当前位置:文档之家› A3钢表面激光熔覆金属陶瓷TiC-B4C-SiC-Co材料研究

A3钢表面激光熔覆金属陶瓷TiC-B4C-SiC-Co材料研究

金属基复合材料的现状与展望

金属基复合材料的现状与 展望 学院:萍乡学院 专业:无机非金属材料 学号:13461001 姓名:蒋家桐

摘要综述了金属基复合材料的进展情况,重点阐述了颗粒增强金属基复合材料和金属基复合 涂层的进展,包括其性能、现有品种、制备工艺、应用情况. 同时报道了目前本领域研究存在的问 题,如:力学问题、界面问题、热疲劳问题,并在此基础上展望发展前景. 关键词颗粒增强金属基复合材料,复合涂层材料,界面,热疲劳,功能梯度材料 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展[1 ] . 复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展.金属基复合材料(MMC) 是以金属、合金或金属间化合物为基体,含有增强成分的复合材料. 这种材料的主要目标是解决航空、航天等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60 年代末才有了较快的发展,是复合材料一个新的分支. 目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性,以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料. 1 进展情况 目前,金属基复合材料基本上可分为纤维增强和颗粒增强两大类,所用的基体包括Al , Mg ,Ti 等轻金属及其合金以及金属间化合物等,也有少量以钢、铜、镍、钴、铅等为基体. 增强 纤维主要有碳及石墨纤维、碳化硅纤维、硼纤维、氧化铝纤维等,增强颗粒有碳化硅、氧化铝、硼 化物和碳化物等. 用以上的各种基体和增强体虽可组成大量金属基复合材料的品种,但实际上 只有极少几种有应用前景,多数仍处在研究开发阶段,甚至也有不少品种目前尚看不到其应用 前景[2 ] . 1. 1 纤维增强金属基复合材料 纤维增强金属基复合材料,由于具有高温性能好、比强度、比模量高、导电、导热性好等优 点,而成为复合材料的主要类型. 1. 2 颗粒增强金属基复合材料 由于纤维增强金属基复合材料存在上述缺点,从而未能得以大规模工业应用,只有美国、 日本等少数发达国家用于军事工业. 为此,近年来国际上又将注意力逐渐转移到颗粒增强金属 基复合材料的研究上. 这一类金属基复合材料与纤维增强金属基复合材料相比制备工艺简单, 成本低,可采用常规金属加工设备来制造,这样有利于其开发和应用. 可见,颗粒增强金属基复 合材料是非常有发展前途的. 金属基颗粒复合材料通常是作为耐磨、耐热、耐蚀、高强度材料开发的,目前用于颗粒增强

激光陶瓷

激光陶瓷 引言 激光透明陶瓷是在近年来蓬勃发展起来的新型激光材料,目前,市场上激光材料以Nd:YAG(钕钇铝石榴石)单晶和钕玻璃为主。透明陶瓷作为激光材料,和单晶比:具有掺杂浓度高、掺杂均匀性好、烧结温度低、周期短、成本低、质量可控性强、尺寸大、形状自由度大、可以实现多层、多功能激光器;和玻璃比:单色性好、结构组成更为理想、热导率高、可承受的辐射功率高。作为激光工作物质的陶瓷材料。如掺钕的透明氧化钇陶瓷。在Y2O3(三氧化二钇)中加入少量ThO2(二氧化钍)和微量Nb2O5(五氧化二铌)。它比激光玻璃材料导热性能好,比单晶激光材料容易制造,便于制成大尺寸。有可能做成中等增益的高平均脉冲功率的激光物质中国、美国和欧洲很多国家的科研工作者都投身到激光陶瓷的研究中去,大家关注的不仅是激光陶瓷的制备技术,还包括未来固体激光技术的发展。中科院上海硅酸盐研究所经过6年数百次实验,终于研制出国内第一块“透明陶瓷之王”——激光陶瓷,使我国成为世界上继日本之后第二个掌握激光陶瓷材料制备专利技术的国家。 通常,陶瓷都不是透明的,这是因为普通陶瓷中充满着无数微气孔。这些气孔会对光线产生极强的折射和散射,致使几乎所有光线都无法通过陶瓷。如果能把这些气孔赶走,陶瓷就能变得如玻璃般晶莹剔透这块“上海制造”的透明陶瓷采用高纯纳米原料,经过球磨混合、煅烧干燥等工艺,在1650?-1780?真空条件下保温10小时以上烧结而成,尺寸仅为3×3×3立方毫米。从外观上看,这块黄豆大小的陶瓷完全可与玻璃以假乱真。而它的不寻常之处更在于,能在短时间内射出一道炫目激光。

