当前位置:文档之家› 光差保护其实是光纤差动保护的简称

光差保护其实是光纤差动保护的简称

光差保护其实是光纤差动保护的简称
光差保护其实是光纤差动保护的简称

光差保护其实是光纤差动保护的简称,其实就是电流差动保护。

光差保护就是用光缆传输信号的电流差动保护,一般用在输电线路上。需要线路两端都安装该保护。

如当发生该条线路上的故障时,A侧保护启动,此时B侧也发一个信号过来,告诉A侧保护“B侧也启动了”,那么A侧跳闸,B侧同样接到信号也跳闸。

如果在B的外侧,那么只有A启动,因为虽然B侧的电流达到,但是方向相反,所以,B侧不会启动,也不会给A侧信号,A侧也不会跳闸。

定义:谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。在电力系统中,谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。

谐波电流的产生是与功率转换器的脉冲数相关的。6脉冲设备仅有5、7、11、13、17、19 ….n倍于电网频率。功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。

其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。

在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲线的电压降。在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。次数越高,谐波分量的振幅越低。

只要哪里有谐波源那里就有谐波产生。也有可能,谐波分量通过供电网络到达用户网络。例如,供电网络中一个用户工厂的运转可能被相邻的另一个用户设备产生的谐波所干扰。

谐波的危害:

降低系统容量如变压器、断路器、电缆等;

加速设备老化,缩短设备使用寿命,甚至损坏设备;

危害生产安全与稳定;

浪费电能等。

谐波的治理:

有源电力滤波器是治理谐波的最优产品。

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。

电涌保护器的工作原理是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏!

电涌保护器限制电网中的大气过电压(闪电雷击)不超过各种设备及配电装置能够承受的冲

击耐压。

电涌器的实质为半导体压敏电阻器件,电阻大小依赖于电涌器的端电压。

当端电压小于保护器的触发电压Up时,保护器的电阻很高(大于1兆欧),只有很小的漏电流(小于1毫安)流过;当端电压(如大气过电压)达到其触发电压Up时电阻突然减小到只有几欧姆,使很大的涌流通过,在很短的时间内使得过电压突降之后又变成高阻性。电涌器正常漏电流很小,但漏电流会随雷击次数的增加而增加。

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。 但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: 1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。 差动保护 差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名 差动保护 外文名 Differential protection 目录 1.1概述 2.2原理 3.3技术参数 4.?环境条件 1.?工作电源 2.?控制电源 3.?交流电流回路 4.?交流电压回路 5.?开关量输入回路 1.?继电器输出回路 2.4功能 3.5主要措施 4.6缺点 概述编辑

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。 差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,上位机报警保护出口动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。 原理编辑 差动保护

南瑞RCS-931B光纤差动保护浅析

南瑞RCS-931B光纤差动保护浅析 一、光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在CT(电流互感器)的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。★★★但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护! RCS-931B保护装置包括以分相电流差动和零序电流差动为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护,由三段式相间和接地距离及四个延时段零序方向过流构成全套后备保护。正常和外部故障时:Im=-In,制动量≥动作量,保护可靠不动作,内部故障时:Im=In时,制动量为零,动作最灵敏。 动作判据如下式(1)、(2),两式同时满足程序规定的次数即跳闸。 | Im + In | > ICD(1)| Im + In | > k | Im - In | (2) 式(1)为基本判据,ICD 表示线路电容电流,式(2)为主判据。 式(1)、(2)的动作特性如图1 所示,制动量随两侧电流大小、相位而改变,Im = In 时,制动量为零,动作最灵敏,区外故障,Im = - In,制动量》动作量,保护可靠不动作。

二、整组动作时间:1.工频变化量距离元件:近处3~10ms 末端<20ms222 2.差动保护全线路跳闸时间:<25ms(差流>1.5 倍差动电流高定值) 3.距离保护Ⅰ段:≈20ms 三、保护程序结构及跳闸逻辑:

光纤差动保护

光纤差动保护 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。 当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。 2 对通信系统的要求 光纤电流差动保护借助于通信通道双向传输电流数据,供两侧保护进行实时计算。其一般采用两种通信方式:一种是保护装置以64Kbps/2Mbps速率,按

