当前位置:文档之家› 激光扩束系统设计

激光扩束系统设计

激光扩束系统设计
激光扩束系统设计

光学设计

Optical design

题目名称:准直扩束系统的设计

学校:长春理工大学

学院:光电工程学院

专业:光电信息工程

学号:100212338

姓名:魏松岩

2014.01.08

目录

第一章绪论 (1)

1.1引言 (1)

1.2激光束及其准直扩束的原理 (1)

1.2.1激光高斯光束的特性

1.2.2激光束准直扩束的原理

1.3折射型扩束器基本结构 (4)

1.3.1开普勒扩束镜

1.3.2伽利略扩束镜

第二章光学设计软件ZEMAX概述 (5)

第三章激光准直扩束系统设计 (9)

3.1 准直扩束系统的参数确定 (9)

3.2确定激光扩束系统的初始结构 (9)

3.3 ZEMAX的优化 (11)

第一章绪论

1.1引言

激光扩束系统是激光干涉仪、激光测距仪、激光雷达等诸多仪器设备的重要组成部分,其光学系统多采用通过倒置的望远系统,来实现对激光的扩束,其主要作用是压缩激光束的空间发散角,使扩束后的激光束口径满足其他系统的要求。

激光器发出的光束直径很细小,通常只有零点几到几毫米,激光束的这些特性在某些方面是很有用的。然而在一些应用领域中需要的确是宽光束,如激光全息、光信息处理、激光照明、激光测距等。例如在激光干涉仪的应用中,它要照射比激光束口径大得多的被测物体,然后通过光束的干涉来实现测量。又如在激光的全息应用中,它要照射比激光束口径大得多的全息记录介质,以实现信息的记录和重现。因此需要使用激光扩束系统来实现激光束的准直扩束。

1.2激光束及其准直扩束的原理

1.2.1激光高斯光束的特性

激光束的性质是由激光共振腔的几何形状和尺寸决定的,激光束具有特殊的结构,光束呈双曲线形,光束的截面上最小处称束腰(见图2.1),其半径为

其中,b为共振腔的共振参数。共振腔的共焦参数b可由下式求得:

其中,R为共振腔球面镜的曲率半径,d为共振腔二镜面之间的距离。

1.2.2激光束准直扩束的原理

最通用的扩束镜起源于伽利略望远镜,通常包括一个输入负透镜和一个输出正透镜。输入镜将一个虚焦点光束传送给输出镜,两个透镜是虚共焦结构。一般小于20倍的扩束镜都用该原理制造,因为它简单、体积小、价格也低。尽可能

的该扩束镜设计成小的球面相差、低的波前变形和消色差。它的局限性在于不能容纳空间滤波或者进行大倍率的扩束。

如图所示,输入镜将入射的激光束聚焦在前焦平面上(虚焦点),新的束腰'0ω和发散角'θ为πω

λ

ω10'f =

和'

2'0

πωλ

θ=

式中)(l ω为入射激光束在入射镜上光束半径,l 是入射激光束腰与入射镜的距离f1是输入镜的焦距。因为'0ω落在输出镜的后焦平面上,并且输出镜的焦距f2

大于输入镜的焦距,高斯光束将被扩束镜准直。准直倍率如下:

式中211f f T =,θ和0ω是入射光束的发散角和束腰。经过扩束镜后,束腰"0ω 和发散角"θ为 10

0'

"f πωλω=

和T

θθ=

"。可得:

)(10"l T ωω=。

通过采用倒置的望远镜系统不但实现了对高斯光束发散角的压缩,还增大了其腰斑的尺寸,实现了对高斯光束的扩束。

1.3折射型扩束器基本结构

1.3.1开普勒扩束镜

在需要空间滤波或者进行大倍率的扩束的时候,人们一般使用开普勒设计的望远镜。开普勒望远镜一般有一个凸透镜作为输入镜片,把实焦距聚焦的光束发送到输出元件上。另外,可以通过在第一个透镜的焦点上放置小孔来实现空间滤波。

1.3.2伽利略扩束镜

最通用的扩束镜类型起源于伽利略望远镜,通常包括一个输入的凹透镜和一个输出的凸透镜。输入镜将一个虚焦距光束传送给输出镜。一般的低倍数的扩束镜都用该原理制造,因为它简单、体积小、价格也低。一般的尽可能的被设计为小的球面相差,低的波前变形和消色差。它的局限性在于不能容纳空间滤波或者进行大倍率的扩束。