据上海硅酸盐研究所研究员潘裕柏介绍,在一般应用中,由透明陶瓷的微结构所带来的轻微折射,并不影响其透光率,但当方向性极强的激光穿过透明陶瓷时,任何微小的折射都会使光线急转弯,造成致命误差。因此,激光陶瓷从最基本的单元“晶胞”开始,就 与众不同,而这正是新材料领域比拼国家科研实力的“试金石”。除了高透光性,透明陶瓷还具有高强度、高硬度、耐腐蚀、耐高温等性能,其“综合素质”远超一般光学材料。比如,用透明陶瓷制成的高压钠灯,其平均寿命比普通白炽灯长10倍,是目前使用寿命最长的灯用作飞行器、装甲车或汽车的陶瓷风挡,其防弹效果是传统胶合玻璃的2倍,重量却只有防弹玻璃的1/2。据悉,这块国产激光陶瓷现已申请专利3项,其中1项获授权,而尺寸更大、输出功率更强的“升级版”也在研发之中。 陶瓷激光材料:从日本科学家A.Ikesue博士首次报道Nd:YAG(掺钕钇铝石榴石)透明陶瓷实现连续激光输出至今已经有14个年头了,期间激光陶瓷领域也得到了迅猛的发展,但目前代表激光陶瓷最高水平的仍然是A.Ikesue博士的Word Lab公司和日本神岛化学公司(Konoshima)。2008年,A.Ikesue博士在Nature Photonics上发表了题为“Ceramics laser materials”的综述性文章(Nature Photonics/ VOL 2/ DECEMBER 2008),让我们随着他的思路来回顾一下激光陶瓷的发展历程,分享激光陶瓷领域的重大结果,并且展望一下激光陶瓷的前景。 固体激光器已经被广泛应用在金属加工、医疗设备、激光打印、环境检测和光学器件上,同时它也是下一代激光核聚变的点火装置。单晶和玻璃是传统意义上的固体激光增益介质,早在1960年,梅曼(Maiman)制成了世界上第一台激光器——红宝石激光。自从1964年Nd:YAG(掺钕钇铝石榴石)单晶在室温下实现连续激光输出后,使用单晶作为激光增益介质的固体激光不断向前发展,然而传统的单晶激光增益介质在技术和生产成本上仍有很多问题有待解决。最近,陶瓷激光技术由于具

金属陶瓷

金 属 陶 瓷 材 料 2014级材料一班 王倩文 1430140512

目录 一、金属陶瓷的定义 (3) 二、金属陶瓷的特点 (4) 1.金属对陶瓷相的润湿性好。 (4) 2.金属相与陶瓷相应无剧烈的化学反应 (4) 3.金属相与陶瓷相的膨胀系数相差不会过大 (4) 三、金属陶瓷的行业现状 (5) 1.中国硬质合金工业产业分布、生产企业和研发机构 (5) 2.碳化钛基金属陶瓷 (5) 2.1 切削加工领域的应用 (6) 2.2 航天航空工业方面的应用 (6) 2.3 其他方面的应用 (7) 3.碳氮化钛基金属陶瓷 (8) 3.1 Ti(C,N)基金属陶瓷组分和成分设 (8) 3.2 晶粒细化 (9) 3.3 Ti(C,N)基金属陶瓷的应用 (9) 4.三元硼化物金属陶瓷 (10) 四、金属陶瓷的发展趋势 (11) 1.新材料的研究与开发。 (11) 2.超细晶粒和纳米级金属陶瓷。 (12) 3.梯度金属陶瓷的应用开发。 (12) 4.金属陶瓷回收再利用问题。 (12) 5.基础研究的发展。 (13)

材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。 一、金属陶瓷的定义 金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该

金属陶瓷材料

[长春工业大学] 金属陶瓷材料读书笔记 090201 20090516 胡冰 2013/3/14 摘要:介绍了Ti(C,N)基金属陶瓷的基本组成和结构,其组织性能及其影响因素,综述了Ti(C,N)基金属陶瓷的研究现状,指出了未来的发展方向和应用。

Ti(C,N)基金属陶瓷的基础研究与进展 前言 TiC—Ni金属陶瓷最早出现在1929年,作为WC—Co合金的替代材料,主要用于切削加工[1]。Ti(C,N)基金属陶瓷是1931年发明的[2]。1956年,美国福特汽车公司Humenik发现在TiC—Ni基金属陶瓷中加入Mo后,可以改善Ni对TiC的润湿性,大大提高合金强度[3]。1971年Kiefer发现在TiC —Ni基金属陶瓷中引入N,并同时加入Mo2C和Mo粉,可使其获得更高的硬度、耐磨性、抗弯强度,较好的切削性能和抗氧化能力。此后,Ti(C,N)基金属陶瓷的研究越来越多。因此国内外对Ti(C,N)基金属陶瓷非常重视,进行深入系统的研究。自2O世纪8O年代以来,Ti(C,N)基金属陶瓷获得了迅速的发展,世界各国硬质合金厂先后推出了系列的Ti(C,N)基金属陶瓷刀具[4]。 3O多年来,随着粉末冶金技术的发展,成分的演化趋于稳定,烧结技术的不断更新,粉末粒径的不断细化,Ti(C,N)基金属陶瓷的机械性能不断提高,Ti(C,N)基金属陶瓷发展到一个比较成熟的阶段。在日本,Ti(C,N)基金属陶瓷刀具材料已占可转位刀片的30%。我国在“八五”期间也研制成功多种牌号的Ti(C,N)基金属陶瓷刀具,并批量上市,但性能不稳定[5]。 Ti(C,N)基金属陶瓷作为一种新型的工具材料,具有密度低、室温硬度和高温硬度都优于WC基硬质合金,化学稳定性和抗氧化性好,耐磨性好等优点。其应用填补了WC硬质合金和陶瓷刀具之间高速精加工和半精加工的空白,既适用于高速精加工,又适用于半精加工和间断切削加

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 1.1按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 1.2按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

