当前位置:文档之家› 三点抗弯强度

三点抗弯强度

三点抗弯强度
三点抗弯强度

三点抗弯强度 Document number:WTWYT-WYWY-BTGTT-YTTYU-

第18讲教学方案——弯曲切应力、弯曲强度条件

§7-3弯曲切应力

梁受横弯曲时,虽然横截面上既有正应力σ,又有剪应力τ。但一般情况下,剪应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。

1.矩形截面梁

对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线

1aa 两端的剪应力必与截面两侧边相切,即与剪

力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设:

1)横截面上任一点处的剪应力方向均平行于剪力Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力

τ'。微块左右侧面上正应力的合力分别

为1N 和2N ,其中

*

1I 1**

z z

A

z

A S I M dA I My dA N ==

=??σ(a ) *

1II 2)()(*

*

z z A

z A S I dM M dA I y dM M dA N +=+=

=??σ(b) 式中,*A 为微块的侧面面积,)(

II I σσ为面积*A 中距中性轴为1y 处的正应力,?=

*

1

*

A

z dA y S 。

由微块沿x 方向的平衡条件

∑=0x ,得

021='-+-dx b N N τ(c )

将式(a )和式(b )代入式(c ),得

故z

z

bI S dx dM *

='τ

ττ='=,Q dx

dM

,故求得横截面上距中性轴为y 处横线上各点的剪应力τ为 z

z

bI QS *=τ(6-3) 式(6-3)也适用于其它截面形式的梁。式中,Q 为截面上的剪力;z I 为整个截面对中

性轴z 的惯性矩;b 为横截面在所求应力点处的宽度;*

y S 为面积*A 对中性轴的静矩。

对于矩形截面梁(图6-7),可取1bdy dA =,于是 这样,式(6-3)可写成

上式表明,沿截面高度剪应力τ按抛物线规律变化(图6-7b )。在截面上、下边缘处, y=±

2

h

,τ=0;在中性轴上,z=0,剪应力值最大,其值为 A

Q

23max =

τ(6-4) 式中A =bh ,即矩形截面梁的最大剪应力是其平均剪应力的2

3倍。

2.圆形截面梁

在圆形截面上(图6-8),任一平行于中性轴的横线aa 1两端处,剪应力的方向必切于圆周,并相交于y 轴上的c 点。因此,横线上各点剪应力方向是变化的。但在中性轴上各点剪应力的方向皆平行于剪力Q ,设为均匀分布,其值为最大。由式(6-3)求得

A

Q

34max =

τ(6-5) 式中24

d A π

=

,即圆截面的最大剪应力为其平均剪应力

的3

4倍。

3.工字形截面梁

工字形截面梁由腹板和翼缘组成。式(6-3)的计算结果表明,在翼缘上剪应力很小,在腹板上剪应力沿腹板高度按抛物线规律变化,如图6-9所示。最大剪应力在中性轴上,其值为 式中(S *z )m ax 为中性轴一侧截面面积对中性轴的静矩。对于轧制的工字钢,式中的max

*

)(z z S I 可以从型钢表

中查得。

计算结果表明,腹板承担的剪力约为(~)Q ,因此也可用下式计算τm ax 的近似值

式中h 1为腹板的高度,d 为腹板的宽度。

§7-4弯曲强度计算

根据前节的分析,对细长梁进行强度计算时,主要考虑弯矩的影响,因截面上的最大正应力作用点处,弯曲剪应力为零,故该点为单向应力状态。为保证梁的安全,梁的最大正应力点应满足强度条件

][max

max max σσ≤=

z

I y M (6-6) 式中][σ为材料的许用应力。对于等截面直梁,若材料的拉、压强度相等,则最大弯矩的所在面称为危险面,危险面上距中性轴最远的点称为危险点。此时强度条件(6-6)可表达为

][max

max σσ≤=

z

W M (6-7) 式中

z W =

m ax

y I z

(6-8) 称为抗弯截面系数(或抗弯截面模量),其量纲为[长度]3。国际单位用m 3或mm 3。

对于宽度为b 、高度为h 的矩形截面,抗弯截面系数为

6

2122

3

bh h bh W z ==

(6-9) 直径为d 的圆截面,抗弯截面系数为

32

2

643

4

d d

d W z ππ

==(6-10)

内径为d ,外径为D 的空心圆截面,抗弯截面系数为

()

()4

3

4

4

132

2

164

απαπ-=

-=D D

D W z ,D d

=α(6-11)

轧制型钢(工字钢、槽钢等)的z W 可从型钢表中查得。

对于由脆性材料制成的梁,由于其抗拉强度和抗压强度相差甚大,所以要对最大拉应力点和最大压应力点分别进行校核。

根据式(6-7),可以解决三类强度问题,即强度校核,截面设计和许用载荷计算。 需要指出的是,对于某些特殊情形,如梁的跨度较小或载荷靠近支座时,焊接或铆接的壁薄截面梁,或梁沿某一方向的抗剪能力较差(木梁的顺纹方向,胶合梁的胶合层)等,还需进行弯曲剪应力强度校核。等截面直梁的m ax τ一般发生在max Q 截面的中性轴上,此处弯曲正应力0=σ,微元体处于纯剪应力状态,其强度条件为

