当前位置:文档之家› 高分子分离膜的改性方法

高分子分离膜的改性方法

高分子分离膜的改性方法
高分子分离膜的改性方法

高分子分离膜的改性方法

张爱娟(04300036)

[摘要]:随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水

性,提高膜的抗污染能力已成为有待解决的迫切问题。由于单一的膜材料很难同时具有良好的亲水性、成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性侵蚀、耐氧化性和较好的机械强度等优点,因此采用膜材料改性或膜表面改性的方法来提高膜的性能,是解决这一问题的关键。其中,化学改性可以通过膜材料和膜表面的化学改性来实现;而物理改性则主要是通过材料共混改性和表面涂覆或表面吸附来实现。

[关键词]:膜;改性;物理改性;化学改性

一 引言

膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程的领域得到广泛的应用。然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。目前使用的大多数膜的材料是聚丙烯(PP)。聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别时当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜便面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集,导致一系列的生物反应,例如形成血栓及免疫反应。即使当蛋白质对分离膜的影响可以忽略,膜基体材料的亲水性、荷电性及荷电密度等性质对蛋白质的吸附都会产生重要的影响。因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。对膜材料的改性的方法有物理改性,化学改性和表面生物改性。

二物理改性

2.1 表面物理改性

2.1.1 表面涂覆改性【1】

以分离膜为支撑层,将表面活性剂涂覆在支撑层表面而达到改性的目的,表面活性剂可以是有机物或无机物。但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是活性剂易从高分子表面脱离,不能得到永久的改性效果。但这种方法显示了制备一系列具有不同截留率分离膜的可能性。

2.1.2 表面吸附改性【2】

表面活性剂是由至少两种以上极性或亲媒性显著不同的官能团,如亲水基和疏水基所构成。由于官能团的作用,在溶液与它相接的界面上形成选择性定向吸附,使界面的状态或性质发生显著变化。表面活性剂在膜表面的吸附使膜表面形成一层亲水层,其带电特性又形成了对蛋白吸附的阻挡作用。从而在增大膜的初始通量的同时又能降低使用过程中通量衰减和蛋白

质的吸附。韩式荆等[3]研究了多种表面活性剂对超滤膜分离性能的影响,认为表面活性剂的表面张力及其临界胶束浓度 (CMC) 值是影响膜分离性能的主要因素。李伟等[4]将非离子表面活性剂作为第二添加剂加入聚砜超滤膜中,结果发现,它能明显改变成膜时的凝胶速度,因而改变所成膜的结构和性能,由此制得孔径均匀,分离性能优良的聚砜超滤膜。同时由于表面活性剂在膜表面形成厚的致密亲水层而使水通量得到改善,这对低孔系率的超滤膜是很重要的。

2.2膜材料的物理改性

2.2.1 高分子材料与高分子材料的的共混改性

高分子材料的共混是指两种以上高分子混合,形成一种新材料,它除了综合原有材料本身性能外,还可克服原有材料中的各自缺陷,并产生原有材料中所没有的优异性能。而聚合物间的相容性[5]直接影响着高分子共混膜的相分离孔的形成与结构,通过调节聚合物合金的相容性可以调节相分离孔的形成和结构,从而改变合金膜的表层结构和断面结构,达到提高膜的分离性能和渗透性能的目的。高分子共混改性膜主要从以下3 个方面改善膜的性能:1、改善膜的亲水性能及聚合物的成膜性;2、改善膜的耐污染性;3、提高膜的物化稳定性 (提高膜的耐蚀性、耐热性和机械强度)。

[9]

共混组分性质、合金比例、分子结构对膜的亲水性及其性能都有很大的影响。以憎水性的PVC 为例,在一定的比例条件下,所选用共混组分的亲水性越强,膜的亲水性越好,膜的通量越大(见表1) 。

表1 P2 (第二聚合物) 对PVC/ P2 合金膜的亲水性及膜性能的影响

膜材料 接触角/θ0纯水通量/ L·m- 2·h - 1

PVC 66 61

PVC/ PMMA 62 770

PVC/ VC2co2Vac 57 482

PVC/ VC-co-VAc-co-MIL 54 603

[9]

对于憎水性膜材料,混入含亲水基团的组分,亲水组分的含量对膜的亲水性及膜性能影响

很大,随亲水组分的含量增加,膜的亲水性增强,水通量增大。SPSF 是PSF 经磺化处理而生成的亲水性材料,这种材料与PSF 共混,材料性质相似,相容性好,对膜结构的影响也小。但由于增强了膜的亲水性,膜的渗透性提高,随膜中SPSF 含量的增加,水通量增大(见表2) 。相反,在CDA/ CTA 组成的合金脱盐膜中,憎水性CTA 含量的增加导致膜的透水率下降,脱盐率上升。

表2 PSF/ SPSF 合金组分的比例对膜性能的影响

-----------------------------------------------------------------------

材料比例水通量/ L·m- 2·h - 1 截留率

---------------------------------------------------------------------------- 70∶30 8~14 79.9

65∶35 12~22 79.9

60∶40 6~28 79.7

---------------------------------------------------------------------------

[9]

改变膜亲水性的另一个方法就是改变共混组分分子上取代基的含量。在PSF/ CPSF 组成

的共混体系中,CPSF 的羧基取代度为0.87 的合金膜,水的溶胀趋势明显高于取代度为0.45

的膜。梁国明研究了聚醚酮( PEK) / SPSAF 合金体系中SPSF 的SO3Na 基团的交换当量对合

金膜的亲水性的影响,发现随SPSF 交换当量的增加,合金膜的纯水接触角减小,亲水性增加。

若共混组分分子上的取代基为憎水基团,则其取代度越高,合金膜的亲水性越弱,这种膜可获

得较高的分离率。醋酸纤维素脱盐膜随乙酰取代度的增加,材料的亲水性下降,其致密膜水蒸

汽吸附顺序为CDA > CDA/ CTA > CTA ,因此通过改变醋酸纤维素的乙酰取代度可以在保持

一定通量条件下,获得一个理想的脱盐率

PS 是当前最为广泛应用的膜材料,它的憎水性也是人所皆知的,PS 超滤膜在保持一

定截留率下其通量往往不够理想。PS 与亲水性较强的材料PVA、CA (醋酸纤维素)、AN-Vac (丙烯腈-醋酸乙烯共聚物)、聚原酸酯-b-聚乙二醇嵌段共聚物等共混都不同程度地提高了PS

