当前位置:文档之家› 条件概率及全概率公式练习题

条件概率及全概率公式练习题

条件概率及全概率公式练习题
条件概率及全概率公式练习题

条件概率知识点、例题、练习题

条件概率专题 一、知识点 ① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中 --- ) ()()()()(A B A A P B A P A B P μμ== A B A =事件包括的基本事件(样本点)数 事件包括的基本事件(样本点)数 ③ 在几何概型中 --- ) ()()()()(A B A A P B A P A B P μμ== (,,) (,,)A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等 条件概率及全概率公式 3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ). 答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令 A ={抽到一数字是3的倍数}; B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么 P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )> P (A |B 1), P (A )<P (A |B 2). 3.2.以下两个定义是否是等价的. 定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立. 答:不是的.因为条件概率的定义为 P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A ) 自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ). 因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.

专题10 条件概率(原卷版)

专题10 条件概率 例1.小智和电脑连续下两盘棋,已知小智第一盘获胜概率是0.5,小智连续两盘都获胜的概率是0.4,那么小智在第一盘获胜的条件下,第二盘也获胜的概率是() A.0.8B.0.4C.0.2D.0.5 例2.某种灯泡的使用寿命为2000小时的概率为0.85,超过2500小时的概率为0.35,若某个灯泡已经使用了2000小时,那么它能使用超过2500小时的概率为() A.17 20B. 7 17 C. 7 20 D. 3 17 例3.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制(无平局),甲在每局比赛中获胜的概 率均为2 3 ,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为() A.1 3 B. 2 5 C. 2 3 D. 4 5 例4.盒中有10个零件,其中8个是合格品,2个是不合格品,不放回地抽取2次,每次抽1个.已知第一次抽出的是合格品,则第二次抽出的是合格品的概率是() A.1 5B. 2 9 C. 7 9 D. 7 10 例5.现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A表示事件“抽到的两名医生性别相同”,B表示事件“抽到的两名医生都是女医生”,则(|)( P B A=) A.1 3 B. 4 7 C. 2 3 D. 3 4 例6.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不完全相同”,事件B为“小赵独自去一个景点”,则(|)( P B A=) A.3 7B. 4 7 C. 5 7 D. 6 7 例7.口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为. 例8.已知 1 (|) 2 P B A=, 3 () 10 P AB=,则P(A)=. 例9.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出两个球,记事件A=“取出的两个球颜色不同”,事件B=“取出一个红球,一个白球”,则(|) P B A=. 例10.某种疾病的患病率为0.50,患该种疾病且血检呈阳性的概率为0.49,则已知在患该种疾病的条件下血检呈阳性的概率为.

谈条件概率常见问题解题方法

谈条件概率常见问题解题法 摘要:条件概率是高中概率知识较难学的知识点之一,本文在于如何通过条 件概率的概念及性质来总结和概括条件概率的解题方法和常见的应用问题,以利于教师和学生更好地学习条件概率知识。 关键词:条件概率,事件、样本空间 1.条件概率的概念 一般地,设B A ,为两个事件,且0)(>A P ,称=)|(A B P ) ()(A P AB P 为在事件A 发生的条件下,事件B 发生的条件概率。 关于条件概率,有下面的定理: 定理1:设事件A 的概率0)(>A P ,则在事件A 已经发生的条件下事件B 的 条件概率等于事件AB 的概率除以事件A 的概率所得的商: =)|(A B P ) ()(A P AB P 推论:二事件的交的概率等于其中一事件的概率与另一事件在前一事件已发生的条件概率的乘积: )|()()|()()(B A P B P A B P A P AB P == 性质:1. ()P B A =1- )|(A B P 2.条件概率P(B ∣A)与积事件P(AB)概率的区别 )|(A B P 与)(AB P 这是两个截然不同的事件概率.设B A ,是随机试验对应的样本空间Ω中的两个事件,)(AB P 是事件B A ,同时发生的概率,而)|(A B P 是在事件A 已经发生的条件下事件B 的概率。从样本空间的角度看,这两种事件所对应的样本空间发生了改变, 求)(AB P 时,仍在原来的随机试验中所对应的样本空间Ω中进行讨论;而求)|(A B P 时,所考虑的样本空间就不是Ω了,这是因为前提条件中已经知道了一个条件(即A 已经发生),这样所考虑的样本空间的范围必然缩小了,当然乘法公式)(AB P =)|(A B P )(A P )0)((>A P 给出了它们之间的联系。 3.条件概率的解题方法: 解答条件概率问题,首先要判明问题的性质,确定所解的问题是不是条件概率问题。如果所要考虑的事件是在另一事件发生的前提下出现的,那么这一事件的概率,必须按条件概率来处理。求解简单条件概率问题,有五种基本方法: (1) 化为古典概型解决 )()(n )()()(A n B A A P B A P A B P ==A B A =事件包括的基本事件(样本点)数事件包括的基本事件(样本点)数 (2) 化为几何概型解决 )()()()()(A B A A P B A P A B P μμ==(,,)(,,) A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等 (3) 条件概率公式法 如果0)(>A P ,则先在原样本空间Ω中计算)(AB P 和)(A P ,再按公式 =)|(A B P ) ()(A P AB P 计算