()

][max

max max ττ≥=

*

z

z

bI S Q (6-12)

式中][τ为材料的许用剪应力。此时,一般先按正应力的强度条件选择截面的尺寸和形状,然后按剪应力强度条件校核。

抗弯力学计算

一、纯弯曲 承受弯曲的梁截面上有剪力及弯矩,F Q是切于横截面的内力系的合力,而M只与截面上的σ有关。 平面弯曲包括两种形式,一种是纯弯曲--只有M,而F Q=0, 另一种是横力弯曲--F Q≠0, M≠0. 实验观察及变形规律 为观察变形,在梁截面上作纵向线aa、bb及mm、nn,使杆件发生纯弯曲变形后,aa和bb弯为弧线,mm及nn仍保持为直线,但相对转过了一个?? 角。 由观察到的现象可提出假设: 1> 平面假设: 变形前为平面的横截面,变形后仍为平面(mm、nn); 2> 设想梁由无数纵向纤维组成,则上部缩短而下部伸长,由下部伸长到 上部缩短过程中存在一中性层,中性层与横截面的交线为中性轴; 3> 纵向纤维间无挤压作 用。 二、纯弯曲的正应力 1、变形几何关系设bb距中性轴为y, dx长度的相对转角为dθ,ρ为中性轴曲率半径. (1) 2、物理关系 (2)

3、静力关系微内力σdA 组成垂直于截面的平行力系,可简化为FN、My、Mz (3) (4) (2)代入(3)即得 Z轴过截 面形心C. (2)代入(4)即 得令上式变为 代入(2)式得弯 曲正应力公式 M--截面弯矩Iz--惯性矩y--点距中性轴的距离 说明:σ公式虽然是从矩形截面推出来的, 但对于其他截面如T型钢、I字钢、槽钢、圆形等截面梁仍适用. 必须是平面弯曲、直梁且在比例极限内. 公式是纯弯曲状态得出的,对于横力弯曲理论上不成立, 但由上述公式算出的σ误差小,故近似成立.

三、正应力强度条件 先找出危险截面--M max σmax出现在距离中性轴最远的上、下边缘处 例: 已知T型铸铁梁 P=3.5KN, a=0.5m, [σ+] =80MPa, [σ_]=150MPa试校核梁的强度 解: 画弯矩图 得M max=2F P a=3.5kNm 上压下拉 计算图示T型梁惯性 =136cm4 矩 I z 若将其倒置则安全, 总结:不对称截面梁应注意其放置方式。

楼板强度的计算.doc

楼板强度的计算 (1)计算楼板强度说明 验算楼板强度时按照最不利考虑,楼板的跨度取8.400m,梁板承受的荷载按照线均布考虑。 宽度范围内配筋2级钢筋,配筋面积A s=3696.0mm2,f y=300.0N/mm2。 板的截面尺寸为 b×h=5600mm×220mm,截面有效高度 h0=200mm。 按照楼板每12天浇筑一层,所以需要验算12天、24天、36天...的 承载能力是否满足荷载要求,其计算简图如下: (2)计算楼板混凝土12天的强度是否满足承载力要求 楼板计算长边7.00m,短边7.00×0.80=5.60m, 楼板计算范围内摆放8×7排脚手架,将其荷载转换为计算宽度内均布荷载。 第2层楼板所需承受的荷载为

q=1×1.20×(0.20+25.10×0.22)+ 1×1.20×(0.50×8×7/7.00/5.60)+ 1.40×(0.00+ 2.50)=11.22kN/m2 计算单元板带所承受均布荷载q=5.60×11.22=62.83kN/m 板带所需承担的最大弯矩按照四边固接双向板计算 M max=0.0664×ql2=0.0664×62.82×5.602=130.82kN.m 按照混凝土的强度换算 得到12天后混凝土强度达到74.57%,C40.0混凝土强度近似等效为C29.8。 混凝土弯曲抗压强度设计值为f cm=14.22N/mm2 则可以得到矩形截面相对受压区高度: ξ= A s f y/bh0f cm = 3696.00×300.00/(5600.00×200.00×14.22)=0.07 查表得到钢筋混凝土受弯构件正截面抗弯能力计算系数为 αs=0.067 此层楼板所能承受的最大弯矩为: M1=αs bh02f cm = 0.067×5600.000×200.0002×14.2×10-6=213.4kN.m 结论:由于∑M i = 213.38=213.38 > M max=130.82 所以第12天以后的各层楼板强度和足以承受以上楼层传递下来的荷载。 第2层以下的模板支撑可以拆除。 钢管楼板模板支架计算满足要求!