ITU-T建议G.703规定于数字通信系统复用器的64Kbps/2Mbps数据通道同向接口,即复用PCM方式;另一种是保护装置的数据通信以64Kbps/2Mbps速率采用专用光纤芯进行双向传输,即专用光纤方式。(详见图3) 光纤电流差动保护要求线路两侧的保护装置的采样同时、同步,因此时钟同步对光纤电流差动保护至关重要。当电流差动保护采用专用光纤通道时,保护装置的同步时钟一般采用"主-从"方式,即两侧保护中一侧采用内部时钟作为主时钟,另一侧保护则应设置成从时钟方式。设置为从时钟侧的保护装置,其时钟信号从对侧保护传来的信息编码中提取,从而保证与对侧的时钟同步。当采用复用PCM方式时,复用数字通信系统的数据通道作为主时钟,两侧保护装置均应设置为从时钟方式,即均从复用数字通信系统中提取同步时钟信号:否则保护装置将无法与通信系统数据通道进行复接。

基于光纤差动保护的新型智能配电网设计

基于光纤差动保护的新型智能配电网设计 摘要:本文主要阐述了我国配网自动化建设的现状和发展趋势,并分析光纤差 动保护在10kV线路应用的优势,从而提出了一种基于光纤差动保护的新型智能 配电网设计,并分析这种配网自动化设计的应用优势。 关键词:配网自动化;光纤差动保护;新型智能电网设计 1 配网自动化建设的发展趋势 随着城市现代化建设的脚步不断向前,社会对用电可靠性的要求越来越高。传统意义上 的“集中控制型”、就地控制型”、“运行监测型”无法满足用电用户“零停电”的要求。而基于面 保护判断逻辑的“智能分布式”逻辑过于复杂,运行维护难度高,难以大范围运用。除了满足 用电用户的要求,配网自动化建设方案还要考虑到运行维护、检修、改造难度等方面的问题。 因此,寻找一种可靠性高、设计原理简单、便于运行维护检修且易于改造的配网自动化 方案,是我国配网自动化建设的发展趋势。 2光纤差动保护的优势 光纤差动保护相对比与其它类型的保护,其优势主要有: (1)光纤差动保护的原理简单,运用的是基尔霍夫电流基本定律,根据其原理本身,就可以正确判断区内故障与区外故障,具有成熟可靠的保护判断逻辑。 (2)光纤差动保护被广泛运用于220kV及以上电压等级的输电线路中,并作为主保护。因此,对于光纤差动保护,国内有着成熟的运行管理经验以及检修、维护经验。 (3)光纤差动保护中,线路两侧的保护装置不存在电联系,提高了系统运行的可靠性。 (4)光纤差动保护其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等情况,可适应各种不同的电力运行系统。 (5)光纤差动保护由于其原理简单,并且不受运行方式变化的影响,能更好地实现保护单元化,可灵活应用于线路改造、线路整改、开闭所改造。 纤差动保护技术在世界电力系统中广泛应用,其保护逻辑日益成熟、完善。并且,随着 光纤通讯技术的不断发展,使光纤差动保护的实施变得更加简单,其应用的领域将变得更加 广泛。 3一种基于光纤差动保护的新型智能配电网设计方案 3.1 新型智能配电网设计方案总述 新型智能配电网的主干线设计采用简单、可靠的单环网结构,单环网结构可以为开环系 统或者闭环系统。当为开环系统时,需要设置一个常开点作为转供电的联络开关。 智能配电网的高压开关均采用紧凑、环保型的真空断路器开关,故障发生时可实现快速 就地分闸隔离故障。 智能配电网的主保护采用光纤差动保护,并且设计后备保护。当光纤通讯异常,主保护 失效时,智能配电网主干线路的保护将自主切换为后备保护。 3.2 智能配电网保护设计 (1)主保护设计 主干线采用光纤差动保护。光纤接口采用FC型接口,采用单模双纤,发送器件为 1310nm InGaAsP/InPMQW-FP激光二极管(简称LD),光接收器件采用InGaAs光电二极管 (简称PIN),光纤传输距离可达10km。 保护装置与保护装置之间采用“专用光纤通道”传输数据,即保护装置与保护装置之间的 数据交互单独采用一组光纤,且为直接连接的方式,中间不经过任何转换。这样设计的好处 在于可保证数据传输的速度足够快,且稳定可靠。 光纤差动保护为分相电流保护,可分别检测A、B、C三相的差动电流。设计具备二次谐 波闭锁光纤差动保护功能,此功能是为了防止励磁涌流引起光纤差动保护误动。 主干线保护设计确保线路发现大电流的短路故障以及小电流的接地故障时,保护装置均 能灵敏检测并且可靠动作。光纤差动保护、光纤零序差动保护的逻辑判断及继电器出口动作 时间总和为≦40ms,开关的固有分闸时间为≦40ms,故障总处理时间为≦80ms。