激光加热Al2O3陶瓷温度场特性研究

西安建筑科技大学硕士学位论文 目录 1.绪论 (1) 1.1陶瓷的分类、性能及应用 (1) 1.1.1陶瓷的分类 (1) 1.1.2工程陶瓷材料性能及应用 (2) 1.1.3Al2O3陶瓷材料简介 (3) 1.2工程陶瓷材料的加工技术 (4) 1.2.1机械加工 (5) 1.2.2特种加工 (5) 1.2.3复合加工 (7) 1.3激光加工技术 (7) 1.3.1激光加工技术简介 (7) 1.3.2国内外研究现状 (9) 1.4本文研究的内容和目标 (11) 1.5论文的主要工作及创新点 (11) 2.激光加热Al2O3陶瓷热传导模型的建立 (13) 2.1热传导模型简介 (13) 2.1.1热传递的基本方式 (13) 2.1.2热传导方程 (15) 2.1.3边界条件与初始条件 (16) 2.2激光加热Al2O3陶瓷温度场模型的建立 (18) 2.2.1激光光源的特征 (18) 2.2.2计算传热模型的基本假设 (19) 2.2.3Al2O3陶瓷的主要热物理性能参数 (20) 2.3本章小结 (22) 3.连续激光加热Al2O3陶瓷的温度场分布 (23) 3.1连续激光加热Al2O3陶瓷的温度场 (23) 3.1.1连续激光加热长方体Al2O3陶瓷温度场的计算 (23) I 万方数据

西安建筑科技大学硕士学位论文 II 3.1.2连续激光加热圆棒Al2O3陶瓷温度场的计算 (30) 3.2温度场特性分析 (39) 3.2.1长方体Al2O3陶瓷温度场分布 (39) 3.2.2圆棒Al2O3陶瓷温度场分布 (42) 3.3不同因素对Al2O3陶瓷温度场的影响 (43) 3.3.1不同因素对长方体Al2O3陶瓷温度场的影响 (43) 3.3.2不同因素对圆棒Al2O3陶瓷温度场的影响 (45) 3.4本章小结 (46) 4.脉冲激光加热Al2O3陶瓷的温度场分布 (47) 4.1脉冲激光加热Al2O3陶瓷的温度计算 (47) 4.1.1脉冲激光加热长方体Al2O3陶瓷温度的计算 (47) 4.1.2脉冲激光加热圆棒Al2O3陶瓷温度的计算 (51) 4.2温度场特性分析 (55) 4.2.1长方体Al2O3陶瓷温度场分布 (55) 4.2.2圆棒Al2O3陶瓷温度场分布 (56) 4.3不同因素对温度场的影响 (57) 4.3.1不同因素对长方体Al2O3陶瓷温度场的影响 (57) 4.3.2不同因素对圆棒Al2O3陶瓷温度场的影响 (59) 4.4本章小结 (60) 5.总结与展望 (61) 致谢 (63) 参考文献 (64) 附录研究生学习阶段发表论文及获奖情况 (68) 万方数据

金属陶瓷材料

金属陶瓷材料

[长春工业大学] 金属陶瓷材料读书笔记 090201 20090516 胡冰 2013/3/14 摘要:介绍了Ti(C,N)基金属陶瓷的基本组成和结构,其组织性能及其影响因素,综述了Ti(C,N)基金属陶瓷的研究现状,指出了未来的发展方向和应用。

Ti(C,N)基金属陶瓷的基础研究与进展 前言 TiC—Ni金属陶瓷最早出现在1929年,作为WC—Co合金的替代材料,主要用于切削加工[1]。Ti(C,N)基金属陶瓷是1931年发明的[2]。1956年,美国福特汽车公司Humenik发现在TiC—Ni基金属陶瓷中加入Mo后,可以改善Ni对TiC的润湿性,大大提高合金强度[3]。1971年Kiefer发现在TiC —Ni基金属陶瓷中引入N,并同时加入Mo2C和Mo粉,可使其获得更高的硬度、耐磨性、抗弯强度,较好的切削性能和抗氧化能力。此后,Ti(C,N)基金属陶瓷的研究越来越多。因此国内外对Ti(C,N)基金属陶瓷非常重视,进行深入系统的研究。自2O世纪8O年代以来,Ti(C,N)基金属陶瓷获得了迅速的发展,世界各国硬质合金厂先后推出了系列的Ti(C,N)基金属陶瓷刀具[4]。 3O多年来,随着粉末冶金技术的发展,成分的演化趋于稳定,烧结技术的不断更新,粉末粒径的不断细化,Ti(C,N)基金属陶瓷的机械性能不断提高,Ti(C,N)基金属陶瓷发展到一个比较成熟的阶段。在日本,Ti(C,N)基金属陶瓷刀具材料已占可转位刀片的30%。我国在“八五”期间也研制成功多种牌号的Ti(C,N)基金属陶瓷刀具,并批量上市,但性能不稳定[5]。 Ti(C,N)基金属陶瓷作为一种新型的工具材料,具有密度低、室温硬度和高温硬度都优于WC基硬质合金,化学稳定性和抗氧化性好,耐磨性好等优点。其应用填补了WC硬质合金和陶瓷刀具之间高速精加工和半精加工的空白,既适用于高速精加工,又适用于半精加工和间断切削加