事件的独立性与条件概率练习专题

事件的独立性与条件概率专题 1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为 ( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34

C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的 概率为13,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13 ,视力合格的概率为16,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( )

条件概率公式

条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者或者。 边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。 例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。 考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A ∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则?E∈σ(S),可以定义集函数PX|A如下: PX|A(E)=PX(A∩E)/PX(E)。 易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。

独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。 若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。

概率论易错点

概率易错知识点总结(原创) 1、“非等可能”与“等可能”的区别 如果一次随机实验中可能出现的结果有N个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/N;如果其中某个事件A包含的结果有M个,则事件A的概率为M/N。 2、互斥与对立 对立一定互斥,但是互斥不一定对立。不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P(A+B)=P(A)+P(B),必有一个发生的互斥事件叫做对立事件,如果A,B对立则满足两个条件(1)P(AB)=空集;(2)P(A+B)=1。 3、互斥与独立 不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P(A+B)=P(A)+P(B),事件A(或者B)是否发生不影响事件B(或者A)发生的概率,则A和B独立。此时P(AB)=P (A)p(B);概率为0或者1的事件与任何事件都独立,如果两个事件存在包含关系,则两个事件不独立;如果0〈P(A)〈1,0〈P(B)〈1,如果A,B互斥则不独立,如果A,B独立则不互斥(注意条件)。 4、排列与组合 这一点还是比较简单的,不过还是有部分同学不太清楚。排列与顺序有关,组合与顺序无关。还有一点要注意;同类相乘有序,不同类相乘无序。

5、不可能事件与概率为0的随机事件 这两者之间的关系为:不可能事件的概率P(Ф)=0,但是反过来,概率为零的随机事件A未必是不可能事件,也就是说,由P(A)=0推不出A=Ф,例如连续型随机变量在任何一点的概率都为0。 6、必然事件Ω与概率为1的事件 即必然事件的概率为1,但是概率为1的事件未必是必然事件,即由P(A)=1推不出A=Ω,对于一般情形,由P(A)=P(B)同样不能推得A=B即A=B仅仅是(A)=P(B)的充分条件。 7、有关条件概率, 一般记为P(A|B)表示 B事件的发生条件下A发生的概率,这里我要说明的是如果"B是A的子集"那么P(B|A)=P(B)是不对的,按推导P(B|A)=P(AB)/P(A)只有当P(A)=1时原式才等于P(B);同样可以理解P(A|B)=1如果我写出P(A|B)=1那么会有一半多的朋友会认为B是A的真子集,其实这是一道93年的真题,事实上这是一道错题,错就错在“B是A的真子集”是P(A|B)=1的充分条件,而不是必要条件,举个例子P(A|B)=P(AB)/P(B)(这里P(AB)是服从0~1分布的在区间为(0,1/2)的概率,P(B)是服从0~1分布的在区间为[0,1/2] 概率,他们的比也是1但是A 不是B的真子集