的亲水性[6] 。邱运仁等[7]用聚乙烯醇 (PVA)、CA、冰醋酸、水为制膜原料,用相转化法制

备了PVA-CA 共混超滤膜。在一定范围内研究了不同膜液组成对超滤膜性能的影响,得到

了较佳的膜液配方。制备的PVA-CA共混超滤膜在操作压力0.3MPa 下,处理质量浓度为1000mg/L 的水油型模拟含油乳化液,其渗透速率约40L/m2·h,除油率可达90%以上,并且,此超滤膜的耐水性和溶胀性均优于未改性的PVA 超滤膜。裴广铃[8]等以聚砜/螯合树脂作为

膜材料,用相转化法制备了孔径在5nm~60nm 之间的共混螯合平板超滤膜,通过增加树脂

含量,延长膜的挥发时间使膜通量显著提高。

2.2.2 高聚物与陶瓷材料的共混改性

有机高分子具有弹性高、韧性好,分离性能优良等优点,但存在透气率低、抗腐蚀性差及不耐高温等弱点。虽然已合成了许多耐高温的高聚物,如聚四氟乙烯、聚硅氧烷、聚醚砜酮等,但这些耐高温的高聚物在成膜时大多需用支撑体,虽也可制成自支撑型膜,但由于膜较厚、透气率低,难以满足实用要求。高聚物支撑体也面临着类似的弱点。无机膜,尤其是陶瓷膜,则有许多独特的物理、化学性能,尤其在涉及高温以及有腐蚀性环境的分离过程中,有着高聚物膜材料所无可比拟的优势,但因受Knudsen扩散限制,分离性能很差。在膜材料的研究过程中人们发现,将两种材料有效地结合在一起,得到一种新型的有机/无机复合材料,可以同时得到既具有优良的分离性能又能耐受较苛刻的环境条件的新型的超滤膜。

【10】

赵梓年,等以聚氨酯为基质,添加二氧化硅及界面改性剂,通过湿法相转化法制备聚氨酯杂

化超滤膜。实验结果表明,二氧化硅可以显著改善膜孔的结构,膜水通量有较大幅度的提高,

二氧化硅用量在一定范围内,截留率也有一定增加。界面改性剂的加入可使二氧化硅在聚氨

酯铸膜液中均匀分散,进一步增加聚氨酯与二氧化硅之间的界面微孔数量及细化微孔,使该膜

的水通量和截留率进一步增加。用扫描电镜对膜的结构形态进行了观察。

姜云鹏等[10]以PVA 和纳米SiO2 为原料,通过相转化法,制备出不同SiO2 含量的

PVA/SiO2 共混均质膜。通过示差量热扫描法 (DSC) 和力学性能测试表明,与PVA 膜相比,PVA/SiO2 膜具有更高的热稳定性和耐溶剂性,并具有较好的抗污染能力。A. Bottino 等[11]

以PVDF 和ZrO2 为原料制得了PVDF/ZrO2 共混超滤膜,并通过改变制备参数,如:PVDF 的溶剂、PVDF/ZrO2 比率等制备了一系列共混超滤膜,通过电镜观测和超滤性能测试,发

现膜的结构和性能有了显著的改变。张裕卿等人[12]则将亲水的Al2O3 添加到PS 铸膜液中,采用相转化法制备了PS/Al2O3 共混膜。通过对该膜微观结构的分析发现,Al2O3 颗粒均匀

地分布于整个膜中,同时Al2O3 和PS 之间存在的中间过度相使它们牢固地结合在一起,同

时膜的亲水性得到改善。

高分子材料的合金化用于调节膜的亲水性及膜性能的方法简单、经济,膜材料的选择范

围广,可调节的参数多,膜性能改善的幅度大,为膜材料的开发及膜性能的进一步完善开辟了

一条新路,有着广阔的发展前景。

三化学改性

3.1 膜表面化学改性

与膜表面物理改性相比,膜表面化学改性使得功能基团以化学键与膜表面键合,从而不会在物质透过膜时被稀释,不会引起功能基团得流失,另外,接枝反应发生在聚合物表面,不会影响聚合物的内部结构。这样,不仅可以赋予聚合物膜新的性质,而且不会降低原聚合物膜的力学性能。接枝改性可以通过几种方法来实现,如紫外辐照、γ射线辐照接枝

聚合、等离子体表面聚合改性、界面缩聚等方法。

3.1.1 等离子体改性

等离子体是气体在电场作用下,部分气体分子发生电离,生成共存的电子及正离子、激发态分子及自由基,气体整体呈电中性,这就是物质存在的第4 种状态-等离子状态。实验室中获得等离子体的方法有热电离法、激光法、光电离法、射线辐照法及气体放电法等。等离子体中所富集的这些活性离子具有较高的能量,能激活物质分子,发生物理或化学变化。用等离子体对超滤膜进行表面处理具有简单、快速、工艺干法化、改性仅涉及表面而不影响本体结构和性能等优点,已引起研究者的广泛关注。对改善高分子材料的亲水性、染色性、渗透性、电镀性、粘合性等方面具有广泛的应用前景

杨牛珍等人【14】研究了聚丙烯腈 (PAN) 平板超滤膜的低温氧等离子体表面改性。结果表明,改性后的PAN 超滤膜透水率降低,截留率上升。研究了低温等离子体条件 (放电功率、反应腔压力、改性处理时间) 对改性结果的影响。实验研究表明,改变低温等离子体条件,可以控制改性程度。

3.1.2 光化学接枝[15]

光化学接枝也称光接枝,始于1957 年; O ster等人的研究,20 世纪80 年代以来,由于其简便快速的特点日益受到重视。近十几年来,分离膜的光接枝改性和功能化成为研究热点。光接枝通常采用的是紫外光,接枝聚合的首要条件是生成表面引发中心———表面自由基。依据表面自由基产生方式的不同,光接枝过程可以分为以下四类