第二章光学设计软件ZEMAX概述

2.1 ZEMAX的简单介绍

ZEMAX Optical Design Program是美国焦点软件公司ZEMAX Development Corporation开发出来的ZEMAX光学设计软件,ZEMAX是Windows平台上的视窗式的用户界面,操作习惯和快捷键风格如同Windows。是目前光学设计软件中应用最为广泛的一种。它不但可以模拟并建立各种光学系统模型,还可以对光学系统的成像质量进行分析,提供了适用于不同系统的评价函数,如各种几何相差,光学传递函数(MTF),点列图,波前函数图等,对于一个光学系统可以选择多个评价函数来进行成像质量的分析。此外,ZEMAX软件强大的优化功能能够为设计者的优化设计带来很大程度的方便,而软件持有的公差分析功能又能为设计者在实际加工和装调前给出可靠的光学特性误差,为实际加工提供了可靠性的保证。

2.2 用户界面介绍

ZEMAX的视窗类型,和Windows的基本一致,打开不同的视窗可以执行操作不同的任务,可分为:

2.2.1 主视窗(Main Window)

ZEMAX启动以后,进入主视窗(图1.1)。主视窗顶端有标题栏(title bar)、菜单栏(menu bar)和工具栏(tools bar)。

2.2.2 编辑视窗(Editor Window)

图1.1ZEMAX主视窗界面

ZEMAX中有6种不同的编辑器(Editors):即镜头数据编辑器(Lens Data Editor),评价函数编辑器(Merit Function Editor)、多重组态编辑器(Multi-configuration Editor)、公差数据编辑器(Tolerance Data Editor)、用于

补充光学面的附加数据编辑器(Extra Data Editor)、以及非序列元件编辑器(Non-sequential Components Editor)。

2.2.3 图形视窗(Graphic Window)

最常用的有草图(Layout)、扇形图(Ray fans)、调制传递函数(MTF Plots)图等。

2.2.4文本视窗(Text Windows)

设计的文字资料,如详细数据(Prescription Data)、像差数据等显示在文本视窗中。

2.2.5对话框(Dialogs)

固定大小,在过程中跳出来的视窗(鼠标拖曳不能改变大小)。用于定义或更新视场(Fields)、波长(Wavelengths)、孔径(Apertures)、面型(Surface types)等。

2.3 主视窗的操作(Main Windows Operations)

主视窗在执行ZEMAX后显示出来,可以用鼠标拖动改变大小,如图1.1所示。上部有标题栏、菜单栏、快捷按钮。底部状态栏中显示当前镜头系统的焦距(EFFL)、F数(WFNO)、入瞳直径(ENPD)、系统总长(TOTR)。主视窗中的快捷按钮和状态栏中内容可以自定义,菜单栏中有:

2.3.1 文件(File)

展开后有文件的打开(Open),新建(New),存储(Save),另存为(Save as)等,偏好(Preference)可以修改文字大小,快捷按钮和状态栏中的内容。

2.3.2 编辑器(Editors)

栏中包括ZEMAX中所有编辑器命令,展开后可打开Lens data editor,Merit function editor。

系统(System)

定义或更新光学系统的光学特性数据,例如相对孔径、视场和选取的工作波长等。

2.3.4 分析(Analysis)

它是ZEMAX中的非常重要的菜单之一,是用来进行像质评价和分析的主要工具,对于其中的每一项的数据的含义,单位要很好地理解。主要有:Fans中的球差(Ray aberration),点列图(Spot diagrams)、调制传递函数(MTF)、点扩散函数(PSF)、波像差(Wavefront)、圆内能量集中度(Encircled Energy);杂项(Miscellaneous)等。

2.3.5 工具(Tools)

也是ZEMAX中的非常重要的菜单之一,分成七块:第一块用来进行光学镜头的局部优化(Optimization)、全局优化(Global / Search /Hammer Optimization)等;第二块分析镜头的公差,计算传递函数的点列图,波差等变化量表。第三块是材料选择,有察勘玻璃库或向库中新增添或删除玻璃条目,寻找简单的透镜数据并插入到透镜数据编辑器中。第四块是镀膜模型。第五块是系统中镜头的孔径的定义,可以与渐晕系数配合共同使用。第六块主要用来整体设计(1)按焦距或放大率缩放当前系统;(2)在当前系统中加入或删除折转发射镜。第七块以后讨论。