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

最新-条件概率示范教案

2.2.1 条件概率(1) 教材分析 本节内容是数学选修2-3 第二章 随机变量及其分布第二节 二项分布及其应用的起始课,是对概率知识的拓展,为了导出二项分布需要条件概率和事件的独立性的概念,条件概率是比较难理解的概念,教材利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过两个思考比较抽奖前和在第一名同学没有中奖的条件下,最后一名同学的中奖概率,引出条件概率的概念,给出了两种计算条件概率的方法,给出了条件概率的两个性质.本课题的重点是条件概率的概念,难点是件概率计算公式的应用.通过探究条件概率的概念的由来过程,可以很好地培养归纳、推理,学生分析问题、解决问题的能力,要求学生有意识地运用特殊与一般思想,在解决新问题的过程中,又要自觉的运用化归与转化思想,体现解决数学问题的一般思路与方法. 课时分配 本节内容用1课时的时间完成,主要讲解条件概率概念、性质及计算公式,并利用公式解决简单的概率问题. 教学目标 重点: 条件概率的概念. 难点:条件概率计算公式的应用. 知识点:条件概率. 能力点:探寻条件概率的概念、公式的思路,归纳、推理、有特殊到一般的数学思想的运用. 教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:如何理解条件概率的内涵. 考试点:求解决具体问题中的条件概率. 易错易混点:利用公式时()n A 易计算错. 拓展点:有放回.抽球时(|)P B A 与()P B 的关系 教具准备 多媒体课件和三角板 课堂模式 学案导学 一、引入新课 在生活中我们有些问题不好解决时经常采用抽签的办法,抽签有先后,对每个人公平吗? 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 【师生活动】师:如果三张奖卷分别用12,,X X Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有几种可能?能列举出来吗? 生:有六种可能:121221211221,,,,,X X Y X YX X X Y X YX YX X YX X . 师:用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 包含几个基本事件?

高三数学专题复习-条件概率问题

数学专题复习 一个很有趣的条件概率问题:三扇门问题 昨天看一片电影《玩转21点》,片中有一个很趣的概率问题。 片中涉及的那个车和羊的问题也被称作蒙提霍尔问题(Monty Hall Problem)或三门问题,是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目 “Let's Make a Deal”。问题的名字来自该节目的主持人蒙提·霍尔(Monty Hall)。 这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。 明确的限制条件如下: 参赛者在三扇门中挑选一扇。他并不知道内里有什么。 主持人知道每扇门后面有什么。 主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。 主持人永远都会挑一扇有山羊的门。 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。 如果参赛者挑了一扇有汽车的门,主持人随机在另外两扇门中挑一扇有山羊的门。 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。 请问如果是你,你会做哪种选择,哪个选择得到车的概率会更大呢? 讨论: ?当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。 解释如下: 有三种可能的情况,全部都有相等的可能性(1/3)︰ 参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。 参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。 参赛者挑汽车,主持人挑两头山羊的任何一头。转换将失败。 在头两种情况,参赛者可以通过转换选择而赢得汽车。第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。 ?历史上这个问题刚被提出的时候却引起了相当大的争议。这个问题源自美国电视娱乐节目Let’s Make a Deal,内容如前所述。作为吉尼斯世界纪录中智商最高的人,Savant在Parade Magazine对这一问题的解答是应该换,因为换了之后有2/3的概率赢得车,不换的话概率只有1/3。她的这一解答引来了大量读者信件,认为这个答案太荒唐了。因为直觉告诉人们:如果被打开的门后什么都没有,这个信息会改变剩余的两种选择的概率,哪一种都只能是1/2。持有这种观点的大约有十分之一是来自数学或科学研究机构,有的人甚至有博士学位。还有大批报纸专栏作家也加入了声讨

条件概率公式

条件概率 示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 若只有两个事件A,B,那么,P(A|B) = P(AB)/P(B)。 条件概率示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率:表示两个事件共同发生的概率。A与B的联合概率表示为P(AB) 或者P(A,B),或者P(A∩B)。 边缘概率:是某个事件发生的概率,而与其它事件无关。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。条件概率公式例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 定理1

设A,B 是两个事件,且A不是不可能事件,则称 为在事件A发生的条件下,事件B发生的条件概率。一般地,,且它满足以下三条件: (1)非负性;(2)规范性;(3)可列可加性。 定理2 设E 为随机试验,Ω为样本空间,A,B 为任意两个事件,设P(A)>0,称 为在“事件A 发生”的条件下事件B 的条件概率。 上述乘法公式可推广到任意有穷多个事件时的情况。 设A1,A2,…An为任意n 个事件(n≥2)且P(A1A2…An-1)>0,则P(A1A2…An)=P(A1)P(A2|A1)…P(An|A1A2…An-1)定理3(全概率公式1) 设B1,B2,…Bn是一组事件,若(1)BiBj≠j,i≠j,i,j=1,2,…,n;(2)B1∪B2∪…∪Bn=Ω则称B1,B2,…Bn样本空间Ω的一个部分,或称为样本空间Ω的一个完备事件组。 定理4(全概率公式2) 设事件组B1,B2是样本空间Ω的一个划分,且P(Bi)>0(i=1,2,…n),则对任一事件B,有