激光加工陶瓷裂纹行为的理论分析及实验验证

万方数据

万方数据

9期同胤洲等:激光加工陶瓷裂纹行为的理论分析及实验验证国=吉丽≤‰宇× 厂(3d2—9b2),3+(7b2d一5d3),.2+ (3b4+19b2d2—8b3d)r+3b4d一5b2d3—8b3d2], (6) 对应的应力趋势图如图2所示(为了简化计算,设 ≠生一T。=1,6=o.1mm,d=10mm来观察应力 1一卢 趋势)。 图2热应力分布图 Fig.2Thermal—stressfieldplot 分别讨论式(6)中与激光加工参数有关的三个系数,ilp孑L径边缘温度Tm。,孔半径6和热影响区半径d。 Tm。对热应力的影响,如图3所示(为了简化计F 算,设等丁。=1,b=o.1mm,d=10mm来观察1一卢 应力趋势)。随着孔径边缘温度的提高,切向和径向的拉应力都有显著提高,将增加裂纹产生的可能。因此要尽量降低孔径边缘温度接近熔化温度以减少材料中的拉应力,抑制裂纹的产生。 孔径大小b和热影响区大小d对应力分布的影响如图4所示。当热影响区的大小减少时,两个方向的应力都有变小的趋势(如图4(a),(b),(c)所示);从图4(d)和(e)中可以看到,增大孔径也可以降低两个方向的拉应力;特别地,当热影响区的大小(d一6)不变,仅是增大孔径时也可以有效地降低打孑L的拉应力(如图4(f)和(g)所示)。由(3)式可知在这种情况下温度场分布只是存在平移并不发生变化,即只要将温度场分布向外平移就可以降低热应力。因此减少热影响区大小、增大打孔孔径或向外平移温度分布都可以抑制裂纹的产生。 切割的热应力分析由于切缝的存在而变得复杂,对于这种非轴对称的温度应力场的计算一般很难得到解析解,因此需要将切割过程的温度场以及应力分布在近似范围内进行合理简化。切割过程 图3温度对径向应力(a)和切向应力(b)的影响 Fig.3Effectoftemperatureonthermal-stressof (a)radialand(b)tangentdirection 中,冷却气体对切缝的强冷却效果会导致切缝边缘具有温度较低的重凝层,因此可以将不在光斑覆盖范围内的切缝边缘看成是刚性的且一般切缝宽度很窄(o.1mm左右),又因为激光切割陶瓷一般采用脉冲方式,因此可以将脉冲激光切割近似为一系列打孔过程。上述打孔热应力分析即可适用于脉冲激光切割,不同之处在于脉冲激光切割过程中脉冲间隔很近,会有热积累效应,即前一个脉冲作用的温度场会与后一个脉冲作用的温度场相叠加,导致加工处温度不断升高。从图3中可知温度的升高会导致两个方向拉应力的显著提高,而增加裂纹的产生。因此对脉冲切割的参数优化强度要高于打孔的参数优化,但基本思想还是:降低切缝边缘温度、减少热影响区以及增大切缝宽度。 2.2激光加工过程的裂纹行为预测 从图2中可以看到,加工区域附近产生了很大的切向拉应力,这种应力的作用使得材料加工边缘的薄弱点成为裂纹的起点产生张开型裂纹,开裂的方向为径向,如图5中沿径向的裂纹处所示。而图2中所示径向应力则在一定半径内迅速提高到拉应力的最大值,产生环行裂纹或是改变已扩展裂纹的传播方向。图2所示应力较大的位置集中在距离加工处很近的一个环形区域,裂纹也将会在此区域出现,如图5中沿切向的裂纹处所示。由于模型并没 有针对某种特定的材料,所以无论对于何种材料,在 万方数据

第六章 金属、玻璃、陶瓷材料

第六章 金属、玻璃、陶瓷包装材料及容器 第一节金属包装材料与容器 金属材料(metal m aterial )用于食品包装有近200年的历史,是现代最重要的四大包装材料之一。 金属包装材料以金属板或箔材为原材料,再加工成各种形式的容器来包装食品。 金属包装材料的性能 1、高阻隔性能;阻隔气、汽、水、油、光的透过 2、优良的机械性能;抗拉、抗压、抗弯、韧性及硬度 3、容器成型加工性好且生产效率高 4、具有良好的耐高低温性, 良好的导热性、耐热冲击性 5、表面装饰性好 6、包装废弃物易回收处理。 缺点:化学稳定性差,不耐酸碱腐蚀; 价格较贵;重量较大。 食品包装常用金属材料主要分类 1 、钢基包装材料 镀锡薄钢板(马口铁)、镀铬薄钢板(TFS 板)、 涂料板、镀锌板、不锈钢板。 2 、铝质包装材料 铝合金薄板、铝箔、铝丝等。 一、镀锡薄钢板(马口铁tinplate ) 镀锡薄钢板是低碳薄钢板表面镀锡而制成的产品,简称镀锡板,俗称马口铁板。它大量用于制造包装食品的各种容器,也可为其他材料制成的容器配制容器盖或底。 镀锡板由五部分组成,由内向外依次为钢基板、锡铁合金层、锡层、氧化膜和油膜组成。 (一)镀锡薄钢板(马口铁tinplate )) 镀锡薄钢板结构组成