(完整版)CSC-103B光纤差动保护装置检修规程

CSC-103B光纤差动保护装置检修规程 1 主题内容与适用范围 本标准规定了CSC-103B光纤差动保护装置的检验类型、周期、检验的原则性要求、检验方法及质量标准的主要技术标准 本标准适用于继电保护人员对CSC-103B光纤差动保护装置进行调试、检验 2 引用标准 《继电保护及电网安全自动装置检验条例》 《继电保护和安全自动装置基本试验方法》GB/T 7261-2016 《继电保护和安全自动装置技术规程》GB/T 14285-2006 《继电保护和电网安全自动装置检验规程》DL/T 995-2016 《继电保护及二次回路安装及验收规范》GB/T 50976-2014 《继电保护和电网安全自动装置现场工作保安规定》Q/GDW 267-2009 《继电保护和安全自动装置通用技术条件》DL/T 478-2013 《继电保护微机型试验装置技术条件》DL/T624-2010 《继电保护测试仪校准规范》DL/T 1153-2012 《防止电力生产重大事故的二十五项重点要求》【国家能源局】《电力系统继电保护及安全自动装置反事故措施要点》中华人民共和力工业部《国家电网公司十八项电网重大反事故措施》 《CSC-103B数字式超高压线路保护装置说明书》 3 主要技术参数 3.1 装置简介 CSC-103B线路保护装置包括以纵联距离和零序方向元件为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护由三段式相间和接地距离及四个延时段零序方向过流构成全套后备保护 3.2 额定参数 a) 交流电压Un:100/ 3 V ;线路抽取电压Ux:100V 或100/ 3 V b) 交流电流In :1A c) 交流频率:50Hz d) 直流电压:220V e) 开入输入直流电压:24V 3.3 交流回路精确工作范围 a) 相电压:0.25V ~70V b) 检同期电压:0.4V ~120V c) 电流:0.05In ~30In

110kV线路光纤差动保护

xxxxxxxxxx公司 xxxxxxxxx工程 110kV线路光纤差动保护 专用技术规范 (编号:) 物料编码: Xxxxx设计院 年月 目录 1 标准技术参数 (1) 2 项目需求部分 (2)

2.1 货物需求及供货范围一览表 (2) 2.2 必备的备品备件、专用工具和仪器仪表供货表 (3) 2.3 图纸资料提交单位 (3) 2.4 工程概况 (3) 2.5 使用条件 (3) 2.6 项目单位技术差异表 (4) 2.7 一次、二次及土建接口要求(适用扩建工程) (5) 3 投标人响应部分 (5) 3.1 投标人技术偏差表 (5) 3.2 销售及运行业绩表 (5) 3.3 推荐的备品备件、专用工具和仪器仪表供货 (5) 3.4 最终用户的使用情况证明 (6) 3.5 投标人提供的试验检测报告表 (6) 3.6 投标人提供的鉴定证书表 (6)

1 标准技术参数 投标人应认真逐项填写标准技术参数表(见表1-4)中投标人保证值,不能空格,也不能以“响应”两字代替,不允许改动招标人要求值。如有差异,请填写表11 投标人技术偏差表。 表1 110kV线路光纤差动保护标准技术参数表 序 号 参数名称单位标准参数值投标人保证值 1 *电流精工范围测量范围下限为0.05 In,上限 为20In~40 In,在电流为0.05 In~(20 In~40In)时,测量 误差≤5%(相对误差)或0.02 In (绝对误差),但在0.05 In以 下范围用户应能整定并使用,实 际故障电流超过电流上限(20 In~40In)时,保护装置不误动 不拒动 (投标人填写) 2 *电压精工范围V 0.01Un—1.1Un(投标人填写) 3 电流差动动作时间ms 不大于30ms(1.2倍整定值,不 包括通道延时) (投标人填写) 4 *距离I段暂态超越≤5% (投标人填写) 5 *相间距离I段动作时间ms 不大于30ms(0.7倍整定值)(投标人填写) 6 *接地距离I段动作时间ms 不大于30ms(0.7倍整定值)(投标人填写) 7 *零序过流I段动作时间ms 不大于25ms(1.2倍整定值)(投标人填写) 8 *整组动作时间ms 近端故障不大于20ms; 远端故障不大于30ms (投标人填写) 9 交流电流回路过载能力2 In,连续工作;10 In,10s;40 In,1s (投标人填写) 10 交流电压回路过载能力 1.2 In,连续工作;1.4 In,10s (投标人填写) 11 交流电压回路功率损耗(每相)V A ≤1VA(投标人填写) 12 交流电流回路功率损耗(每相)V A ≤0.5VA(In=1A) ≤1VA(In=5A) (投标人填写) 13 装置直流消耗W ≤30W(工作时) ≤50W(动作时) (投标人填写) 14 跳闸触点容量长期允许通过电流不小于5A; 触点断开容量为不小于50W (投标人填写) 15 其它触点容量长期允许通过电流不小于2A; 触点断开容量为不小于30W (投标人填写)