人教版 高中数学 2.2.1条件概率学案 选修2-3

人教版高中数学精品资料 高中数学 2.2.1条件概率学案 新人教A 版选 修 2-3 基础梳理 1.条件概率. 条件 设A ,B 为两个事件,且P (A )>0 含义 在事件A 发生的条件下,事件B 发生的条件概率 记作 P (B |A ) 读作 A 发生的条件下B 发生的概率 计算 公式 ①缩小样本空间法:P (B |A )=n (AB ) n (A ) ②公式法:P (B |A )=P (AB ) P (A ) P (B |A )与P (AB )的区别:P (B |A )的值是AB 发生相对于事件A 发生的概率的大小;而P (AB )是AB 发生相对于原来的总空间而言. 2.条件概率的性质. (1)有界性:0≤P (B |A )≤1; (2)可加性:如果B 和C 是互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ). 自测自评 1.下列说法中正确的是(B ) A .P (B |A )<P (AB ) B .P (B |A )= P (B ) P (A ) 是可能的 C .0<P (B |A )<1 D .P (A |A )=0

2.已知P (AB )=310,P (A )=3 5,则P (B |A )等于(B ) A.950 B.12 C.910 D.1 4 3.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则P (B |A )=(A ) A.13 B.15 C.16 D.112 解析:出现点数互不相同的共有6×5=30种,出现一个5点共有5×2=10种, 所以P (B |A )=1030=1 3 .故选 A. 不注意区分条件概率P (B |A )与积事件的概率P (AB )致误 【典例】 袋中装有大小相同的6个黄色的乒乓球,4个白色的乒乓球,每次抽取一球,取后不放回,连取两次,求在第一次取到白球的条件下第二次取到黄球的概率. 解析:记“第一次取到白球” 为事件A ,“第二次取到黄球” 为事件B ,“在第一次取到白球的条件下第二次取到黄球” 为事件C . 在事件A 已经发生的条件下,袋中只有9个球,其中3个白球,故此时取到黄球的概率为P (C )=P (B |A )=69=23或者P (C )=P (B |A )=P (AB )P (A )=4 1525 =2 3 . 【易错剖析】应注意P (AB )是事件A 和B 同时发生的概率,而P (B |A )是在事件A 已经发生的条件下事件B 发生的概率.若混淆这两个概念,就会出现如下错解: 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“在第一次取到白球的条件下第二次取到黄球”为事件C , ∴P (C )=P (AB )= 4×610×9=4 15 . 基础巩固 1.已知P (B |A )=13,P (A )=2 5,则P (AB )=(C ) A. 56 B.910 C.215 D.1 15 解析:P (AB )=P (B |A )·P (A )=13×25=2 15 .故选C. 2.把一枚硬币抛掷两次,事件B 为“第一次出现正面”,事件A 为“第二次出现反面”,则P (A |B )等于(B )

条件概率知识点、例题、练习题

条件概率专题 一、知识点 ①只须将无条件概率P(B)替换为条件概率P(B A),即可类比套用概率满足 的三条公理及其它性质 ②在古典概型中--- P(B A) P( AB) (AB) P(A) (A) ③在几何概型中--- P(B A) P( AB) (AB) P(A) (A) 事件AB包括的基本事件(样本点)数事件A包括的基本事件(样本点)数 区域AB的几何度量(长度,面积,体积等) 区域A的几何度量(长度,面积,体积等) 条件概率及全概率公式 .对任意两个事件A B,是否恒有P(A) > P(A| B). 答:不是?有人以为附加了一个B已发生的条件,就必然缩小了样本空间,也就缩小了概率,从而就一定有P(A) > P(A| B), 这种猜测是错误的?事实上, 可能P(A) > P(A| B),也可能P(A) < P(A|B),下面举例说明. 在0,1,…,9这十个数字中,任意抽取一个数字,令 A={抽到一数字是3的倍数}; B={抽到一数字是偶 数}; B2={抽到一数字大于8},那么 P(A)=3/10, P(A| B i)=1/5, P(AB)=1. 因此有P(A) > P(A| B i), P(A) v P(AB). .以下两个定义是否是等价的? 定义1. 若事件A、B满足P(A^=P(A)P(B), 则称A、B相互独立. 定义2.若事件A、B满足P(A|B)=P(A)或P(B|A)=P(B),则称A、B相互独立?答:不是的?因为条件概率的定义为 P(A B)=P(AB?/ P(B)或P(B| A)=P(A^/ P(A) 自然要求P(A)丰0, P(B)丰0,而定义1不存在这个附加条件,也就是说,P(AB=P(A)P(B)对于P(A)=0或P(B)=0也是成立的.事实上,若P(A)=0 由0W P(AB) < P(A)=0 可知P(AB=0 故P(AB=P(A)P(B). 因此定义1与定义2不等价,更确切地说由定义2可推出定义1, 但定义1 不能推出定义2,因此一般采用定义1更一般化. . 对任意事件 A 、B, 是否都有P(AB < P(A < P(A+B) < P(A)+P(B). 答:是的.由于P(A+B)=P(A)+P(B)- P(AB (*)