T 50 可塑性好,用于拉伸容器如拉伸罐罐身。 T 52 拉伸性能中等,稍有刚性用于盖、圆环、螺旋盖、一次拉伸罐 T 57 刚性好,可用于大直径瓶盖、皇冠盖。T61 刚性稍高,可用于较大容器罐身、罐盖、罐底。 T 65 刚性高,可用于三片罐的罐身、罐盖、罐底。T 70 刚性很强,用于罐底、盖。 镀锡薄钢板的性能与使用 镀锡板由于露铁点等因素,具有的耐腐蚀性有时不能满足某些食品的需要,采用镀锡板上涂覆涂料,将食品与镀锡板隔离,以减少它们的接触反应。如富 含蛋白质的鱼、肉食品在高温加热中蛋白质分解产生硫化氢对镀锡罐产生化学腐蚀作用,与露铁点发生作 用形成硫化铁,将对食品产生污染;高酸性食品对罐壁腐蚀产生氢胀和穿孔;有色果蔬因罐内壁溶出二价锡离子的作用将发生褪色现象等等。 (二)涂料镀锡板 镀铬板是由钢基板、铬层、水合氧化铬层和油膜构成。 (一)镀铬薄钢板TFS (tin of free steel ) 二、无锡薄钢板 各层成分成分厚度性能特点 油膜 水合氧化铬层金属铬层 钢基板葵二酸二辛酯 水合氧化铬金属铬低碳钢 22mg/m 27.5~27mg/m 2 32.3~140mg/m 2制罐用0.2~0.3mm 防锈、润滑 保护金属铬层,便于涂料和印铁,防止产生孔眼 有一定腐蚀性,但比纯锡差 提供板材必须的强度,加工 性良好 镀铬板各层厚度、成分及性能特点 镀铬薄钢板性能与使用 (1)机械性能与镀锡钢板相差不大;(2)耐腐蚀性 有较好的耐腐蚀性,但比镀锡板稍差。 (3)加工性能镀铬板不能锡焊,制罐时接缝需采用熔接或黏结。适宜用于制造罐底、盖和两片罐。(4)价格便宜镀铬板加涂料后具有的耐腐蚀性比镀锡板高,价格便宜低10%左右,具有较好的经济性,其使用量逐渐扩大。

陶瓷激光加工技术

陶瓷激光加工技术 伴随着材料技术的发展,在科研应用和工业应用领域中,陶瓷材料因为其优越的物理化学性能得到了越来越多的应用。无论是精密的微电子,或者是航空船舶等重工业,亦或是老百姓的日常生活用品,几乎所有领域都有陶瓷材料的身影。 然而,陶瓷材料结构致密,并且具有一定的脆性,普通机械方式尽管可以加工,但是在加工过程中存在应力,尤其针对一些厚度很薄的陶瓷片,极易产生碎裂。这使得陶瓷的加工成为了广泛应用的难点。 激光作为一种柔性加工方法,在陶瓷件加工工艺上展示出了非凡的能力。以下,以微电子应用陶瓷电路基板的切割和钻孔为例做详细说明。 微电子行业中,传统工艺均使用PCB作为电路基底。但是,随着行业的发展,越来越多的客户要求其微电子产品具备更加稳定的性能,包括机械结构的稳定性,电路的绝缘性能等等。因此陶瓷材料收到了越来越多的应用。目前主流的陶瓷材料是氧化铝和氮化铝,材料的主流厚度小于2mm。 为了实现更加复杂的电路设计,客户普遍要求双面设计电路,并且通过导通孔灌注银浆或溅镀金属后形成上下面的导通。同时,为了满足外部封装的需求,电路元器件的外形也有各种变化,包括一些圆角或者其他异性。对于这样的产品设计,机械加工的方法非常困难。哪怕能够加工,其良品率也是非常之低。而广泛引用的金属加工的化学蚀刻方法或者电火花加工方法,也因为陶瓷优越的物理化学性能而无法得到应用。对此,激光的无接触式加工能够大大提高陶瓷激光加工的可行性及加工的良率。 以上便是使用江阴德力激光设备有限公司推出的陶瓷激光精细切割设备,针对0.635mm厚氧化铝以及0.8mm厚氮化铝异型切割的样品。可以看到的是不仅切割边缘光滑没有崩边,切割边缘的热影响更能够得到有效的控制,哪怕陶瓷已经做

金属陶瓷

金属陶瓷材料 一、金属陶瓷的定义 材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。 图1 金属陶瓷复合材料性能图

1、金属陶瓷的概念 金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该归入“金属陶瓷”,IE. Campbell就将“硬质合金”归入到“金属陶瓷”。 2、金属陶瓷的历史 WC-Co基金属陶瓷作为研究最早的金属陶瓷,由于具有很高的硬度(HRA80~92),极高的抗压强度6000MPa(600kg/mm2),已经应用于许多领域。但是由于W和Co资源短缺,促使了无钨金属陶瓷的研制与开发,迄今已历经三代:第一代是“二战”期间,德国以Ni粘结TiC生产金属陶瓷;第二代是20世纪60年代美国福特汽车公司添加Mo到Ni粘结相中改善TiC和其他碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相。又通过添加Co相和其他元素改善了粘结相。近年来,金属陶瓷研制的另一个新方向是硼化物基金属陶瓷。由于硼化物陶瓷具有很高的硬度、熔点和优良的导电性,耐腐蚀性,从而使硼化物基金属陶瓷成为最有发展前途的金属陶瓷。 3、金属陶瓷的设计 为了使金属陶瓷同时具有金属和陶瓷的优良特性,首先必须有一个理想的组织结构,要达到理想的组织结构,得注意以下几个主要原则: (1)金属对陶瓷相的润湿性要好。金属与陶瓷颗粒间的润湿能力是衡量金属陶瓷组织结构与性能优劣的主要条件之一。润湿能力愈强,则金属形成连续相的可能性愈大,金属陶瓷的性能愈好。

现代陶瓷材料发展及应用.