抗弯强度计算公式

工字钢抗弯强度计算方法 一、梁的静力计算概况 1、单跨梁形式:简支梁 2、荷载受力形式:简支梁中间受集中载荷 3、计算模型基本参数:长L =6 M 4、集中力:标准值Pk=Pg+Pq =40+40=80 KN 设计值Pd=Pg*γG+Pq*γQ =40*1.2+40*1.4=104 KN 工字钢抗弯强度计算方法 二、选择受荷截面 1、截面类型:工字钢:I40c 2、截面特性:Ix= 23850cm4 Wx= 1190cm3 Sx= 711.2cm3 G= 80.1kg/m 翼缘厚度tf= 16.5mm 腹板厚度tw= 14.5mm 工字钢抗弯强度计算 方法三、相关参数 1、材质:Q235 2、x轴塑性发展系数γx:1.05 3、梁的挠度控制〔v〕:L/250 工字钢抗弯强度计算方法 四、内力计算结果 1、支座反力RA = RB =52 KN 2、支座反力RB = Pd / 2 =52 KN 3、最大弯矩Mmax = Pd * L / 4 =156 KN.M 工字钢抗弯强度计算方法 五、强度及刚度验算结果

1、弯曲正应力σmax = Mmax/ (γx * Wx)=124.85 N/mm2 2、A处剪应力τA = RA * Sx / (Ix * tw)=10.69 N/mm2 3、B处剪应力τB = RB * Sx / (Ix * tw)=10.69 N/mm2 4、最大挠度fmax = Pk * L ^ 3 / 48 * 1 / ( E * I )=7.33 mm 5、相对挠度v = fmax / L =1/ 818.8 弯曲正应力σmax= 124.85 N/mm2 < 抗弯设计值f : 205 N/mm2 ok! 支座最大剪应力τmax= 10.69 N/mm2 < 抗剪设计值fv : 125 N/mm2 ok! 跨中挠度相对值v=L/ 818.8 < 挠度控制值〔v〕:L/ 250 ok! 验算通过! 钢板抗弯强度计算公式 钢板强度校核公式是:σmax= Mmax / Wz ≤ [σ] 4x壁厚x(边长-壁厚)x7.85 其中,边长和壁厚都以毫米为单位,直接把数值代入上述公式,得出即为每米方管的重量,以克为单位。 如30x30x2.5毫米的方管,按上述公式即可算出其每米重量为: 4x2.5x(30-2.5)x7.85=275x7.85=2158.75克,即约2.16公斤 矩管抗弯强度计算公式 1、先计算截面模量 WX=(a四次方-b四次方)/6a 2、再根据所选材料的强度,计算所能承受的弯矩 3、与梁上载荷所形成的弯矩比对,看看是否在安全范围内 参见《机械设计手册》机械工业出版社2007年12月版第一卷第1-59页

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

工字钢抗弯强度计算

工字钢抗弯强度计算 钢铁知识/jimmy 一、梁的静力计算概况 1、单跨梁形式:简支梁 2、荷载受力形式:简支梁中间受集中载荷 3、计算模型基本参数:长 L =6 M 4、集中力:标准值Pk=Pg+Pq =40+40=80 KN 设计值Pd=Pg*γG+Pq*γQ =40*1.2+40*1.4=104 KN 二、选择受荷截面 1、截面类型:工字钢:I40c 2、截面特性: Ix= 23850cm4 Wx= 1190cm3 Sx= 711.2cm3 G= 80.1kg/m 翼缘厚度 tf= 16.5mm 腹板厚度 tw= 14.5mm 三、相关参数 1、材质:Q235 2、x轴塑性发展系数γx:1.05 3、梁的挠度控制[v]:L/250 四、内力计算结果 1、支座反力 RA = RB =52 KN 2、支座反力 RB = Pd / 2 =52 KN 3、最大弯矩 Mmax = Pd * L / 4 =156 KN.M 五、强度及刚度验算结果 1、弯曲正应力σmax = Mmax / (γx * Wx)=124.85 N/mm2 2、A处剪应力τ A = RA * Sx / (Ix * tw)=10.69 N/mm2 3、B处剪应力τ B = RB * Sx / (Ix * tw)=10.69 N/mm2 4、最大挠度 fmax = Pk * L ^ 3 / 48 * 1 / ( E * I )=7.33 mm 5、相对挠度 v = fmax / L =1/ 818.8 弯曲正应力σmax= 124.85 N/mm2 < 抗弯设计值 f : 205 N/mm2 ok! 支座最大剪应力τmax= 10.69 N/mm2 < 抗剪设计值 fv : 125 N/mm2 ok! 跨中挠度相对值 v=L/ 818.8 < 挠度控制值[v]:L/ 250 ok! 验算通过!