高三数学概率专题复习:事件与概率条件概率古典概率几何概率

高考数学专题复习事件与概率专项突破真题精选汇编(理,分章节)及详细解答答案 第一部分 第十三章 概率与统计 第一节 事件与概率 一、选择题 1.(2008年广州模拟)下列说法: ①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小; ②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n 就是事件的概率; ③百分率是频率,但不是概率; ④频率是不能脱离n 次的试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ⑤频率是概率的近似值,概率是概率的稳定值. 其中正确的是( ) A .①②③④ B .①④⑤ C .①②③④⑤ D .②③ 2.某班有3位同学分别做抛硬币试验20次,那么下面判断正确的是( ) A .3位同学都得到10次正面朝上,10次反面朝上 B .3位同学一共得到30次正面朝上,30次反面朝上 C .3位同学得到正面朝上的次数为10次的概率是相同的 D .3位同学中至少有一人得到10次正面朝上,10次反面朝上 3.同时掷3枚硬币,那么互为对立事件的是( ) A .至少有1枚正面和最多有1枚正面 B .最多1枚正面和恰有2枚正面 C .至多1枚正面和至少有2枚正面 D .至少有2枚正面和恰有1枚正面 4.从一篮鸡蛋中取1 个,如果其质量小于30克的概率是0.30,重量在[30,40]克的概率是0.50,那么重量不小于30克的概率是( ) A .0.30 B .0.50 C .0.80 D .0.70 5.(2009年福建)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,

概率论和数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

专题17.1 条件概率与全概率公式(精讲精析篇)(原卷版)

专题17.1 条件概率与全概率公式(精讲精析篇) 提纲挈领 点点突破 热门考点01 条件概率 1.条件概率 定义 一般地,当事件B发生的概率大于0时(即P(B)>0),已知事件B发生的条件下事 件A发生的概率,称为事件概率 表示P(A|B) 计算 公式 P(A|B)= P(A∩B) P(B) 2 (1)0≤P(B|A)≤1; (2)P(A|A)=1; (3)如果B与C互斥,则P(B∪C|A)=P(B|A)+P(C|A). 【两点说明】 1.如果知道事件A发生会影响事件B发生的概率,那么P(B)≠P(B|A); 2.已知A发生,在此条件下B发生,相当于AB发生,要求P(B|A),相当于把A看作新的基本事件空间计算AB发生的概率,即P(B|A)= n(AB) n(A) = n(AB) n(Ω) n(A) n(Ω) = P(AB) P(A) . 【典例1】一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A;事件“第二次抽到黑球”为B. (1)分别求事件A,B,A∩B发生的概率; (2)求P(B|A). 【典例2】现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:

(1)第1次抽到舞蹈节目的概率; (2)第1次和第2次都抽到舞蹈节目的概率; (3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率. 【典例3】在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率. 【总结提升】 1.用定义法求条件概率P (B |A )的步骤 (1)分析题意,弄清概率模型; (2)计算P (A ),P (A ∩B ); (3)代入公式求P (B |A )=P (A ∩B )P (A ) . 2.典例2第(3)问给出了两种求条件概率的方法,法一为定义法,法二利用基本事件个数直接作商,是一种重要的求条件概率的方法. 3.计算条件概率的方法 (1)在缩小后的样本空间ΩA 中计算事件B 发生的概率,即P (B |A ). (2)在原样本空间Ω中,先计算P (A ∩B ),P (A ),再利用公式P (B |A )=P (A ∩B )P (A ) 计算求得P (B |A ). 4.为了求复杂事件的概率,往往需要把该事件分为两个或多个互斥事件,求出简单事件的概率后,相加即可得到复杂事件的概率(如典例3).利用公式P (B ∪C |A )=P (B |A )+P (C |A )可使条件概率的计算较为简单,但应注意这个性质的使用前提是“B 与C 互斥”. 热门考点02 全概率公式 1.全概率公式 (1)P (B )=P (A )P (B |A )+P (A -)P (B |A -); (2)定理1 若样本空间Ω中的事件A 1,A 2,…,A n 满足: ①任意两个事件均互斥,即A i A j =?,i ,j =1,2,…,n ,i ≠j ; ②A 1+A 2+…+A n =Ω; ③P (A i )>0,i =1,2,…,n . 则对Ω中的任意事件B ,都有B =BA 1+BA 2+…+BA n ,且 P (B )=∑n i =1P (BA i )=∑n i =1P (A i )P (B |A i ). 2.贝叶斯公式 (1)一般地,当0<P (A )<1且P (B )>0时,有 P (A |B )=P (A )P (B |A )P (B )