纵联保护原理

纵联保护原理 线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。而普通的反应线路一侧电量的保护不能做到全线速动。纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。是属于直接比较两侧电量对纵联保护。目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。 先了解一下纵联差动保护: 为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。 输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连

接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路. 纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。 高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。安工作原理的不同可分为两大类:方向高频保护和相差高频保护。 光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。光纤通信广泛采用PCM调制方式。这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

光纤差动保护原理分析

光纤差动保护原理分析 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。

当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。

对于光纤分相电流差动保护而言,其差动保护一般采用如图2所示的双斜率制动特性,以保证发生穿越故障时的稳定性。图中,Id 表示差动电流,Ir表示制动电流,K1、K2分别表示不同的制动斜率。 采用这样的制动特性曲线,可以保证在小电流时有较高的灵敏度,而在电流大时具有较高的可靠性,即当线路末端发生区外故障时,因电流互感器发生饱和产生传变误差,此时采用较高斜率的制动特性更为可靠。 由于线路两侧电流互感器的测量误差和超高压线路运行时产生 的充电电容电流等因素,差动保护在利用本地和对侧电流数据按相进行实时差电流计算时,其值并不为零,也即存在一定的不平衡电流。光差动保护必须按躲过此电流值进行整定,这也是在上面所示的图2中最小差电流整定值Isl不为零的原因所在。如何躲过该不平衡电流对差动保护的影响,不同类型的保护装置其采用的整定方法也不尽相同,一般采用固定门坎法进行整定,即将在正常运行中保护装置测量到的差电流作为被保护线路的纯电容电流,并将该电流值乘以一系数(一般为2-3)作为差动电流的动作门坎。 当差动元件判为区内故障发出跳闸命令时,除跳开线路本侧断路器外,还借助于光纤通道向线路对侧发出联跳信号,使得对侧断路器快速跳闸。 2 对通信系统的要求

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

光纤纵差保护远传远跳功能的应用分析

光纤线路保护远传远跳功能的应用分析 摘要:光纤通道具有传输速度快,抗干扰能力突出,稳定可靠的优点,越来越多地应用到线路保护中。本文分析比较了光纤线路保护中的远传、远跳功能,同时给出具体的应用范例,并结合实际工程设计中容易出现的问题,进行讨论分析,有利于技术人员深刻理解线路保护中的远传、远跳功能。 关键词:光纤、远传、远跳 引言 由于光纤通道独立于输电线路,采用纤 芯传输信号,其信号传输速度快,抗干扰能 力突出,故障概率低,并且调试成功后比较 稳定可靠,因此越来越多继电保护设备采用 光纤通道传输保护信号。目前,220kV及以 上变电站绝大多数输电线路采用了具有光 纤通道的数字式线路保护。采用数字光纤通 道,不仅可以交换两侧电流数据,同时也可 以交换开关量信息,实现一些辅助功能,其 中就包括远传、远跳功能。 目前,大多数厂家在远传、远跳信号传 输实现上采用类似的原理:保护装置在采样 得到远传、远跳开入为高电平时,经过编码, CRC校验,作为开关量,连同电流采样数据 及CRC校验码等,打包成完整的一帧信息, 通过数字通道,传送到对侧保护装置。同样, 接收到对侧数据后,经过CRC校验,解码提 取出远传、远跳信号。唯一的区别在于:保 护装置确认收到对端远跳信号后,经由可选 择的本侧装置启动判据,驱动出口继电器出 口跳闸。保护装置在收到对侧远传信号后, 并不作用于本装置的跳闸出口,而只是如实 的将对侧装置的开入节点反映到本侧装置 对应的开出接点上,其接点反映开出并 开入 开入 M N 910 914 916 918 } 909 913 915 917 }远传2(开出) 远传1 (开出) 图1 远传功能示意图不经装置启动闭锁。以RCS-900系列保护装置为例,远传功能实现方式如图1所示。一、远跳功能应用 对于如图2所示典型220kV系统接线,当母线K2 发生故障,本侧断路器失灵或者K1发生故障时,母差保护虽动作切除本侧开关,故障依然没有切除,由于故障点不在线路纵联差动保护范围之内,故障不能快速切除,只能通过线路后备保护经延时跳开对侧开关来切除故障,这将延长故障切除时间,对系统造成很大冲击。 侧 图2 典型220kV系统接线 220kV系统通常借助远跳功能,瞬时跳开对侧断路器,减小故障对系统稳定的影响。具体实现逻辑如图3所示,利用母差或失灵保护动作启动本侧断路器的TJR永跳重动继电器,当TJR触发后,在跳开本侧断路器的同时, TJR重动接点开入本侧线路保护的远跳端子,经光纤通道,对侧保护装置收远跳开入后,经可选择的本地启动判据, 远跳开入 图3 远跳功能 通过保护跳闸出口接点,瞬时跳开对侧断路