型钢截面计算例题

【例 5-1】试确定截面尺寸及配钢如下图所示的型钢混凝土梁所能承受的最大极限弯矩。混凝土C30,钢筋为HPB235级钢筋,型钢Q235钢。 解 选择I22a 计算受压区高度:当中和轴在型钢翼缘上通过时,有 属于第二种情况,即中和轴不通过型钢,此时 所以,不考虑型钢上翼缘的作用,重新 计算x 此截面所能承受的极限弯矩 【例5-2】计算截面尺寸及配钢如下图所示的型钢混凝土梁所能承受的最大极限弯矩。混凝土C30,钢筋为HPB235级钢筋,型钢为Q235钢。 解 选择I40a 计算受压区高度:当中和轴在型钢上冀缘通过时,有 属于第一种情况,即中和轴通过型钢腹板,此时 此截面所能承受的极限弯矩 【例5-3】型钢混凝土简支梁,计算跨度为7.5m ,承受均布荷载,其中永久荷载的设计值为13.11kN /m(包括梁的自重),可变荷载的设计值为15kN /m 。根据正截面抗弯强度计算,确定截面尺寸为460 mm ×250 mm(由于空间高度限制)。选用HPB235级钢4φ16为上下架立钢筋。内配型钢I 25a 普通热轧工字钢Q235。混凝土强度等级为C30。试验算其斜截面剪切承载能力。 习题4-3图 解 查C30混凝土强度得,214.3/c f N mm =,21.43/t f N mm =。 I25a 工字钢 250,8,13s w t h mm mm mm δδ===,所以 梁上永久荷载设计值与可变荷裁设计值之和为 梁中最大剪力设计值为 则 【例5-4】有一型钢混凝土简支梁,计算跨度为9m ,承受均布荷载,其中永久荷载设汁值为12.22kN /m(包括梁自重),可变荷裁设计值为16kN /m 。由于空间高度限制,截面尺寸拟取为460 mm × 250 mm 。经正截面抗弯强度计算,拟配I36a 普通热轧工字钢Q235,梁的上下共配4φ16架立钢筋。混凝土强度等级为C30。试验算其斜截面抗剪承载力,并配置钢箍。 解 查C30混凝土强度得 2214.3/, 1.43/c t f N mm f N mm ==。 I36a 工字钢27630,360,10,s s w A mm h mm mm δ=== 梁上永久荷载设计值与可变荷载设计值 之和为 梁中最大剪力为 所以,截面尺寸符合要求。 则 剪切承载力满足要求,所以钢箍可按构造选配,拟配双肢箍φ8@200。 【例5-5】有一框架柱截面如习题4-5图所示,设计轴力N =1350 kN ,弯矩M=500 kN m ,计算高度l 0=6m ,混凝土采用C30.钢筋为HPB235钢,型钢为Q235钢。验算其正截面强度。 习题4-1图 习题4-2图 习题 4-4图

受弯构件正截面承载力问题详解

第五章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态. 2、受弯构件梁的最小配筋率应取 %2.0min =ρ 和 y t f f /45min =ρ 较大者. 3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 . 4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_. 5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______. 6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算. 7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据. 8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 ' s A 都未知,计算时引入的补充条件为 b ξξ=. 二、判断题: 1、界限相对受压区高度b ξ由钢筋的强度等级决定.( ∨ ) 2、混凝土保护层的厚度是从受力纵筋外侧算起的.( ∨ ) 3、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大.( ∨ ) 4、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大.( ∨ ) 5.梁中有计算受压筋时,应设封闭箍筋(√ ) 6.f h x '≤的T 形截面梁,因为其正截面抗弯强度相当于宽度为f b '的矩形截面,所以配筋率ρ也用f b '来表示,即0/h b A f s '=ρ( ? )0/bh A s =ρ 7.在适筋围的钢筋混凝土受弯构件中,提高混凝土标号对于提高正截面抗弯强度的作用不是很明显的( √ ) 三、选择题: 1、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为( A ). A 保证压应力合力的大小和作用点位置不变 B 矩形面积等于曲线围成的面积 C 由平截面假定确定08.0x x = D 两种应力图形的重心重合 2、钢筋混凝土受弯构件纵向受拉钢筋屈服与受压混凝土边缘达到极限压应变同时发生的破坏属于( C ). A 适筋破坏 B 超筋破坏 C 界限破坏 D 少筋破坏 3、正截面承载力计算中,不考虑受拉混凝土作用是因为( B ). A 中和轴以下混凝土全部开裂 B 混凝土抗拉强度低 C 中和轴附近部分受拉混凝土围小且产生的力矩很小 D 混凝土退出工作

任意截面抗弯强度计算方法

编号:2010-01 中铁二院科技研究开发计划项目 分报告一 截面抗弯强度验算原理 设计者:岳强 复核者: 报告单位:中铁二院工程集团有限责任公司 二〇一〇年一月

目录 第1章砼截面抗弯计算 (3) 1、砼截面抗弯公式 (3) 1.1 截面受力图示 (3) 1.2 公式推导 (3) 1.2.1 简化公式 (1) (3) 1.2.2 简化公式 (2) (4) 1.2.3合并公式(3-2)、(4-2) (4) 1.2.4 分析公式(5-1) (5) 1.3 特别情况 (7) 1.3.1 纯弯 (7) 1.3.2 大小偏心界线时 (7) 1.3.3 大小偏心界线时检查式(5) (7) 2、极限弯矩计算(砼应力最大时) (8) 2.1 荷载图示 (8) 2.2 极限应力时中性轴位置 (8) 3、极限弯矩计算(钢筋应力最大时) (9) 4、弯矩增加系数 (10)