现代陶瓷材料发展及应用 摘要:本文简述了现代技术陶瓷最新研究、发展动态以及在实际中的应用,其中包括结构陶瓷、陶瓷基复合材料和功能陶瓷三个部分。还介绍了绿色陶瓷的发展及前景,科 学家试图使陶瓷生产与环境和谐完美的结合,开发出新型的绿色陶瓷材料。 关键词:陶瓷材料绿色陶瓷碳化硅晶须切削刀具氧化铝非氧化物陶瓷功能陶瓷结构陶瓷陶瓷基复合材料发展应用环境和谐 参考文献:《陶瓷材料概述》《现代技术陶瓷展与应用》《绿色陶瓷的发展前景》《陶瓷生产与环境和谐》 我国是一个具有悠久历史的陶瓷古国,在世界长期享有盛誉。当今陶瓷可以说已然成为了对我们生活产生重大影响的一门重要学科。近半个多世纪以来,随着先进陶瓷材料的研究和开发,在与人类生活息息相关的各个领域,如电子、通讯、能源、交通、宇宙探索和国家安全等,都能找到陶瓷的身影。可以说现代人的生活离不开陶瓷,陶瓷的进步给人类带来的是生活方式的日新月异。 陶瓷材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等,而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。 现代陶瓷材料主要有三大领域:结构陶瓷、陶瓷基复合材料和功能陶瓷。 一、结构陶瓷 同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3,因而在许多场合逐渐取代昂贵的超高合

陶瓷激光器及其工作原理

陶瓷激光器及其工作原理 新型激光陶瓷是继单晶和玻璃之后又一种优秀的激光介质,它不仅具备良好的材料和光学特性,而且具有强大的制备优势,伴随激光透明陶瓷先进制造技术的不断发展,光学级、高掺杂、大尺寸、多功能透明陶瓷越来越多的被应用在固体激光器设计和制造中,凭借优异光电功能的特性,激光透明陶瓷的研发和应用不仅延伸至传统固体激光器的各个领域,并表现出比传统激光晶体更加优异的性能,而且不断突破现有固体激光技术的局限,有力的推动了新型固体激光器的发展。 按工作物质形状来分类,透明陶瓷激光器可以分为棒状激光器、板条激光器, 碟片激光器和光纤激光器等4类。 1、高效陶瓷棒状激光器 采用与传统Nd:YAG固体激光器相同的谐振腔结构,可分为侧面泵浦(见图1)和端面泵浦(见图2)两种类型。由于将高掺杂浓度的透明陶瓷圆棒作为激光介质,从而使光-光转换效率有显著提高。 图1 侧面泵浦激光器结构

图3 高效率Nd:YAG透明陶瓷激光器 对于侧面泵浦结构,泵浦源可以是灯泵浦,也可以采用激光二极管。图3所示为中科院上海光学精密机械研究所采用超均匀侧面泵浦技术在1 at.% Nd:YAG陶瓷棒中获得输出功率236 W,斜率效率62% 的连续激光输出。图中(a)为侧面泵浦Nd:YAG陶瓷棒激光器的实验装置原理,图(b)为Nd:YAG陶瓷激光器的截面示意图,采用超均匀侧面激光二极管阵列泵浦。 2、陶器板条激光器 普通固体激光器激光工作物质的几何形状为圆棒状,温度梯度的方向与光传播方向垂直,在热负荷条件下运转时,将产生严重的热透镜效应和热光畸变效应,使得光束质量降低,并限制了激光功率的进一步提高。板条激光器(见图4、5)的工作物质为板条形状,该激光器从结构上克服了激光棒的热变形(热透镜效应),故有功率大(达2kW以上)、光束发散角小(接近衍射极限),可获得高质量激光输出,从而提高了加工能力,可进行超深加工,如钻孔深达76mm,切割厚度达40mm。