2.3.6报告(Report)

形成镜头设计结果的报告,可以作为每一个光学面的形成报告(Surface data);也能为镜头系统形成高斯参数或光学特性参数的报告(System data);还可以给出设计结果的详细数据报告(Prescription data)。

2.3.7 宏编程(Macros)

执行已经编译好的宏程序。宏程序的编程过程:(1)使用一般的文本编辑器或使用ZEMAX自身的编辑功能创建扩展名为“*.ZPL”文件,该文件置于ZEMAX 目录下的Macros目录中;(2)使用ZEMAX提供的命名或函数库进行程序编写;(3)用Macros菜单下的“Run/Edit Zpl Macros…”执行宏程序。宏程序可以提取光线追迹数据、像质评价等,可以定义新的优化设计用的操作符。执行时,宏程序作用的对象是当前显示的镜头系统。

2.3.8 外部程序接口(Extensions)

ZEMAX环境中,使用该接口可以执行外部扩展名为“*.EXE”的执行程序,用来与ZEMAX交换数据,或ZPL宏不能完成的功能。外部程序可以用C语言等编程工具完成。

2视窗(Windows)与帮助(Help)菜单

2.4 ZEMAX的像质评价部分

2.4.1Fans

光学中的“Fans”,即光扇图,与光学设计中的子午面和弧矢面的光线结构相对应。由任一物点发出的不同孔径高的光线组分别在子午面内和弧矢面内,形成子午扇形光线和弧矢扇形光线组,由这些扇形光线组描述跟像差有关的像质指标,可以统称为“Fans”。因此,Fans描述的是子午与弧矢两个截面内的像差曲线图。共有“Ray Aberration,Optical Path和Pupil Aberration”三种:

2.4.2 Ray Aberration

由像质评价技术,独立的几何像差是按几何光线的空间结构来定义。轴上有球差、高级球差两种单色像差;有轴向色差(一般取0.707孔径)、色球差、二级光谱三种色差;轴外有子午像差、弧矢像差与主光线像差。子午面与弧矢面单色像差有:场曲、慧差、像散,主光线像差有畸变、垂轴色差。在考虑视场和孔径的高级像差时,种类更加繁多,有沿轴(或轴向)像差,每一种像差反映了几何光线在成像时的空间位置分布,如果镜头系统理想成像,所有的像差必须为零,数据量大,不利于总体掌握成像情况。

2.4.3Stop Diagrams

Ray aberration仅能反映子午、弧矢面内光线造成像的弥散情况,几何点列图则能反映任一物点发出的充满入瞳的光锥,在像面上的交点弥散情况。

几何点列图通常以主光线与像面交点为原点,进行量化计算点列图的弥散情况,ZEMAX在此基础上,还给出以虚拟的“质心”、“平均”为原点的量化点列图。

点列图(Spot Diagrams)的表现形式有五种:标准点列图(Standard)、离焦点列图(Through Focus)、反映视场像高的点列图(Full Field Spot Diagrams)、随视场与波长变化的点列阵图(Matrix Spot Diagrams)、随视场与多重结构变化的点列阵图(Configuration Matrix Spot Diagrams)。其中常用的是标准点列图。

2.4.4 MTF

MTF是目前使用比较普遍的一种成像质量评价指标,称为调制传递函数。它既与光学系统的像差有关,又与光学系统的衍射效果有关,是光学传递函数(OTF)的模,曲线横轴表示像面上的空间频率,单位:lp/mm,即每毫米多少线对,纵轴表示对这些黑白细实线物分辨的调制度。

任何一种物信息,都可以细分到点,也可以细分到线,调制传递函数(MTF)的物理意义是:应用傅立叶变换原理与光学系统相干成像理论,计算出镜头对逐渐变细的黑白线对分辨的调制度。

根据计算模型的不同,MTF分为三类:

(1)FFT MTF-基于快速傅立叶变换,先计算PSF(点扩散函数),再由PSF →MTF;