第1章砼截面抗弯计算 1、砼截面抗弯公式 1.1 截面受力图示 截面作用单向荷载时,截面轴力N,弯矩为M,暂假定中性轴与弯矩方向平行,截面受力图示见图1-1,图中C 为全截面质心(含钢筋)。 图1-1 截面受力图示 1.2 公式推导 计算中性轴的位置,在局部坐标系(x ’,y ’,z ’)中推导。轴力的方向以Z 坐标轴正方向为正,弯矩M 方向以绕x 轴正向为负。 '' 0,0z z z g g g g F N dA dA dA σσσ=+++=∑∑∑? ,⑴ ∑?∑∑=?+?+?+-=0*0' 'y dA y dA y dA M y ,N Mx g g g g z c σσσ,⑵ 式中:N 为轴力,M 为弯矩;Ag 为钢筋面积,Az 为砼面积;Yc 为重心轴到 到z ’轴(截面底)距离,y 为截面砼或钢筋积分点到z ’轴距离。 1.2.1 简化公式 (1) 由式εσ?=E ,代入式(1)中,可得, ''' 0z z z g g g g g g N E dA E dA E dA εεε+?+?+?=∑∑? ,合并截面中受拉、受压钢筋,简化可得,0=?+?+∑?g g g z dA E dA E N εε 。

抗压强度计算2015讲解

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

简支梁截面抗弯模量计算分析

三.剪力图与弯矩图 弯矩图:(1)梁受集中力或集中力偶作用时,弯矩图为直线,并且在集中力作用处,弯矩发生转折; 在集中力偶作用处,弯矩发生突变,突变量为集中力偶的大小。

(2)梁受到均布载荷作用时,弯矩图为抛物线,且抛物线的开 口方向与均布载荷的方向一致。 (3)梁的两端点若无集中力偶作用,则端点处的弯矩为0;若有集中力偶作用时,则弯矩为集中力偶的大小。 例7-5 图示简支梁,受集中力F P和集中力偶M0=F P l作用,试作此梁的弯矩图。

例 总结上面例题,可以得到作弯矩图的几点规律: (1)梁受集中力或集中力偶作用时,弯矩图为直线,并且在集中力作用处,弯矩发生转折;在集中力偶作用处,弯矩发生突变,突变量为集中力偶的大小。 (2)梁受到均布载荷作用时,弯矩图为抛物线,且抛物线的开口方向与均布载荷的方向一致。 (3)梁的两端点若无集中力偶作用,则端点处的弯矩为0;若有集中力偶作用时,则弯矩为集中力偶的大小。

四梁纯弯曲时的强度条件1.梁纯弯曲的概念 纯弯曲——梁的横截面上只有弯矩而没有剪力。Q = 0,M = 常数。 2.梁纯弯曲时横截面上的正应力 .梁纯弯曲时的变形特点 平面假设: 1)变形前为平面变形后仍为平面 2)始终垂直与轴线 中性层:既不缩短也不伸长(不受压不受拉)。中性层是梁上拉伸区与压缩区的分界面。 中性轴:中性层与横截面的交线

变形时横截面是绕中性轴旋转的。 .梁纯弯曲时横截面上正应力的分布规律 纯弯曲时梁横截面上只有正应力而无切应力。 由于梁横截面保持平面,所以沿横截面高度方向纵向纤维从缩短到伸长是线性变化的,因此横截面上的正应力沿横截面高度方向也是线性分布的。以中性轴为界,凹边是压应力,使梁缩短,凸边是拉应力,使梁伸长,横截面上同一高度各点的正应力相等,距中性轴最远点 有最大拉应力和最大压应力,中性轴上各点正应力为零。

钢筋混凝土受弯构件正截面承载力的计算

钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的 两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎

钢筋配筋时,其受力钢筋的间距:当板厚度h ≤150mm 时,不应大于200mm ,当板厚度h ﹥150mm 时,不应大 于1.5h ,且不应大于250mm 。板中受力筋间距一般不 小于70mm ,由板中伸入支座的下部钢筋,其间距不应 大于400mm ,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as 不应小于5d 。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm 。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm ,直径不宜小于8mm (包括弯起钢筋在内),其伸出墙边的长度不应小于l 1/7(l 1为单向板的跨度或双向板的短边跨度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l 1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm ,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布钢筋的间距不宜大于250mm ,直经不宜小于6mm ,对于集中荷载较大的情况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm ,当按双向板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm ,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm ,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用 0h 表示,板通常取200-=h h mm 。