浅谈光纤差动保护

浅谈光纤差动保护 发表时间:2016-08-29T10:27:38.213Z 来源:《电力设备》2016年第12期作者:杜易霏徐晓玥李泽方 [导读] 由于只能反应两侧TA 之间的线路全长,在原理上讲光纤差动保护并不是完整的保护。 杜易霏徐晓玥李泽方 (山东核电有限公司山东烟台 265116) 摘要:随着我国经济以及科技的快速发展,超高压输电线路也得到了一定的发展。近年来,光纤通信技术发展迅速,光纤差动保护因其保护原理简单、动作快速、能可靠地反映线路上各种类型故障等优点,在220kV 及以上电压等级的输电线路中作为主保护被广泛应用。本文主要从光纤差动保护原理入手,结合实际经验,对其功能的应用和实现做了相应的介绍。 关键词:光纤差动、原理、注意事项 光纤差动保护基本原理 由于只能反应两侧TA 之间的线路全长,在原理上讲光纤差动保护并不是完整的保护,通常还需附带其他后备保护以弥补不足。如RCS-931保护以分相电流差动和零序电流差动为主体的快速主保护,还配有工频变化量距离元件构成快速的Ⅰ断保护,由三段式相间和接地距离及多个零序方向过流保护构成后备保护,保护有分相出口。 光纤差动保护需注意的问题 TA饱和 TA 的饱和使得电流二次值与一次值的误差超出规定值范围,在区外故障时,会影响差动保护的正确动作。克服TA 饱和可选用合适的电流互感器,宜尽量选用有剩磁限值的互感器如TPY 型;此外,保护装置本身也应采取措施减缓互感器暂态饱和影响,如采用变制动特性比率差动原理等。 在RCS-931保护中,由于采用了较高的制动系数和自适应浮动制动门槛,从而保证了在较严重的饱和情况下不会误动。 通道数据同步性 光纤差动线路保护装置对两侧数据的实时性、同步性要求较高,若两侧采样不同步,会使不平衡电流加大,产生差流。通道两侧采用一主一从方式,用于测量通道延时,主机侧为参照侧,从机侧为调整侧,若两侧不同步,参与计算的交流采样值不是同一时刻的,就会出现差流。解决该问题必须统一时钟,改变时钟方式。RCS931 系列保护通过控制字“主机方式”和“专用光纤”进行整定,可防止因数据传输中产生周期性滑码,出现差流。 若差动保护装置的通信时钟方式控制字设置错误,保护装置也会报通道异常,使光纤差动保护退出运行。因此现场调试及运行中要特别注意正确设置装置的通信时钟方式。 CT极性 母差保护用CT一般为反极性接入;测量用CT为0.5 级,极性应指向母线;计量用CT极性端应指向母线;保护用CT按保护装置的工作原理,严格按照定值单执行。所有的CT 次级除母差保护应在母差保护屏一点接地,其余均应在端子箱内经过击穿保险接地,保护屏内一点接地。 现象:送电带负荷试验时,发现母差保护总差回路中有差流,且值为两倍新安装间隔的电流。 原因分析:母差用CT 副边极性接反,从而导致二次电流在总差回路中不能被平衡掉,总差电流不能平衡,其值为两倍该间隔电流。 处理方法:在CT 接线前,应先进行运行间隔的带负荷试验,测出母差保护的极性及其他组副边的实际使用极性,多测几组,结合各变比的不同,从而得出本间隔得接线图。 光纤通道检查 由于光纤熔接点的质量、尾纤接头,法兰盘的表面不够清洁、光纤接头的缺口未完全卡入缺口、光缆或尾纤的弯曲半径太小(弯曲半径小于3cm)等原因,造成光纤通道的总衰耗增大,使保护装置频繁发通道告警。在日常的现场维护工作中应利用保护装置检修的机会,