(1)聚合物辐照分解法

对于一些含光敏基团(如羰基) ,特别是侧链含有光敏基的聚合物,当紫外光照射其表面时会发生Norrish Ⅰ型反应,产生表面自由基,这些自由基可引发乙烯类单体聚合,生成接枝聚合物,

羰基和烷基自由基则可引发产生均聚物。具体反应过程如图1 所示。由于适合于此方法的聚合物较少,因而该方法不常用。

图1 聚合物辐照分解引发光接枝

(2) 自由基链转移法

自由基链转移法是利用自由基向聚合物的转移,在聚合物表面上产生自由基,进一步引发接枝反应。安息香类光敏剂是一类常用的光敏剂(以安息香双甲醚为例) ,当受到紫外光照射时,发生NorrishΙ型反应,产生两个自由基(R·) ,反应如图2 所示

图2 自由基链转移引发光接枝

在单体浓度很低的情况下,两个自由基均会向聚合物表面或大分子链转移,产生表面自由基,引发接枝聚合反应。此类引发体系在光敏剂产生的自由基向大分子转移生成接枝聚合物的同时,也能引发单体聚合,生成均聚物。当控制单体浓度很低,表面自由基浓度又很大时,可以实现有效的表面接枝

(3) 氢提取反应法

芳香酮类光敏剂受到紫外光照射后,被激发到单线态(S3 ) ,然后又迅速通过系间跃迁到稳定的三线态 (T3 ) 。如果有供氢体存在,则发生光还原反应,光敏剂分子的羰基夺取氢而被还原成羟基,供氢体成为烷基自由基,当供氢体是聚合物表面时,就会形成表面自由基,这些表面自由基与单体反应,生成接枝聚合物。以二苯甲酮(BP) 为例,其引发机理如图3 所示。该反应体系中供氢体可以是任何有机材料,因而几乎所有的聚合物材料表面均可进行接枝聚合反应

图3 BP 引发接枝反应原理

(4) 光生过氧基热裂解法

该方法属于一种间接光引发自由基聚合反应的方法,就是通过紫外光照射,在聚合物表面生成过氧基团,然后过氧基团热裂解引发自由基聚合反应(图4) 。

图4 光诱导过氧基热裂解引发接枝

由于紫外的能量相对高能辐射低,反应所需的时间较长,另外,不适用于对紫外光敏感的材料。实际应用中常加入光敏剂促进过氧基团的生成。

表面光接枝改性技术的实施方法主要包括三类:气相接枝、液相接枝、连续液相接枝。其中连续液相接枝因能连续操作而更受青睐。

3.1.3 化学接枝法

化学接枝即采用化学试剂引发接枝聚合反应。可以先制得接枝型的膜材料,然后制膜,也可以直接在成品膜表面进行接枝反应。常用的引发剂为自由基型引发剂,如:过氧类和过硫酸盐等。此种方法报道较少。

3.1.4 辐射接枝

【2】通过高能辐射线引发单体聚合,称为辐射聚合。辐射线可分为γ-射线、X-射线、β-射线、α-射线及中子射线。其中γ-射线的能量最高。60Co-γ射线穿透力强,反应均匀,而且

操作容易,应用最广。主要是利用高能γ射线促使材料表面产生自由基,引发单体接枝聚合,把某些性能的基团或聚合物支链接到膜材料的高分子链上致使高分子膜的内部结构或表面性能发生变化,从而达到聚合物膜改性的目的。陆晓峰等对聚偏氟乙烯 (PVDF) 超滤膜进行了辐照接枝改性。在膜表面先通过60Co-γ射线辐照,然后接枝乙烯基单体,再进行磺化,使PVDF 膜成为具有磺酸基团的超滤膜。研究了辐照剂量、接枝时间对接枝率的影响和磺化反应条件等。实验结果表明,改性后的PVDF 超滤膜的截留率提高,污染度下降,亲水性增强。

【2】近年来,出现了用高速重离子辐照进行PVDF 超滤膜表面改性的方法[11]。其辐照能从几个MeV 到几百个MeV,通常用79Br2+ (160MeV)、35Cl6+ (90MeV)、35Cl9+ (150MeV),通过ESR 光谱分析,这种离子辐照与γ射线很相近,室温下与空气接触,所引发的自由基会与O2 反应生成含氧自由基。有人研究了高速重离子辐照引发接枝反应的影响因素,包括辐照参数 (辐照计量、电子阻止本领)、基材参数 (厚度) 和高聚物参数 (单体种类和浓度、辐照时间等)。通过对PVDF 膜上接枝甲基丙烯酸甲酯和苯乙烯单体的研究发现,这些参数不仅对接枝共聚物的结构有影响,而且对接枝链的长度也有影响。聚合反应的接枝率主要取决于所用激发离子的类型。

以上四种接枝方法,各自的优缺点如下表3所示

表3

接枝改性方法优点缺 点

------------------------------------------------------------------------------- 化学接枝条件易控制反应速度慢,均聚物很难去除

辐射接枝反应迅速、可选膜材料多设备要求高,对材料本体有损伤

等离子体反应迅速,可控制在材料的表面反应条件苛刻,处理部件体积不能太大光化学接枝反应迅速,基本在材料表面和亚对异型材料不太适合

表面进行,设备要求低,可以连续化操作对不同材料和引发剂,接枝反应活性不同—————————————————————————————————————— 3.2 膜化学改性【5】

膜材料化学改性包括材料的共聚、接枝、用化学方法赋予亲水基团等。其中共聚改性如分别将42乙基吡啶与丙烯腈、苯乙烯共聚以改善丙烯腈、苯乙烯与水的亲和性。接枝也是较为常用的一种膜材料改性方法,如在PVDF 分子上接枝丙烯酸、丙烯酰胺等。化学改性的方法有在原有膜材料的分子上引入其它官能团,如新型的高分子材料PES-C、PEK-C 在保留了PES、PEK原有性能的基础上增加了酞基基团,提高了材料的亲水性; PVC 分子上引入-CN、-COOH ;在PSF 分子引入-SO3H、- COOH等基团; 在氧化剂存在下用强碱处理PVDF 引入亲水基团;改变CA分子上的乙酰基取代度或引入-CN基团;调节聚酰胺分子中亲水性的酰胺基