硬质合金抗弯强度及其分散性的研究

收稿日期:2002年3月硬质合金抗弯强度及其分散性的研究易 勇1 熊 继1,2 李 懿2 沈保罗1  1四川大学 2自贡硬质合金股份有限责任公司 摘 要:用三点弯曲法测定了硬质合金的抗弯强度σm,用两参数Weibull统计法分析了σm的分散性。试验和分析结果表明:硬质合金的抗弯强度与材料中WC的粒度和粒度均匀性有关,σm的平均值随材料中WC颗粒平均尺寸d的增大而减小,随WC粒度均匀性变好而增大。 关键词:硬质合金, 抗弯强度, WC粒度, WC粒度均匀性, Weibull模量 Study on B ending Strength and Its Dispersivity of Cemented C arbide Y i Y ong X iong Ji Li Y i et al Abstract:The bending strength(σm)of the cemented carbide is determined by the three2points bending test and its disper2 sivity is analyzed with the tw o2parameters Weibull statistics.The results of experiments and analysis show that the mean bending strength(σm)of the cemented carbide is related to the particle size and uniformity of WC particles.The mean bending strength (σm)of the cemented carbide decreases with the increase of mean size(d)of WC particles and increases with betterment of the uniformity of WC particles. K eyw ords:cemented carbide, bending strength, particle size of WC, uniformity of WC particles, Weibull m odulus 1 引言 硬质合金具有硬度高、耐磨性好等特点,是机械、冶金、矿山开采、石油钻探、化工、纺织、军工等行业不可缺少的工具材料。由于硬质合金材料脆性较大,因此开发应用时对其抗弯强度的研究非常重要。大量研究表明,硬质合金的抗弯强度与材料中碳化物和粘结相的种类、含量和粒度、合金的含碳量、烧结工艺、热处理工艺、组织缺陷(如空洞、粗大碳化物、粘结相池、夹杂物等)以及试样的表面状态和残余应力等因素密切相关[1~14]。有关研究发现,脆性较大的材料具有较大的强度分散性,但关于硬质合金抗弯强度分散性的研究尚未见报道。笔者通过抗弯强度试验,对WC的粒度和粒度均匀性对硬质合金抗弯强度及其分散性的影响进行了研究。 2 抗弯强度试验 (1)试验材料 材料成分:基体为WC,粘结相为C o(8wt%)。 试样尺寸:5.25mm×6.5mm×20mm。 (2)试验参数 在W B2100型万能试验机上测定硬质合金的抗弯强度,测试跨距为14.5±0.5mm,十字头加力速度为200N/min。 3 试验结果与分析 311 WC颗粒平均尺寸对硬质合金抗弯强度的影响 通过试验得到该硬质合金的平均抗弯强度σm 与WC颗粒平均尺寸d的关系见图1。由图可见,该硬质合金的平均抗弯强度随WC颗粒平均尺寸的减小而升高 。 图1 硬质合金平均抗弯强度与 WC颗粒平均尺寸的关系 312 WC颗粒均匀性对硬质合金抗弯强度的影响 通过试验得到硬质合金中WC颗粒均匀性对硬质合金抗弯强度的影响见图2。由图可见,该硬质合金的平均抗弯强度随WC颗粒均匀性变好(WC颗粒欠均匀→存在个别大颗粒→WC颗粒均匀)而升高。 313 Weibull统计分析

抗弯强度.

抗弯强度- 名词解释 抗弯强度是指材料抵抗弯曲不断裂的能力,主要用于考察陶瓷等脆性材料的强度。一般采用三点抗弯测试或四点测试方法评测。其中四点测试要两个加载力,比较复杂;三点测试最常用。其值与承受的最大压力成正比。抗弯强度(弯曲强度)bendingstrength 又称挠曲强度或抗弯强度,在试件的两支点之间施加载荷,至试件破坏时的单位面积载荷值。 1. 抗弯强度- 特点机械性能(machnicalproperties): 当材料受外力时表现出来的各种力学性能。 2.应力(stress): 当材料受外力时材料内部对外力的反应。应力的大小用下述公式表示:应力(δ)=作用(F)/材料单位面积(A),单位为Pa。 3.应变(strain): 当材料受外力作用时引起的形变。应变的大小用下述公式表示:应变(ε)=变化长度(△L)/初始长度(L)。 4.拉应力或张应力(tensilestress): 材料受到拉伸时的内部应力。 5.压应力或压缩应力(compressivestress): 材料受到压缩时的内部应力。 6.剪应力(shearstress): 材料受到切错作用力时,相互平行的部分发生滑动时的内部应力。 但当某一段材料或修复体受力时,往往是三种应力形式同时存在。例如咀嚼压力作用于固定桥时,桥体倪面受到的力为压应力,桥体的龈底则为拉应力,基牙修复体与桥体连接处为剪应力。 7.抗拉强度或抗张强度(tensilestrength) 8.压缩强度或抗压强度(compressivestrength): 在试件上施加压缩载荷,至试件破坏时的单位面积载荷值。 9.弯曲强度(bendingstrength): 又称挠曲强度或抗弯强度,在试件的两支点之间施加载荷,至试件破坏时的单位面积载荷值。 10.硬度(hardness): 材料抵抗其它硬物压入引起凹陷变形的能力。常用的硬度单位有布氏硬度(HB或BHN),维氏硬度(Hv或VHN),洛氏硬度(HRA、HRC或RHN)奴氏硬度(HK或KHN)。 材料的表面硬度是其强度、比例极限、韧性、延展性及抗磨损、抗切割能力等多种性质综合作用的结果。 11.冲击强度(impactstrength): 材料在冲击力作用下折断所需的能量。 12.延性和展性(ductilityandmalleability): 延性是材料在拉力作用下不折断而经受恒久变形的能力。展性是材料在压力作用不折断而经受恒久变形的能力。 13.比例极限(proportionallimit): 材料经受外力时,应力和应变能保持比例关系时的最大应力值。 14.弹性模量(modulusofelasticity): 在比例极限内,应力和应变之比(E=(δ/ε)。 15.流变(flow): 非晶体结构的物质在持续应力作用下持续恒久变形的性质。液体和糊剂的流变通常用粘稠度