光纤差动保护装置原理分析及其调试、运行注意事项

RCS-9613CS型光纤差动保护原理分析及其 调试、运行注意事项 一、开放条件 在保护功能已投入的情况下, RC S9613CS 型光纤差动保护装置的开放条件是: a) 保护启动且满足差动方程。 b) 保护没有启动, 但是相电压或相间电压由正常值变为低于65 % Ur ( Ur 为线路的额定电压) ,且满足差动方程。 c) 开关置于分位, 且满足差动方程。 一旦上述任一条件得到满足, 保护装置将给对侧发差动允许信号, 对侧如检测到有区内故障, 两侧保护出口将动作。上述开放条件仅对瞬时金属性短路故障而言。 二、闭锁条件 RC S9613CS型光纤差动保护装置的闭锁条件是: a) 保护功能压板不投; b) 开关位置为合位, 且三相电压正常(三相对称且幅值大于 65 %Ur ) ; c) 开关位置为分位, 但是保护没有接受到跳闸信号(如控制电源被切除) 。上述任一条件不满足, 则对侧保护装置检测到任何瞬时故障, 两侧光纤分相差动保护均被闭锁。上述闭锁条件只是针对瞬时金属性短路故障而言的, 当后备保护在投入状态或发生零序高阻接地故障时, 闭锁条件将不起作用。

三、特殊试验条件下的反应 特殊试验条件下RC S9613CS型光纤差动保护装置的反应情况: a) 对空载充电线路, 在断路器断开侧对保护装置进行加电流试验。若只投主保护压板, 其它后备保护压板不投, 模拟各类型故障(故障电压低于40 V) ,则两侧光纤差动保护装置均不动作; 投入主保护压板及其它后备保护压板, 加故障电流, 如本侧开关断开, 则后备加速保护动作, 开关合位时, 后备保护动作, 经一定延时后, 光纤差动保护装置动作, 此时,对侧光纤差动保护装置也随之跳闸; 若只投主保护压板, 其它后备保护压板不投, 空载充电线路有启动电流, 则两侧光纤差动保护装置动作; 任一侧开关跳闸异常, 不影响两侧光纤差动保护的逻辑判别。 b) 空载充电线路发生故障时, 断路器断开侧光纤差动保护装置不动作。 c) 当空载充电线路发生非高阻接地的瞬时故障(故障延时小于50 ms) 时, 如断路器断开侧控制电源被误退出, 将导致电源侧光纤差动保护拒动。 d) 任一侧主保护压板退出, 均闭锁两侧光纤差动保护。 e) 通道异常, 则可靠闭锁两侧主保护。 f ) 光纤差动保护不经复合电压、电压互感器断线等闭锁。 g) 任一侧断路器断开或三相电压低于65 %Ur ,将开放对侧光纤差动保护。 四、RC S9613CS型光纤差动保护装置的特点

(完整版)NSR-303A-G-R型光纤差动保护装置检修规程

NSR-303A-G-R型光纤差动保护装置检修规程 1 主题内容与适用范围 本标准规定了NSR-303A-G-R型光纤差动保护装置的检验类型、周期、检验的原则性要求、检验方法及质量标准的主要技术标准 本标准适用于继电保护人员对NSR-303A-G-R型光纤差动保护装置进行调试、检验 2 引用标准 《继电保护及电网安全自动装置检验条例》 《继电保护和安全自动装置基本试验方法》GB/T 7261-2016 《继电保护和安全自动装置技术规程》GB/T 14285-2006 《继电保护和电网安全自动装置检验规程》DL/T 995-2016 《继电保护及二次回路安装及验收规范》GB/T 50976-2014 《继电保护和电网安全自动装置现场工作保安规定》Q/GDW 267-2009 《继电保护和安全自动装置通用技术条件》DL/T 478-2013 《继电保护微机型试验装置技术条件》DL/T624-2010 《继电保护测试仪校准规范》DL/T 1153-2012 《防止电力生产重大事故的二十五项重点要求》【国家能源局】 《继电保护及安全自动装置运行管理规程》中华人民共和国电力行业标准中华人民共和国电力工业部《电力系统继电保护及安全自动装置反事故措施要点》 《国家电网公司十八项电网重大反事故措施》 《NSR-303系列超高压线路保护装置技术使用说明书》 3 主要技术参数 3.1 装置简介 NSR-303A-G-R光纤差动保护装置以分相电流差动和零序电流差动为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护,由三段式相间和接地距离及多个零序方向过流构成的全套后备保护 交流电压Un: 相电压:100/ V 线路抽取电压:100/ V或100V 交流电流In: 1A 频率:50Hz 额定直流电压:220V 打印机工作电压:AC 220V 50Hz

光纤差动线路保护讲义

天王沟电站线路保护讲课讲义 一、我站线路保护配置 1.RCS-943 包括以分相电流差动和零序电流差动为主体的快速主保护,由三段相间和接地距离保护、四段零序方向过电流保护构成的全套后备保护;装置配有三相一次重合闸功能、过负荷告警功能。

二、线路保护简介 1.光纤纵差保护 首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型:(以下几点作为了解,我站为第3种) 1.)电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.)微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.)光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.)导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。