团的比例等。以上方法都不同程度地改变了膜材料的亲水性

四 结束语

随着膜技术的广泛应用和发展,高聚物作为主要的膜材料,其性能的研究已成为人们关注的热点。开发研制新材料的同时,必将出现更多的膜改性方法。相比较而言,膜表面改性只是在一定程度上改了膜表面的孔径、孔径分布及亲水性,其改性过程中存在一些不确定因素,特别是经过表面物理改性膜在使用过程中常常存在吸附、涂敷层脱落的现象,使膜的性能显

著下降;而膜材料改性则可避免这不利因素,并且改性效果持久稳定。在膜材料改性中,共混改性以其操作简便、效果好而受到青睐。其是有机/无机膜材料的共混,可以综合有机、无机膜的优点,使膜的性能进一步改善,以满足特定的离过程。由于共混体系的相容性机理及无机材料在有机相中的分散等方面的研究还有待于深入,因此滤膜的共混改性必将是今后膜分离技术发展的重要方向之一。

五 参考文献

1 徐又一,徐志康等高分子膜材料化学工业初版社 2005年4月第1版

2 杨亚楠改性高分子超滤膜的研究进展离子交换与吸附 2005/01

3 韩式荆, 刘忠洲, 刘建维水处理技术[J], 1989, 5(2): 87~92

4 李 伟, 黄硕安, 华东理工大学学报[J], 1995, 21(1): 13~16

5 罗川南, 杨 勇, 化学研究与应用[J], 2003, 15(2): 177~181

6 宋艳秋, 原续波, 盛 京, 化学工业与工程[J], 2002, 19(1): 32~36

7 邱运仁, 张启修, 现代化工[J], 2001, 21(10): 28~31

8 裴广铃, 成国祥, 杜起云, 离子交换与吸附[J], 2001, 17(2): 138~144

9 罗传楠,杨勇,高分子膜分离材料亲水改性对膜性能的影响,合成技术及应用,2002,17(2):23~26

10 赵梓年,许昆鹏,文志红聚氨酯杂化超滤膜的制备及其性能研究 塑 料 2005,34(6):41~44

11 姜云鹏, 王榕树, 高分子材料科学与工程[J], 2002, 18(5): 177~180

12 Bottino A., Capannelli G., Comite A., Desalination [J], 2002, 146(5): 35~40

13 张裕卿, 丁 健, 化学工程[J], 2000, 28(5): 42~44

14 杨牛珍, 王英特, 郭明远 等, 西北纺织工学院学报[J], 2000, 14(3): 314~317

15 杨 彪,聚合物分离膜接枝改性技术及应用,中 国 塑 料,2004,18(6):9~10

智能型高分子膜的制备及应用研究进展

智能型高分子膜的制备及应用研究进展 摘要:膜材料的智能化是当今分离材料领域发展的一个新方向。讨论了智能型高分子膜材料的分类、制备方法及其环境响应特性等,分析了智能型高分子膜的应用现状及其应用前景,并展望了智能型高分子膜技术今后的研究和发展方向。 关键词:智能膜,智能高分子 Research process in preparation of intelligent polymer membranes and their application Abstract: the membrane material is the separation of intelligent material field in a new direction of development. Intelligent polymer film are discussed Material classification, preparation metho d and its environment, the response characteristics of intelligent polymer film and the application prospect of application situation and prospects of intelligent polymer membrane technology res earch and development direction. Keywords: intelligent membrane, intelligent polymer (一)引言膜的调研 膜是一种二维材料,是两相之间的选择性屏障。在自然界中,特别是在生物体内广泛存在,它与生命活动密切相关,是一切生命活动的基础,如能量转换、细胞识别、免疫激素、药物的作用和物质的传输等构成生命活动的基本问题,都与生物膜功能有关,而所有这些活动都是在界面上发生的,因此,研究膜及其界面具有重要的意义。近几年来,膜作为一种新型的高分离、浓缩、提纯及净化技术,已经广泛应用于生产。但是,随着人民生活水平的不断提高和科学技术的不断进步,对膜的要求也越来越高。由于目前已应用于生产的和科学研究的膜材料并不能响应环境的变化,已经不能满足人们的需要所以一种新型的膜应运而生——智能膜,智能膜能够响应各种环境的变化,而逐渐成为近几年来人们开发和研究的热点之一。智能膜材是智能材料的一种,即可感知、响应外界环境细微变化与刺激而发生膨胀、收缩等相应的自身调节,并且有功能发现能力的膜用材料。目前应用主要是高分子材料,合成高分子和天然高分子材料。 智能型高分子膜 膜技术是一种高效的流体分离技术,与传统的分离技术(如蒸馏等)相比具有效率高、能耗低、操作简便、对环境无污染等特点,在节能降耗、清洁生产和循环经济中发挥着越来越重要的作用。在膜分离中,膜材料起着关键作用,目前人们对高分子膜材料的研究逐渐 从传统商品化膜材料向功能性、智能型膜材料的方向发展。与传统商品分离膜不同,智能膜中含有对外界刺激做出可逆反应的基团或链段,从而使膜的结构岁外界刺激变化而可逆地改变,导致膜性能(如孔径大小、亲/疏水性等)的改变,从而控制膜的通量,提高膜的选择性。目前,膜材料的智能化已经成为当今分离材料领域发展的一个新方向。智能高分子膜在控制释放、化学分离、生物医药、化学传感器、人工脏器、水处理等多个领域具有重要的潜在价值。 现状前景 智能高分子膜是近十年来膜研究的一个崭新的领域。随着高新技术的发展,它已经在很多方面取得了较大的进步,例如在物质分离,感应元件,药物释放系统和固定化酶等方面有了一定的研究和应用,逐步开发出了一些新型膜材如LB (langmuir-blodgett)膜,分子自组装膜,纳米自组装膜和具有可调纳米孔道的高分子薄膜等。但是,目前,我国智能膜材的研究与开发存在着不足,与世界先进水平相比尚有相当大的差距,制约着我国信息、航天、航空、能源、建筑材料、