金属基复合材料基体材料

金属基复合材料基体材料 姓名:xx 班级:xx 学号:xx 学院:xx

金属基复合材料基体材料 金属基复合材料是上世纪60年代发展起来的一门相对较新的材料科学,是复合材料的一个分支。随着航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,这些都有力地促进了先进复合材料的迅速发展。电子、汽车等民用工业的迅速发展又为金属基复合材料的应用提供了广泛的前景。特别是近年来,由于复合材料成本的降低,制备工艺逐步完善,在21世纪金属基复合材料将会得到大规模的生产和应用。 本文主要介绍金属基复合材料的基体材料。 一、金属机体的作用: 固结增强体,与增强体一道构成复合材料整体,保护纤维使之不受环境侵蚀;传递和承受载荷,在颗粒增强金属基复合材料中基体是主要承载相,在纤维增强金属基复合材料中,基体对力学性能的贡献也远大于在聚合物基体和陶瓷基体在复合材料中的贡献;赋予复合材料一定形状,保证复合材料具有一定的可加工性;复合材料的强度、刚度、耐高温、耐介质、导电、导热等性能均与基体的相应性质密切相关。 二、金属基体占得比重: 基体在复合材料中占有很大的体积百分数。在连续纤维增强金属基复合材料中基体约占50%一70%的体积,一般占60%左右最佳。颗粒增强金属基复合材料中根据不同的性能要求,基体含量可在90%一25%范围内变化,多数额粒增强金属基复合材料的基体约占80%一90%。而晶须、短纤维增强金属基复合材料基体含量在70%以上,一般在80一90%。 三、金属基体的优势: 金属是最古老、最通用的工程材料之一,它们有许多成熟的成型、加工、连接方法可供金属基复合材料借鉴。在使用寿命、性能测试等方面有丰富的技术资料;对金属基体自身的性能积累有丰富的数据,对它们在使用中的优缺点拥有丰富的经验。弹性模量和耐热性高;强度高,还可以通过各种工程途径来进行强化;塑性、韧性好,是强而韧(strong and tough)的材料; 电、磁、光、热、弹等性能好,有应用于多功能复合材料的发展潜力。 四、金属基体的种类 金属与合金的品种繁多,目前用作金属基体材料的主要有铝及铝合金、镁合金、钛合金、镍合金、钢与铜合金、锌合金、铅、钛铝金属间化合物等。 五、金属基体选取的原则 基体材料成分的正确选择,对能否充分组合和发挥基体金属和增强物的性能特点,获得预期的优异综合性能满足使用要求十分重要。所以,在选择基体金属时应考虑以下几方面:

金属与陶瓷的润湿性概述

龙源期刊网 https://www.doczj.com/doc/905912876.html, 金属与陶瓷的润湿性概述 作者:刘娟娟苟小斌 来源:《城市建设理论研究》2013年第24期 摘要:研究金属对陶瓷的润湿性对开发新型金属—陶瓷体系,探寻和发展材料的制备技术,制备高性能金属—陶瓷复合材料有着重要的现实意义。本文阐述了润湿性的分类、界面化学反应对金属—陶瓷润湿性和陶瓷材料性能的影响,并介绍了润湿性研究的实验研究方法,探讨改善润湿性的途径。 关键词:金属—陶瓷;接触角;化学反应;润湿性 中图分类号:TL25 文献标志码:A 文章编号: 1 引言 金属—陶瓷复合材料作为一种以一种或多种陶瓷相为基体,以金属或合金为粘结相的复合材料[1],如何发挥其中陶瓷相基体的优良性能一直是科研人员研究的重点方向。其中陶瓷与 金属润湿性的好坏很大程度上决定了金属—陶瓷复合材料综合性能的发挥,因此金属—陶瓷复合材料研究的热点在于开发新型金属—陶瓷体系、改善金属—陶瓷界面结合状况以提高材料综合性能,这一切都是建立在金属对陶瓷具有良好的润湿性的基础之上。研究金属对陶瓷的润湿性对制备高性能金属—陶瓷复合材料有着重要的现实意义。金属陶瓷复合材料的研究还处于初期阶段。研究较多的有金刚石、石墨、SiC、Al2O3、ZrO2、TiC等陶瓷相和金属合金所组成 的体系。由于陶瓷和金属的晶体类型及物理化学特性的差异,两者的相容性很差,绝大部分液态金属都不能润湿陶瓷,因此如何改善金属与陶瓷的润湿性,从而改善材料的综合性能性能成为当前材料制备中的一个重要问题。 2 润湿性的分类 根据陶瓷—金属的界面结合情况,金属对陶瓷的润湿过程可分为非反应性润湿和反应性润湿。 非反应性润湿是指界面润湿过程中不发生化学反应,润湿过程的驱动力仅仅是扩散力及范德华力。其中液态金属的表面张力是决定液态金属是否能在固相陶瓷表面润湿的主要热力学参数。一般此类润湿过程进行得很快,在很短的时间内就能达到平衡;且温度和保温时间对润湿性影响不大。非反应性润湿体现出对体系成分的不敏感性。添加合金元素对改善金属—陶瓷润湿性有较大的影响,其机制为合金元素在液态金属表面及固—液界面的吸附和富集,降低了液态金属表面张力及固—液界面张力。如在Cu中添加Cr不但降低液态金属表面张力,且Cr在金属—陶瓷界面偏聚造成界面张力降低,从而有效地降低Cu对ZrO2的接触角。