2.线路距离保护 我站线路距离保护分为接地距离、相间距离保护 接地距离:以保护安装处故障相对地电压为测量电压、以带有零序电流补偿的故障相电流为测量电流的方式,就能够正确地反应各种接地故障的故障距离,所以它称为接地距离保护接线方式。 相间距离:以保护安装处两故障相相间电压为测量电压、以两故障相电流之差为测量电流的方式称为相间距离保护接线方式。距离保护是反应故障点至保护安装地点之间的距离(或阻抗)。并根据距离的远近而确定动作时间的一种保护装置。该装置的主要元件为距离(阻抗)继电器,它可根据其端子上所加的电压和电流测知保护安装处至短路点间的阻抗值,此阻抗称为继电器的测量阻抗。当短路点距保护安装处近时,其测量阻抗小,动作时间短;当短路点距保护安装处远时,其测量阻抗增大,动作时间增长,这样就保证了保护有选择性地切除故障线路。 用电压与电流的比值(即阻抗)构成的继电保护,又称阻抗保护,阻抗元件的阻抗值是接入该元件的电压与电流的比值:U/I=Z,也就是短路点至保护安装处的阻抗值。因线路的阻抗值与距离成正比,所以叫距离保护或阻抗保护。距离保护分的动作行为反映保护安装处到短路点距离的远近。与电流保护和电压保护相比,距离保护的性能受系统运行方式的影响较小。 距离保护保护范围讲解:一般距离保护为Ⅲ断式距离保护,第

110KV短线路光纤纵差保护

110KV短线路光纤纵差保护 【摘要】本文介绍了某污水处理厂110KV主变电站由于与电源侧220KV 变电站相距过近,其110KV进线属于超短联络线,而导致的相应的继电保护配置方面与常规线路保护的一些不同之处。 【关键词】继电保护;超短线路;光纤;保护配置 引言 随着电力系统的发展和对城市电网的优化和改造工程的进行,几公里及十几公里的中低压线路和短线路群的出现,这些短线路若选用传统的电流保护或距离保护,在整定值与动作时间上都难以配合,因此选择光纤纵差保护成为一种必然,其原理简单、运行可靠、动作快速准确且不需要与相邻线路的保护进行配合等诸多优点,使其在线路保护中得到广泛应用。 1 保护配置方案 2000年重庆市第一大污水处理厂开始建设,其承担电源任务的两个110KV 主变电所有两回电源进线,其中一回电源进线来自重庆市电力公司下属城区供电局220KV某变电站。该线路长度不超过1KM,属于超短线路,根据《继电保护和安全自动装置技术规程》(DL400-91)规定:“如电力网的某些主要线路采用全线速动保护后,不仅改善本线路保护性能,而且能够改善整个电网的保护性能,应装设一套全线速动保护”。 在为该线路配置保护时不宜选用高频闭锁式纵联保护。110KV超短线路采用高频闭锁式纵联保护,开设电力线载波通信时,高频信号可能产生差拍,导致收信不正确而误动作。虽然在理论上可采用人为接入固定衰耗的方法来消除频拍,但目前这种设备尚无成熟产品。参照《规程》的2.6.5节,该线路也可考虑采用短引线差动保护或导引线为通道的纵联差动保护,但是短引线差动保护二次回路由于引线较长,TA的二次负载较大,从而引起线路两侧的TA特性不匹配,并且TA的二次回路接线也较复杂,这些都将直接影响差动保护的动作特性和安全性。而以导引线为通道的纵联差动保护,其导引线通道易受外界干扰,抗干扰能力差,易受线路故障影响,影响差动保护的安全可靠运行。目前,光纤通道技术已逐渐成熟,由于光纤传输不受电磁干扰的影响,通信误码率低,工作稳定,在安全性和可靠性方面与导引线通道相比有显著优势。同时,光纤通道频带宽,容量大,可以缓解电力系统的通道拥挤问题。因此,利用光纤传输的微机线路纵联差动保护得到了越来越广泛的研究和应用。 与此同时,由重庆电力调度通信中心在对相关电力系统网络进行周密细致的分析计算后得出的结论是在两变电站之间线路:在电源侧装一套带失灵启动微机线路保护和光纤线路纵差保护。”综合以上意见,本工程的110KV线路保护采用了由国家电力自动化研究院南瑞继保所开发生产的RCS-943A型高压输电线路成套保护装置。 2 保护装置及保护通道 RCS-943A型保护装置包括以分相电流差动和零序电流差动为主体的快速主保护,由三段相间和接地距离保护、四段零序方向过流保护构成的全套后备保护;装置配有三相一次重合闸功能、过负荷告警功能;装置还带有跳合闸操作回路和交流电压切换回路,具有全线速跳功能。数字差动保护的关键是线路两侧差动保护之间电流数据的交换,本装置中的数据采用64Kb/s高速数据通道、同步通信