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

高分子功能膜材料

第八章高分子功能膜材料 膜是一种能够分隔两相界面,并以特定的形式限制和传递各种物质的二维材料,在自然界中随处可见。天然存在的膜有生物膜,膜也可以人工制作,如高分子合成膜。膜可以是均相的,也可以是非均相的;可以是对称的,也可以是非对称的;可以是固体的,也可以是液体的;可以是中性的,也可以是带电荷的。膜的厚度可从几微米到几毫米不等。 随着科学的发展,越来越多的人工合成膜相继被开发出来,应用到各个行业中,起到分离和选择透过等重要作用。高分子功能膜作为人工合成膜中的重要一员,在药物缓释、膜修饰电极、气体分离等领域表现出特殊的分离功能,并因其广阔的应用前景而受到极大的关注。本章将主要讨论高分子功能膜的分离原理,并以主要的分离膜为代表,介绍其制备方法和应用。 8,1 概述 8.1.1 高分子分离膜的分类 高分子分离膜是具有分离功能,即具有特殊传质功能的高分子材料,又称为高分子功能膜。其形态有固态,也有液态。高分子分离膜的种类和功能繁多,不可能用单一的方法来明确分类,现有的分类既可以从被分离物质的角度分,也可以从膜的形状、材料等角度分,目前主要有以下几种分类方式。 8.1.1.1 按被分离物质性质分类 根据被分离物质的性质可以将分离膜分为气体分离膜、液体分离膜、固体分离膜、离子分离膜和微生物分离膜等。 8.1.1.2按膜形态分类 根据固态膜的形状,可分为平板膜(flat membrane)、管式膜(tubular membrane)、中空纤维膜(hollow fiber)、毛细管膜以及具有垂直于膜表面的圆柱形孔的核径蚀刻膜等。液膜是液体高分子在液体和气体或液体和液体相界面之间形成的膜。 8.1.1.3按膜的材料分类 从膜材料的来源来看,分离膜可以是天然的也可以是合成的,或者是天然物质改性或再生的。不同的膜材料具有不同的成膜性能、化学稳定性、耐酸、耐碱、耐氧化剂和耐微生物侵蚀等,而且膜材料对被分离介质也具有一定的选择性。这类膜可以进一步分为以下几类。 (1)纤维素衍生物类纤维素类膜材料是研究最早、应用最多的高分子功能膜材料之一.主要有再生纤维素、硝酸纤维素、二醋酸纤维素和三醋酸纤维素、乙基纤维素等。 (2)聚烯烃类聚烯烃及其衍生物是重要的高分子聚合物,很多都可以用于制备气体分离膜,如低密度聚乙烯、高密度聚乙烯、聚丙烯、聚4-甲基-1-戊烯、聚氯乙烯、聚乙烯醇、聚丙烯腈等。 (3)聚酯类涤纶、聚碳酸酯、聚对苯二甲酸丁二酯这类树脂强度高、尺寸稳定性好、耐热和耐溶剂性优良,被广泛用于制备分离膜的支撑增强材料。 (4)聚酰(亚)胺类尼龙-6和尼龙-66是这一类分离膜材料的代表,常用于反渗透膜和气体分离膜的支撑底布,芳香族聚酰胺是第二代反渗透膜材料,用于中空纤维膜的制备。含氟聚酰亚胺作为具有实用前景的气体分离膜材料目前处于开发阶段。用聚酰胺类制备的膜,具有良好的分离与透过性能,且耐高压、耐高温、耐溶剂,是制备耐溶剂超滤膜和非水溶液分离膜的首选材料,缺点是耐氯性能较差。 (5) 聚砜类这类材料包括聚砜、聚醚砜、聚芳醚砜、磺化聚砜等,是高机械强度的工程塑料,具有耐酸、耐碱的优点,多用于超滤膜和气体分离膜的制备,较少用于微滤,可在80℃下长期使用,缺点是耐有机溶剂的性能较差。

聚合物表面改性方法综述

聚合物表面改性方法综述 连建伟 (中国林业科学研究院林产化学工业研究所) 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由 1mol的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有 31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法

2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。 2.1.1 浸没沉淀制膜工艺 目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。 浸入沉淀法至少涉及聚合物/溶剂/非溶剂3个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板

分离膜的改性方法

高分子分离膜的改性方法 张爱娟(04300036) [摘要]:随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水 性,提高膜的抗污染能力已成为有待解决的迫切问题。由于单一的膜材料很难同时具有良好的亲水性、成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性侵蚀、耐氧化性和较好的机械强度等优点,因此采用膜材料改性或膜表面改性的方法来提高膜的性能,是解决这一问题的关键。其中,化学改性可以通过膜材料和膜表面的化学改性来实现;而物理改性则主要是通过材料共混改性和表面涂覆或表面吸附来实现。 [关键词]:膜;改性;物理改性;化学改性 一引言 膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程的领域得到广泛的应用。然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。目前使用的大多数膜的材料是聚丙烯(PP)。聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别时当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜便面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集,导致一系列的生物反应,例如形成血栓及免疫反应。即使当蛋白质对分离膜的影响可以忽略,膜基体材料的亲水性、荷电性及荷电密度等性质对蛋白质的吸附都会产生重要的影响。因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。对膜材料的改性的方法有物理改性,化学改性和表面生物改性。 二物理改性 2.1 表面物理改性 1】 2.1.1 表面涂覆改性【 以分离膜为支撑层,将表面活性剂涂覆在支撑层表面而达到改性的目的,表面活性剂可以是有机物或无机物。但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是活性剂易从高分子表面脱离,不能得到永久的改性效果。但这种方法显示了制备一系列具有不同截留率分离膜的可能性。 2.1.2 表面吸附改性【2】

无机分体表面改性方法综述

无机粉体表面改性方法综述 唐亚峰 (南华大学化学化工学院无机非金属材料系湖南衡阳) 摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。 关键词:无机粉体;表面改性;改性方法;新型方法; 前言 无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。 无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。 本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。最后对无机粉体表面改性方法进行了展望。 1 无机粉体表面改性的机理 由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