三点抗弯强度

第18讲教学方案——弯曲切应力、弯曲强度条件

§7-3 弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有剪应力 τ。但一般情况下,剪应力对 梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力 Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (a )

试块抗压强度汇总评定计算公式

混泥土试块抗压强度评定计算方法: 一、平均强度Rn=各组强度之和/总组数 二、均方差S=(各组误差值的平方之和)/总组数-1 各组误差值=各组强度值—强度平均值Rn 三、离差系数Cv=均方差S/平均强度Rn 四、计算保证率系数t=[i-(R/Rn)]/Cv 注:i—系数为1 R—砼强度值(例:C20就取20、C30就取30) Rn—砼强度平均值 Cv—离差系数 P保证率=用保证率系数t去对应表里的数得出的结果 我这有个计算公式,不知道能不能帮您解决问题: 1、非统计方法评定条件: mfcu≥1.15fuc,k fuc,min≥0.95fcu,k 2、统计方法评定条件: mfcu—λ1Sfcu≥0.9fcu,k fcu,min≥λ2fcu,k 混凝土强度的合格判定系数表10-79 你能告诉我西格玛是什么吗

回答人的补充 2010-03-23 14:31 那个不叫西格玛,叫蓝布它,是一个系数,一般混凝土实验组数在10组-14组的时候(10组以下也包含在内)要乘这个系数,按照上面的组数来代入系数就行了。 对同一验收批同一设计强度,工程现场分两种方法评定: (一)非统计方法——用于试块组数n≤9组时 mfcu≥1.15fcu,k fcu,min≥0.95fcu,k (二)统计方法——用于试块组数n≥10组时 mfcu-λ 1 Sfcu ≥0.90fcu,k fcu,min≥λ 2 fcu,k 公式中的参数含义为: mfcu为n组试块的平均强度值 fcu,k 为设计强度标准值 fcu,min为n组试块的最小强度值 Sfcu为n组试块的强度值标准差 其中Sfcu =[ (∑f 2cui -n ?m 2fcu )÷( n - 1 ) ]1/2 合格判定系数(λ1、λ2)的取值为: 组数n 10~14 15~24 ≥25 λ1 1.7 1.65 1.6 λ2 0.9 0.85 提问人的追问 2009-10-18 18:45 能把公式简单化一点吗?我不是很明白。 回答人的补充 2009-10-18 18:48 这已是很简化的了啊 评价答案 好:5 不好:0 原创:0

三点抗弯强度

三点抗弯强度 Prepared on 22 November 2020

第18讲教学方案——弯曲切应力、弯曲强度条件

§7-3弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力σ,又有剪应力τ。但一般情况下,剪应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线 1aa 两端的剪应力必与截面两侧边相切,即与剪 力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别 为1N 和2N ,其中

纸箱抗压强度计算.

纸箱抗压强度计算 发布时间:10-07-22 来源:点击量:1960 字段选择:大中小 抗压力试验 纸箱抗压能力是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最高压力值。 抗压能力的N。 取箱体和箱面不得破损和有明显碰、戳伤痕的样箱三个。 抗压力试验的设备是包装容器整体抗压试验机 包装容器整体抗压试验机的主要技术参数是: 测量范围:0-50kN 负荷准确度:±2% 压板面积:1200mm×1200mm 上、下板平行度:2/1000 上压板有效行程:标准速度 10mm/mm 无极调速 1-100/min 抗压力试验的检测方法是将三个样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体。然后启动加压标准速度,直至箱体屈服。读取实测值。 对测试的结果,求出算术平均值。 被测瓦楞纸箱的抗压力值按下列公式计算: P=K×G(H/h-1)×9.8 式中:P:-抗压力值,N K:-劣变系数(强度系数); G:-单件包装毛重;kg H:-堆积高度;m h:-箱高;m