线路光纤保护联调方案

光纤差动保护联调方案 摘要:光纤电流差动保护是高压和超高压线路主保护的发展趋势。根据光纤分相电流差动保护的基本原理,详细阐述了光纤电流差动保护联调方案,其中包括检查两侧电流及差流、模拟线路空充时故障或空载时发生故障、模拟弱馈功能以及模拟远方跳闸功能。同时分析了光纤电流差动保护定检中存在的危险点,并提出了相应对策。 关键词:光纤分相电流差动:联调;充电;弱馈;远方跳闸 0 引言 近年来,随着通信技术的发展和光缆的使用,光纤分相电流差动保护作为线路的主保护之一得到了越来越广泛的应用。而且这种保护在超高压线路的各种保护中,具有原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相、单侧电源等方式的影响,动作速度快,选择性好,能可靠地反应线路上各种类型故障等突出优点。目前由于时问、地域、通信等条件限制,继电人员常常无法密切配合进行两侧纵联差动保护功能联调,造成联调项目简化,甚至省略的现象时有发生,这样极为不利于继电人员对保护功能的细致了解,因此本文将结合南瑞RCS一931和四方CSC一103型光纤差动保护装置简要说明两侧差动保护联调的试验步骤。 数字电流差动保护系统的构成见图1。 M N 图1电流差动保护构成示意图 上图中M、N为两端均装设CSC-103高压线路保护装置,保护与通信终端设备间采用光缆连接。保护侧光端机装在保护装置的背板上。通信终端设备侧由本公司配套提供光接口盒CSC-186A/CSC-186B。 1 光纤分相电流差动保护基本原理光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,各侧保护利用本侧和对侧电流数据按相进行差动电流计算。 动作电流(差动电流)为: I D=│(ìM-ìMC)+( ìN-ìNC)│ 制动电流为:I B=│(ìM-ìMC)-( ìN-ìNC)│ 比例制动特性动作方程为: ID﹥ICD ID﹥K*IB 式中:IM、IN分别为线路两侧同名相相电流,IMC、INC为实测电容电流,并以由母线流向线路为正方向;ICD为差动保护动作门槛;K为比例制动系数,一般K<1。线路内部故障时,两侧电流相位相同,动作电流远大于制动电流,保护动作;线路正常运行或区外故障时,两侧电流相位反向,动作电流为零,远小于制动电流,保护不动作。南瑞公司的RCS

RCS931系列光纤差动保护装置现场调试

RCS931系列光纤差动保护装置现场调试 摘要: 南瑞继保的RCS931系列是由微机实现的数字式超高压线路成套快速保护装置,可用作输电线路的主保护及后备保护。本文借助ONLLY继保调试仪器,简述了RCS931系列光纤差动保护装置的保护功能调试方法和光纤通道的保护联调方法,对RCS931系列保护装置的现场调试具有一定的参考价值。 关键字:线路保护、RCS931、调试 1 引言 RCS931系列微机保护装置一般包括以分相电流差动和零序电流差动为主体的快速主保护,由三段式相间和接地距离及多个零序方向过流构成的全套后备保护。RCS-931系列保护有分相出口,配有自动重合闸功能,对单或双母线接线的开关实现单相重合、三相重合和综合重合闸。ONLLY测试仪器是由昂立电气公司研发,可以独立完成各种继电保护功能调试的保护测试装置,广泛适用于电力、铁路、石化、冶金、矿山、军事、航空等行业的科 研、生产和电气试验现场。正确地进行装置的功能调试是装置能准确判断及动作的必要前提。 2 光纤纵差保护 2.1光纤差动保护原理 光纤纵差保护是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位进行比较,从而判断出区内外故障,属于直接比较两侧电量的纵联保护,包括分相电流差动和零序电流差动两种[1、2]。 2.2试验方法 (1)将光端机(在CPU插件上)的接收“RX”和发送“TX”用尾纤短接,构成自发自收方式;仅投差动保护压板;整定保护定值控制字中“投纵联差动保护”、“专用光纤”、“通道自环”、“投重合闸”和“投重合闸不检”均置1。此时通道异常灯应该为不亮状态。 (2)等保护充电,直至“充电”灯亮,且TV断线灯不亮。 (3)进入ONLLY测试仪器的电压/电流菜单,加大于1.05×0.5×差动电流高定值的故障电流,模拟单相或多相区内故障。

相关主题
文本预览
相关文档 最新文档