高分子膜材料

高分子膜材料 姓名:*** 指导老师:** 专业:高分子材料2011年6月8号

摘要:高分子膜材料具有制备简单、性能稳定以及与指示剂相容性好等特点。本文介绍高分子膜材料的分类、性能以及高分子膜材料在工业、农业以及日常生活中的应用,主要是论述高分子膜材料的研究进展以及发展前景等。 前言:高分子膜材料虽然很早就出现,但是对它的研究还是近些年来才开始。在上世纪20年代,由于石油工业的发展促进了三大合成材料品种的不断增多,高分子膜材料的应用范围也在逐渐扩大。由包装膜开始,在30年代已经将纤维膜应用于超滤分离;40年代则出现了离子交换膜和点渗析分离法;50年代出现了饭渗透法膜分离技术;60年代又加拿大和美国学者分别成功的制造出了高效能膜和超过滤膜,总之,国外高分子膜材料技术的发展是迅速的。近年来,我国的科研工作者也开始重视这方面的研究,膜的汇总类及应用范围在不断扩大,其中用量最大的是选择性分离膜,如离子交换膜、微孔过滤膜、超过滤膜、液膜、液晶膜等等。目前已应用的领域有核燃料及金属提炼、气体分离、海水淡化、超纯水制备、污废处理、人工脏器的孩子早、医药、食品农药、化工等各个方面。

众所周知,进入二十一世纪以后,环境已经成为制约各国发展的重要因素,各种各样的工业废水、废气以及工业垃圾对环境造成了巨大破坏。而高分子膜材料以其独特的微处理性可以很好的清除废水、废气以及工业垃圾中所含有的有毒重金属、有机物和矿物质等物质,因而在新世纪高分子膜材料必然迎来新的发展。

目录 第一节:高分子膜材料的研究分类 (2) 第二节:各种高分子膜材料的的介绍 (3) 第三节:高分子膜材料的发展前景 (5) 第四节:高分子膜材料的性能 (6) 第五节:高分子膜材料的应用 (8) 参考文献 (11)

材料改性教学总结

材料改性

浅谈表面改性 摘要:本文主要总结了各种材料的改性及改性剂对其的影响,其中还涉及到各种改性方法及对材料改性的展望。 关键字:表面改性纳米金属 1 引言 表面改性是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等。表面改性的方法有很多报道,大体上可以归结为:表面化学反应法、表面接枝法、表面复合化法等。 表面改性技术(surface modified technique) 则是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 2表面改性对不同材料性能的影响 2.1 对SF/PP复合材料性能的影响 剑麻纤维(SF)因具有较高的比强度和比模量而成为树脂基体较好的天然纤维增强材料,适用于制备成本低、比模量高和耐冲击的纤维/树脂复合材料。国内常用马来酸酐接枝聚丙烯或有机硅烷为界面相容剂,来提高SF/PP复合材料的力学性能,表面改性可以提高纤维与PP基体的黏合性。使SF/PP复合材料的力学性能和流动性能提高,吸水率下降【1】。 2.2对羟基磷灰石蛋白吸附的影响 羟基磷灰石因为与人体骨组织中的无机组分相近而被广泛应用于有机/ 无机复合物中。但是, HAP 表面具有亲水性, 大多数应用于骨修复的有机材料具有疏水性, 两者的极性差异导致了界面相容性下降, 进而降低复合物的力学性能。克服这一困难最常用的方法

表面改性方法

镁合金表面熔覆改性技术 Surface Overlaying Modification Technology of Magnesium Alloys 摘要评述了镁合金表面熔覆改性技术的国内外发展概况,着重介绍了热喷涂、激光熔覆及热喷涂+激光重熔复合熔覆3种处理工艺和熔覆涂层材料,提出采用热喷涂+激光熔覆合法熔覆工艺、镁合金表面熔覆非晶合金以及熔覆高熔点涂层是提高镁合金表面性能的有效方法,具有良好的应用前景。 关键字:镁合金表面改性研究进展 Abstract:Recent developments of the application of surfacing overlaying modification technology of magnesium alloys are reviewed. The main treatment processes including thermal spraying, laser cladding and a two-step composite method, thermal spraying firstly then laser cladding, are introduced emphatically. Moreover, coating materials for surface modification of magnesium alloy are also summarized. It's pointed out that the composite technology of thermal spraying firstly then laser cladding, overlaying amorphous alloys coating and high melting point materials coating are effective methods of enhancing surface performance of magnesium alloys, which have good application prospects and are worth further studying. Key words magnesium alloys, surface modification, research progresses 1 序言 镁合金因密度低.比强度、比刚度高.电磁屏蔽性好.减震性好.以及优良的切削加工性能.在航空、汽车和电子通讯等行业中得到广泛的应用。但是镁的化学稳定性低.电极电位很负(-2.34V)耐蚀性差.月_镁合金的耐磨性、硬度及耐高温性能也较差.在某种程度上制约了镁合金材料的广泛应用。因此.如何提高镁合金的耐磨、耐腐蚀及耐热等综合性能已成为当今镁合金材料研究、发展的重要课题。有效的途径之一是对镁合金表而进行表而改性处理.在基体材料的表而形成相应的保护层。 日前,镁合金表而处理上要有化学转化、阳极氧化、表而渗层、表而电镀等方法这些方法都存在一些局限性.要么对环境有较人污染.要么所制得的涂层厚度、致密性有限而不能够有效保护。然而采用表而熔覆改性处理.如热喷涂、激光熔覆等方法.就可以克服以上不足.既环保又满足使用性能。本文综述了近年来国内外镁合金表而熔覆改性处理技术和熔覆涂层材料的发展概况。 2 镁合金表面熔覆工艺 2.1 热喷涂工艺 热喷涂技术几乎适用各种材料对零件表而的喷涂.对零件的尺寸大小及形

聚酰亚胺气体分离膜的改性研究

聚酰亚胺气体分离膜的改性研究 xxx,xxx xxxx大学化工学院 摘要:近年来,聚酰亚胺气体分离膜由于其高气体通量以及高选择性受到越来越广泛的研究。本文主要综述了聚酰亚胺膜的特点,针对其高压使用过程中的塑化现象提出改性方法。 关键词:聚酰亚胺;膜;气体分离;改性 Research in modification methods of polyimide membranes for gas separation Lijuan Liu, 030090927 Chemical Engineering Institute, East China University of Science and Technology Abstract: In recent years, polyimide membrane for gas separation has been widely researched because of high gas permeability and high selectivity. The properties of polyimide membrane are reviewed. Besides, most of synthesized polyimide under high pressure will face the problem of plasticization. Therefore, polyimide modification approaches for gas separation applications are focused. Keyword: polyimide; membrane; gas separation; modification 1 聚酰亚胺气体分离膜概述 聚酰亚胺(PI)是指主链上含有酰亚胺环的一类聚合物,主要由二元酐和二元胺合成[1],如图1所示,R1为二元酸酐,R2为芳族二元胺。这类聚合物虽然早在1908年就已有报道,但是并未被充分认识。最近几年,聚酰亚胺材料由于其耐热、高强、轻质等特点受到越来越广泛的研究。 图1 PI的化学结构 Fig.1 Chemical structure of PI