-条件概率示范教案

-条件概率示范教案

2.2.1 条件概率(1) 教材分析 本节内容是数学选修2-3 第二章随机变量及其分布第二节二项分布及其应用的起始课,是对概率知识的拓展,为了导出二项分布需要条件概率和事件的独立性的概念,条件概率是比较难理解的概念,教材利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过两个思考比较抽奖前和在第一名同学没有中奖的条件下,最后一名同学的中奖概率,引出条件概率的概念,给出了两种计算条件概率的方法,给出了条件概率的两个性质.本课题的重点是条件概率的概念,难点是件概率计算公式的应用.通过探究条件概率的概念的由来过程,可以很好地培养归纳、推理,学生分析问题、解决问题的能力,要求学生有意识地运用特殊与一般思想,在解决新问题的过程中,又要自觉的运用化归与转化思想,体现解决数学问题的一般思路与方法. 课时分配 本节内容用1课时的时间完成,主要讲解条件概率概念、性质及计算公式,并利用公式解决简单的概率问题. 教学目标 重点: 条件概率的概念. 难点:条件概率计算公式的应用.

知识点:条件概率. 能力点:探寻条件概率的概念、公式的思路,归纳、 推理、有特殊到一般的数学思想的运用. 教育点:经历由特殊到一般的研究数学问题的过程, 体会探究的乐趣,激发学生的学习热情. 自主探究点:如何理解条件概率的内涵. 考试点:求解决具体问题中的条件概率. 易错易混点:利用公式时()n A 易计算错. 拓展点:有放回.抽球时(|)P B A 与()P B 的关系 教具准备 多媒体课件和三角板 课堂模式 学案导学 一、引入新课 在生活中我们有些问题不好解决时经常采用抽签的办法,抽签有先后,对每个人公平吗? 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 【师生活动】师:如果三张奖卷分别用12,,X X Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有几种可能?能列举出来吗? 生:有六种可能:121221211221,,,,,X X Y X YX X X Y X YX YX X YX X . 师:用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 包含几个基本事件?

1条件概率

§2.2.1条件概率 知识点 1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,记作“)(A B P ”。 2.由事件A 和B 所构成的事件D ,称为事件A 和B 的交(或积),记作 3.条件概率计算公式:)(A B P 数发生的条件下基本事件在包含的基本事件数发生的条件下在A B A =包含的基本事件数 包含的基本事件数A B A = 总数 包含的基本事件数总数包含的基本事件数A B A =)()(A P B A P = )0)((>A P 一 问题分析 问题1:抛掷红、蓝两颗骰子,设事件=A “蓝色骰子的点数为3或6”,事件=B “两颗骰子的点数之和大于8”,求: (1)事件A 发生的概率; (2)事件B 发生的概率; (3)已知事件A 发生的情况下,事件再B 发生的概率。 问题2:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,思考: (1) 三名同学中奖的概率各是多少?是否相等? (2) 若已知第一名同学没有中奖,那么第二名同学中奖的概率各是多少? (3) 在(1)和(2)中第二名同学中奖的概率是否相等?为什么? 二 典型例题分析 例1:抛掷一颗骰子,观察出现的点数 =A {出现的点数是奇数}=}531{,,,=B {出现的点数不超过3}=}3,2,1{,若已知出现的点数不超过3,求出现的点数是奇数的概率。 例2:一个家庭中有两个小孩。假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时 另一个小孩是男孩的概率是多少? 例3:甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1) 乙地为雨天时甲地也为雨天的概率是多少? (2) 甲地为雨天时乙地也为雨天的概率是多少? 例4: 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

相关主题
文本预览
相关文档 最新文档