H/h:-取整位数。 根据SN/T0262-93《出口商品运输包装瓦楞纸箱检验规程》中的计数规定,H/h取速位数。小数点后面无论大、小都入上,就高不就低。 SN/T0262-93检验规程关于劣变系数的规定(表二十五): 表二十五 贮存期小于30天30天-100天100天以上 劣变系数K1.61.652 注:劣变系数(强度系数)K根据纸箱所装货物的贮存条件决定。 抗压力试验合格准则的判定为:当所测三个样箱的抗压力值均大于标准抗压力值时,该项试验为合格。若其中有一个样箱不合格,则该项试验为不合格。 纸板边压强度的推算方法 瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和,对于坑纸,其环压值为原纸环压强度乘以对应的瓦楞伸长系数。 单瓦楞纸板Es= (L1+L2+r×F) 双瓦楞纸板Ed= (L1+L2+L3+r×F+r1×F1) 三瓦楞纸板Et= (L1+L2+L3+L4+r×F+r1×F1+r2×F2) 式中 L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度(N/m); r、r1、r2表示瓦楞伸长系数(见表二); F、F1、F2表示芯纸的环压强度(N/m); 表二不同楞型的伸长系数及纸板厚度 楞型 A C B E 伸长系数(r) 1.53 1.42 1.40 1.32 纸板厚度 5 4 3 1.5 注:1. 不同瓦线设备,即使是同一种楞型,由于其瓦楞辊的尺寸不同,瓦楞伸长系数也存在偏差,所以纸箱企业在使用表二进行推算时需根据工厂的设备情况对伸长系数进行调整。

三点抗弯强度

三点抗弯强度 Document number:WTWYT-WYWY-BTGTT-YTTYU-

第18讲教学方案——弯曲切应力、弯曲强度条件

§7-3弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力σ,又有剪应力τ。但一般情况下,剪应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线 1aa 两端的剪应力必与截面两侧边相切,即与剪 力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别 为1N 和2N ,其中

受弯构件正截面承载力计算

一、填空题: 2.一配置HRB335 级钢筋的单筋矩形截面梁,该梁所能承受的最大弯矩公式为若该梁所承受的弯矩设计值大于上述最大弯矩,则应___ 或____ 或。 3.正截面受弯计算方法的基本假定是:、、、___ 。 4.在适筋梁破坏的三个阶段中,作为抗裂度计算的依据的是,作为变形和裂缝宽度验算的依据是_____ ,作为承载力极限状态计算的依据是_____ 。 5.双筋矩形截面梁可以提高截面的。 6.双筋矩形截面受弯构件正截面承载力计算公式的适用条件是。 10.单向板中分布钢筋应并在受力钢筋的 答案: 1 适筋破坏,超筋破坏,少筋破坏 2 α1fch2 0ξ,提高混凝土的强度,加大截面尺寸,改用双筋截面 3 平截面假定,受拉区混凝土不参加工作,采用理想化的钢筋应力—应变曲线,采用理想化的混凝土—应力应变曲线 4 第一阶段末,第二阶段,第三阶段末 5 延性 6 ξ≤ξb,x≥2a′ 7 过大,过小 8 受拉钢筋达到屈服强度,塑性破坏,受压区边缘混凝土达到极限压应变,脆性破坏 9 构件种类,环境 10 垂直于,内侧,构造 二、选择题: 1.混凝土保护层厚度是指( ) 。 A.箍筋的外皮至混凝土外边缘的距离 B.受力钢筋的外皮至混凝土外边缘的距离 C.受力钢筋截面形心 2.适筋梁在逐渐加载过程中,当正截面受力钢筋达到屈服以后( ) 。 A.该梁即达到最大承载力而破坏

B.该梁达到最大承载力,一直维持到受压混凝土达到极限强度而破坏 C.该梁达到最大承载力,随后承载力缓慢下降直到破坏 D.该梁承载力略有提高,但很快受压区混凝土达到极限压应变,承载力急剧下降而破坏 4.双筋矩形截面正截面受弯承载力计算,受压钢筋设计强度规定不超过400N/mm ,因为( ) 。 A.受压混凝土强度不够 B.结构延性 C.混凝土受压边缘此时已达到混凝土的极限压应变 5.有二根条件相同的受弯构件,但正截面受拉区受拉钢筋的配筋率ρ不同,一根ρ大,另一根ρ小,设Mcr 是正截面开裂弯矩,Mu 是正截面抗弯强度,则ρ与Mcr/Mu 的关系是( ) 。 A.ρ大的,Mcr/Mu 大 B.ρ小的,Mcr/Mu 大 C.两者的Mcr/Mu 相同 6.梁的截面有效高度是指( ) 。 A.梁截面受压区的外边缘至受拉钢筋合力重心的距离 B.梁的截面高度减去受拉钢筋的混凝土保护层厚度 7.适筋梁裂缝宽度验算的依据是( ) 。 A.第一阶段末 B.第二阶段 C.第二阶段末 8.界限相对受压区高度是( ) 。 A.少筋与适筋的界限 B.适筋与超筋的界限 C.少筋与超筋的界限 9.少筋梁正截面抗弯破坏时,破坏弯矩是( ) 。 A.小于开裂弯矩 B.等于开裂弯矩 C.大于开裂弯矩 10.梁式简支板内,分布钢筋宜布置在受力钢筋的( ) 。 A.外侧B.内侧C.随意 11.提高受弯构件正截面抗弯能力最有效的方法是( ) 。 A.提高混凝土标号B.提高钢筋强度C.增加截面高度D.增加截面宽度 答案:

相关主题
文本预览
相关文档 最新文档