高分子分离膜的应用及发展综述

高分子分离膜的应用及发展综述 江苏技术师范学院化学与环境工程学院 09应化2Z 摘要:高分子分离膜是用高分子材料制成的,具有选择性透过功能的半透性薄 膜。本文介绍高分子分离膜的主要材料、分类以及高分子分离膜在日常生活中的广泛应用,并且论述了高分子分离膜的发展历程以及发展前景等。 关键词:高分子离子膜 高分子分离膜概述 高分子分离膜(polymeric membrane for separation),是由聚合物或高分子复合材料制得的具有分离流体混合物功能的薄膜。膜分离过程就是用分离膜作间隔层,在压力差、浓度差或电位差的推动力下,借流体混合物中各组分透过膜的速率不同,使之在膜的两侧分别富集,以达到分离、精制、浓缩及回收利用的目的 [7]。单位时间内流体通过膜的量(透过速度)、不同物质透过系数之比(分离系数)或对某种物质的截留率是衡量膜性能的重要指标。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。 高分子分离膜主要材料及制备 最初用作分离膜的高分子材料是纤维素酯类材料。后来,又逐渐采用了具有各种不同特性的聚砜、聚苯醚、芳香族聚酰胺、聚四氟乙烯、聚丙烯、聚丙烯腈、聚乙烯醇、聚苯并咪唑、聚酰亚胺等。高分子共混物和嵌段、接枝共聚物也越来越多地被用于制分离膜,使其具有单一均聚物所没有的特性。 1. 二氧化碳回收膜:是日本工业技术化学研究所新发明的一种环境保护膜,它是用聚醚矾合成的一种琼脂凝胶状薄膜。这种高分子膜可以分离和回收工厂或火力发电厂排放的二氧化碳,其效率达到世界先进水平。 2. 废水净化膜:瑞典发明。它主要是依靠一个命名为“Antric”的废水处理系统。这种系统是塔状结构,当它作用于废水上时,可以使废水中的有机物去除,同时产生一种含硫气体。这种气体在经过清洁器净化,即可以分离出硫元素而废水页已变得澄清无毒。 3. 诊测癌患膜:日本医学家将蚕丝溶解、干燥成一种超纯丝素膜,附上与抗原反应的单克隆抗体后,即可用来诊断癌症。由于它可使抗体固化在素膜上,加入血液与过氧化酶的抗体后,通过用装有载电极的免疫传感器测定所释放的氧气的数量,即可诊断是否患癌症。 4. 除臭生化膜:可除去70%~90%的抓硫醇、硫化氢等恶臭。同时还可除去体臭及卫生间、厨房、饲养场和医院等场所的臭味。 5. 食品空气保鲜膜:可以保鲜食品。 6. 超铜电导膜:非常易于导电。 7. 无电阻耐蚀膜:耐腐蚀的一种高性能氛基阴离子交换膜,把氛基阳离子交换膜改变为具有阴离子型阴离子交换基极性开关的一种膜。可以用来制造各种高性能电池以及高温电渗析的隔膜等。

材料改性论文2

分析杯形冲压件再结晶退火后杯底圆弧侧晶粒异常粗大的原因,并选择合适的工艺方法消除这种现象 摘要:冷变形金属经回复后使内应力得到很大程度的消除,同时又能保持冷变 形的硬化效果,因此,回复退火又称为去应力退火。在实际生产中,经常利用冷变形的工件进行去应力退火降低其内应力,如冲压件,冷拉钢丝,弹簧及锻件等。因此,一些铸件,焊接件及切削件,也须进行去应力退火。工件中的内应力的降低,可避免工件的变形或开裂,并提高其耐蚀性。 关键词:冲压件再结晶退火去应力退火工艺 一.分析杯底圆弧侧再结晶退火后晶粒异常粗大的原因。 1.再结晶退火机理 再结晶是指经冷变形的金属在足够高的温度下加热时,通过晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。和回复不同,再结晶是一个显微组织彻底改组,变形储存能充分释放、性能显著变化的过程。 下图是再结晶过程新晶核的形核与长大的过程。可见随保温的时间的延长,新的等轴晶粒逐渐增多并长大,直到完全取代了变形的晶粒。再结晶完成后组织形态及晶粒大小直接关系到金属的性能。 2.影响再结晶因素 (1)退火温度。温度越高,再结晶速度越大 (2)变形程度:变形程度越大,其储存的变形能也越高,再结晶驱动力越大,所以,不但开始再结晶的温度越低,同时等温退火时的再结晶速度也越快。但在变形量增大到一定程度时,再结晶温度趋于一个稳定的值。 (3)原始晶粒尺寸。在其他条件相同的情况下,金属的原始尺寸越小,则变形抗力越大,冷变形后储存的畸变能也越高,再结晶的驱动力也越大,再结晶的温度也越低。此外,金属的原始晶粒越细小,晶界越多,变形后

