是激光发射器,它产生波长为633nm的线性极化光,避免在硅片对准的过程中使硅片被曝光(硅片曝光用的光为紫外光)。然后对准激光将通过一系列的棱镜和透镜进入双折射单元,该激光将从双折射单元底部射出,通过曝光的投影透镜照到硅片的标记上;而经过硅片表面的反射后由原路返回,第二次经过双折射单元,由双折射单元的顶部射出,再经过聚焦后对准到掩膜版的标记上。 在对准单元内,硅片的标记图象和掩膜版标记的图象同时通过一个调制器后,将被聚焦到一个Q-CELL光电检测器上。此调制器是用来交替传送两个极化方向的硅片标记图象,Q-CELL光电检测器将对硅片的标记的每个极化方向图象分别产生一个电信号,由此产生的电信号的振幅取决于该极化方向硅片标记的图象与掩膜版标记图象在Q-CELL的显示比例。 硅片上的对准标记如图2所示,标记分为四个象限,每个象限有8μm或8.8μm的对准条,其中有两个象限的对准条用来对准X向,另外两个象限用来对准Y向。而Q-CELL光电检测器的每一个单元对应标记的一个象限,当在Q-CELL检测器的每一个单元中,两个极化方向的标记图象的能量都相等的时候,就表明硅片与掩膜版的标记完全对准了。从图1中可以看到对准光束在经过对准单元的时候被分成了两束,一束激光将通过调制器到达Q-CELL光电检测器,而另一束激光则以视频的形式反馈到操作台。通过操作台上的视频监视器可以直观的看到标记的移动和对准不同标记时位置的相对变化。虽然是两个不同极化方向的硅片标记与掩膜版标记同时对准,但是由于它们是同步的,彼此之间几乎看不到有何不同,所以只有一个极化图象被显示。 1.2 对准系统的电路部分 对准系统的电路部分主要的功能是: 1、产生一个信号去驱动光学调制器。 2、处理Q-CELL光电检测器产生的信号。 光学调制器的驱动:该调制器信号要求频率为50Hz的正弦信号,其振幅要求能满足对最大的Q-CELL检测信号起调制作用。 Q-CELL检测信号的处理:在对准的时候,工件台将首先沿X轴向缓慢地带动E-CHUCK上的硅片移动,进行X轴向对准,当硅片标记上X向光栅与对应的掩膜版上X向光栅对准时,将产生一个对准电信号,该信号以中断信号的形式输入计算机,X向对准的两个象限光栅都将产生其各自的中断信号。当产生中断信号的同时,计算机将记录下此时工件台的位置。在X向对准的时候,一个标记中两个象限的光栅同时参与,在每个象限中光栅条纹之间的间距是一个恒定的常数,但是这两个象限的光栅条纹间距并不相同,如图2所示。在对准扫描的过程中,每一个象限中的每一条光栅条纹都将会产生各自的一个中断信号,由于两个象限的光栅条纹间距不同,所以在扫描的时候只能有一个点将同时产生两个中断信号,而这个点就是在X

相关主题
文本预览
相关文档 最新文档