金属陶瓷复合材料的应用

金属陶瓷复合材料的应用 我公司提供以下热喷涂技术服务:修复各类设备主轴、曲轴以及所有轴的轴颈、轴承档、油封档、键槽的磨损、拉伤等缺陷。“锅炉四管”(水冷壁管、过热器管、预热器管和省煤器管)喷涂防护、循环硫化床锅炉、膜式壁热喷涂防护、风机叶片、拉丝塔轮、拨丝缸、水轮机的导风叶、水轮机叶片的迷宫环等部件的防汽蚀、防磨处理。大型液压油缸的陶瓷涂覆活塞杆和液压缸以及位置测量成套系统、化工泵中往复泵柱塞陶瓷涂层、机械密封环和轴套表面喷涂、陶瓷蝶阀密封面喷涂代替镶圈结构、高参数球阀喷涂陶瓷、在石油、天然气勘测和钻采过程中所用设备的关键部件如钻头、轴、轴套、灌浆泵等表面热喷涂防护。 在塑料工业设备中,塑料挤出机螺杆、塑料切碎机喷嘴、塑料薄膜生产辊。冶金工业中,连续退火炉辊、张紧辊和偏转器辊自清理炉辊、热浸镀锌用沉没辊、稳定辊等先进涂层。热轧无缝管顶头的表面强化涂层、铜合金热挤压模具强化涂层。在化纤工业中,各种槽辊、锭杯、牵伸辊、导丝辊、表面陶瓷涂层、造纸烘缸表面防腐防磨防护、上光砑光棍、纸浆真空吸水箱板、印刷工业中铸铁印刷滚表面喷涂防护、陶瓷网纹辊、电晕辊。 在玻璃工业中,铜电板的抗高温氧化保护涂层、喂料柱塞和喂料管、内燃机燃烧室的热障陶瓷涂层(汽缸盖底面、活塞底面、活塞顶面、汽门全部底面缸套、活塞环、水泵动密封环、气门顶杆、增压器涡轮) 热喷涂涂层工业应用介绍 随着涂层新材料和新工艺的不断涌现,热喷涂涂层已在国民经济各个工业部门广泛地应用。加之现代计算机技术、传感测试技术、自动化及机器人技术、真空技术与热喷泉涂技术的结合和渗透,使得热喷涂技术的深入发展和工业规模化生产均有大幅度的进步和提高。对未来热喷涂发展的方向以及市场与工业规模的预测为:技术附加值高、效益好的如生物工程,航空航天,工、模具,电子工业等,但规模相对较小;要求成本低的大规模产业如汽车工业和钢结构,但技术附加值低;应用面最广的仍是机械工业,包括石油化工、轻纺、能源、冶金、航空、汽车等也均属此范畴。 热喷涂技术能赋予各类机械产品,特别是关键零部件许多特种功能涂层,形成复合材料结构具有的综合作用,真正做到了“ 好钢用在刀刃上” ,是材料科学表面技术发展的一个方向。但热喷涂技术仅通过涂层在机械产品基体表面获得一定的特殊功能,而不能代替基材或提高产品的结构性能。 钢铁长效防腐蚀涂层 由于锌、铝、锌铝、铝镁涂层的电极电位均负于钢铁,故对钢铁结构能起到阴极保护作用。从20世纪40年代起,国外已将它们喷涂于钢铁构件上作为长效抗腐涂层。国内自70年代起开始推广应用,迄今成功的实例不胜枚举。目前大面积钢结构喷涂锌、铝涂层一般采用电弧喷涂工艺,局部辅助以氧乙炔火焰线材喷涂补遗。现在国内每年采用热喷涂大面积施工工程均在数百万平方米以上。

金属基复合材料复习大纲(完整版)

金属基复合材料复习大纲 一.内生增强的金属基复材的特点. 答:1.增强体试从金属体中原位形核、长大的热力学稳定相,因此,增强体表面无污染,避免了与基体相容性不良的问题,且界面结合强度高。 2.通过合理选择反应元素(或化合物)的类型、成分及其反应性,可有效地控制原位生成增强体的种类、大小、分布和数量。 3.省去了增强体单位合成、处理和加入等工序,因此其工艺简单,成本较低。 4.从液态金属基体中原位形成增强体的工艺,可用铸造方法制备形状复杂、尺寸较大的近净成形构件。 5.在保证材料具有较好的韧性和高温性能的同时,可较大程度地提高材料的强度和弹性模量。 补:外加增强的金属基复材的特点:1.颗粒表面有污染;2.界面结合差;3.润湿性。 二.金属基复材的特点. 答:1.高比强度、高比模量;2.导热、导电性能;3.热膨胀系数小,尺寸稳定性好;4.良好的高温性能;5.耐磨性好;6.良好的疲劳性能和断裂韧度;7.不吸潮,不老化,气密性好。 三.增强体的作用. 答:传递作用承受力,提高金属基体的强度、模量、耐热性、耐磨性等性能。 四.金属基复材增强体应有的基本特性. 答:1.增强体具有能明显提高金属基体某种所需特性的性能;2.增强体应具有良好的化学稳定性;3.与金属有良好的浸润性。 五.选择增强体的原则. 答:1.力学性能:杨氏模量和塑性强度;2.物理性能:密度和热扩散系数;3.几何特性:形貌和尺寸;4.物理化学相容性;5.成本因素。 六.碳纤维制造的过程. 答:1.拉丝:可用湿法、干法或者熔融状态三种中任意一种方法进行; 2.牵伸:在室温以上,通常是在100~300℃范围内进行,W.Watt 首先发现结晶定向纤维的拉伸效应,而且这效应控制着最终纤维的模量; 3.稳定:通过400℃加热氧化的方法。这显著地降低所有的热失重,并因此保证高度石墨化和取得更好的性能。 4.碳化:在1000~2000℃范围内进行; 5.石墨化:在2000~3000℃范围内进行。 七.先驱体转化法工艺流程图. 答:二氯二甲基硅烷 脱氢 裂解 纺丝 不熔化处理 金属钠 缩合 重排 八.氧化铝纤维的制备. 答:1.淤浆法:以氧化铝粉末为主要原料,同时加入分散剂、流变助剂、烧结助剂,分散于水中,制成可纺浆料,经挤出成纤,再经干燥、烧结得到直径在200μm 左右的氧化铝纤维; 烧成 聚硅烷 聚碳硅烷 聚碳硅烷纤维 不熔化聚碳硅烷纤维 碳化烷纤维

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

相关主题
文本预览
相关文档 最新文档