提供的再结晶形核点越多,有利于结晶。 (4)微量溶质原子:一方面,微量溶质原子灰产生一定的固溶强化作用,所以微量原子可增加变形储存能,有利于结晶。另一方面,微量原子汇 聚在晶界,阻碍了位错的运动,从而不利于再结晶。但实验表明,微量溶 质原子的存在,会阻碍金属的再结晶,从而提高其再结晶的温度。 (5)分散相粒子:分散相粒子既能促进再结晶,也能阻碍再结晶。 3.再结晶晶粒大小的控制 (1)预变形程度:当变形程度很小时不发生再结晶,故晶粒度不变。当变形程度在2%-8%的时候,再结晶晶粒特别粗大,此时的变形度即所谓 的临界变形度。当变形大于临界变形度的时候,晶粒逐渐细化。这是由于变形度增加。储存能也增加,N和G同时增大,但N增大的速度大于G 增大的速度,是G/N逐渐减小的缘故。 (2)原始晶粒尺寸:原始晶粒越细,再结晶后的晶粒也越细。因为原始晶粒细,变形储存能增高,形核驱动力大,且形核点增多,最终使G/N 减小。 (3)微量溶质元素和杂质。一方面增加储存能是驱动力增大,另一方面阻碍了晶界的移动,使G/N减小,从而使晶粒细化。 (4)退火温度。提高退火温度,不仅使再结晶后的晶粒粗大,而且还影响临界变形度的大小。退火温度越高,临界变形度越小,再结晶后的晶粒也越大。 加工率与退火温度——晶粒尺寸关系如下图 由上图可知杯形冲压件经过再结晶退火后,由于在杯底圆弧侧处加工时变形量大,从而导致再结晶退火后此处的晶粒比其他变形比较小的地方粗大。 而由于加工后,杯形冲压零件经过很大的塑性变形,留有残余应力使组织处于亚稳态,从而降低零件的性能与使用寿命,所以得对零件退火,让其组织稳定下来,再由于当退火温度高于再结晶温度时,就会存在某些地方塑性变形量大而使晶粒异常粗大,对零件的使用性能很大影响,所以退火应在其再结晶温度下进行——去应力退火。

光催化分离膜的改性

分离膜的光催化改性 xxxx (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) 摘要:膜技术作为水处理中的一种高效分离工艺,近年来备受关注,然而膜分离过程中发生的膜污染现象是制约该工艺发展的瓶颈。具有催化降解有机物及分离功能的催化分离膜的开发备受关注,依靠催化膜与光催化可同时实现水中污染的去除及减缓膜污染的目的。本文首先介绍了目前应用于催化分离膜制备过程中的催化剂和载体膜,然后论述了催化分离膜的制备主要方法,包括共混法、浸渍法、层层组装法、接枝法等进行论述。 1.引言 随着水污染问题的日趋严峻,膜分离技术在水资源利用和环境保护方面的作用“举足轻重”已成为国内外学术界的广泛共识[1]。膜分离技术的共同优点是能耗低、分离效率高、操作方便、过程简单、无污染,因而该工艺的研究与应用得到了广泛关注[2]。但膜污染却成为阻碍膜法水处理技术发展的关键性问题,如何有效抑制膜污染的发生关系着膜法水处理技术未来发展的前景,目前已成为众多学者开展研究的核

心方向。新近研究发现,催化分离膜在具有膜分离功能的同时还兼备催化活性,有望解决膜分离过程中发生的膜污染行为,同时强化污染物去除效率。 随着TiO2、ZnO 、石墨烯等纳米光催化材料被广泛应用于水处理领域中,实现在光照条件下有效降解天然有机物(NOM)、染料等各种水体污染物;同时,Lee等[3]学者发现光催化作用能够有效减缓膜过滤过程中膜污染的发生,延长膜材料的使用寿命。将膜材料的过滤截留作用与纳米材料的光催化作用相结合,成为众多国内外学者的研究方向。2.改性方法 2.1共混法 共混法是制备催化分离膜最常用的方法,这种方法是利用搅拌或加热熔融的方法将催化剂颗粒或催化剂溶胶液与铸膜液均匀混合来制备出催化分离膜[4]。 Yang等[5]通过将纳米尺寸的TiO2颗粒均匀分散于w=18% 聚砜铸膜液中,并通过相转化技术制备出聚砜/TiO 2 有机-无机复合超滤膜。实验表明,当TiO2质量分数为w=2% 时,复合光催化膜具有最佳的膜清水通量、亲水性、机械强度和抗膜污染性能。通过DSC和XRD分析表明,TiO2纳米颗粒和聚合物之间发生了化学反应。 2.2浸渍法 浸渍法是将基膜浸在已经制备好的催化剂溶胶溶液中,

材料改性题库

1物理改性和化学改性的分类依据是什么? 是否发生化学反应 2物理改性有哪些?有何特点。 Adsorption,complex,hydrogen bonding,sharp transition by forces Additive modification ,polymer blending ,polymer composition, physical crosslinking btw polymers Simple, economic and easily processing,normally used modification method 吸附、混合、氢键、sharp transition by forces(力作用的急剧转变)、添加剂改性、聚合物共混、聚合物合成、聚合物间的物理交联。 特点:简单、经济、过程简单、通常采用改性方法 3 化学改性有哪些?有何特点? Copolymerization, grafting polymerization, chemical crosslinking Functional groups reaction in polymer 共聚,接枝聚合,化学交联,聚合物的官能团反应。 特点:长期的影响,成本高,难以形成规模,交联改性可以在加工过程中加入交联剂。 4 表面改性有哪些特点? Medification only at surface of the materials Homogeneous heterogeneous Low cost in comparison with bulk modification Chemical oxidation treatment ,surface corona treatment,surface flame treatment ,surface thermal treatment and surface graft polymerization. Internal property no change surface property enhanced (luster ,hardness,wear resistance ,antistatic ,flame retardant ,adhesion ,printability, and heat resistance)表面光泽、硬度、耐磨、防静电、阻燃、粘合性、印刷性、热合性 只在材料的表面上改造(均匀的和不均匀的),与本体改性相比成本低,具体有:化学氧化处理,表面电晕处理,表面火焰处理,表面热处理和表面接枝聚合,特点:内部属性: 没有变化; 表面性质:增强(表面光泽、硬度、耐磨、防静电、阻燃、黏合性、印刷性及热合性等 5 list the methods of polymer modification Polymer blends 共混改性 Chemical modification 化学改性 Additive and polymer fiber reinforce 填充与纤维增强改性 Surface modification 表面改性 Polymer composites 复合改性 6 tell the difference between compatibility and miscibility Compatibility 相容性 Miscibility: 混溶性,thermodynamic ability to be mixed at the molecular level . compatibility 相容性; Miscibility 混溶性;thermodynamic ability to be mixed at the molecular level(在分子水平上共混的热力学能力) 7 高分子体系能够混合的热力学条件是? ?G<0 和

相关主题
文本预览
相关文档 最新文档