(2)Huygens MTF-基于惠更斯包络面原理,先计算岀瞳面上的光瞳函数,然后把岀瞳面细分,看成次级光源,在向像面传递;因此计算惠更斯传函时,要将出瞳面细分网格、也将像面细分网格采样;

(3)几何MTF-基于几何点列图,转化成子午面或弧矢面上的线扩散函数,再经傅立叶变换,得到调制传递函数。

2.4.5 PSF

PSF (Point Spread Function )反映点物经过镜头系统后,因像差或衍射在像面上造成的扩散情况,横轴为像面上的线性尺度,纵轴为归一化能量分布。PSF 计算模型也有FFT 和Huygens 两种。PSF 一般使用在精细成像质量或小像差系统场合,主要是用于小像差系统。 2.4.6 Wave front

“瑞利判断”和斯托列尔准则是评价光学系统成像质量的两个原则。瑞利认为当“实际波面与参考波面之间的最大波像差不超过四分之一时,此波面可看作是无缺陷的。”斯托列尔认为当“衍射光斑中心亮度与理想衍射斑中心亮度的比

值时,则光学系统的成像质量可视为完善的”。这两种评价准则是一

致的。

2.4.7 Miscellaneous

Miscellaneous 意为“其他”或“杂项”,归属那些不太重要或不入大类的功能项。

第三章 激光准直扩束系统设计

3.1 准直扩束系统的参数确定

本次设计采用开普勒式扩束系统。根据本次课程设计的要求,激光扩束系统的主要设计参数为:

焦距

mm f 200'=,入瞳直径mm D 40=,视场角'102=ω,波长

um 514.0=λ。

3.2确定激光扩束系统的初始结构

虽然可以设计系统的初始结构,避免自动设计中由于初始结构选择的不合理而造成优化失败,但为节省时间,按照课程设计的要求,本文采用的是从文献中,依据所设计的光学系统特性和成像质量的要求,找合适的初始系统。本文从文献中找到的如表1所示的初始结构:

表一 初始结构参数

序号 r d

glasses 1 96 5 K9 2 846 0.2 3 105.45 7.4 K9 4 87.99 3.4 ZF2 5

451.74

该初始结构的参数分别是焦距:

mm f 100'=相对孔径:mm D 40=

将数据输入ZEMAX 中,得到二维图以及MTF 曲线如下图1、图2所示

图一

图二

3.3 ZEMAX 的优化

1.缩放焦距

由于初始结构焦距与要求相差很多,所以需要对原始系统焦距进行缩放到焦距

mm f 200'=。

缩放方法:按F6快捷方式,Merit Function Editor 下,输入EFFL (有效焦距),

在Target (目标)下输入200,在Weight (权重)下输入1为200来控制焦距。选择所有半径和厚度进行OPT 优化。得到200'=f 。

2.系统优化

缩放焦距后设置MTF 值,选择衍射极限和截止频率输入80,如图三示。

图三 设定最高空间频率

然后对各个变量进行重新优化。

重新优化方法:参考赛得和数,找出其中影响较大的,首先进行手动优化。优化过程中出现子午或者弧矢MTF值过小时,在Merit Function Editor下加入MTFS或者MTFT设定目标值,权重值后重复优化直到达到要求。

优化完成之后,对半径和厚度进行调整,,对系统进行综合优化,找出最优结果。归化后的系统结构参数如表二所示。

表二优化完成后系统结构参数

序号r d glass

1 175.975 5 K9

2 890 0.2

3 142.095 7.

4 K9

4 -224.887 3.4 ZK2

5 2439.315

最终结构如图四所示:

图四最终结构图

其MTF曲线如图五所示:

图五MTF曲线图

(完整word版)基于ZEMAX的激光扩束镜的优化设计

光学软件设计 实验报告: 基于ZEMAX的激光扩束镜的优化设计 姓名: 学号:2011146211

一、实验目的 学会使用ZEMAX软件对多重结构配置的激光束扩大器进行优化设计。 二、实验要求 1、掌握使用多重结构配置。 2、进一步学习构建优化函数。 三、实验内容 设计一个激光扩束器,使用的波长为1.053um,输入光束直径为100mm,输出光束的直径为20mm,且输入光束和输出光束平行。要求只使用两片镜片,设计必须是伽利略式的(没有内部焦点),在镜片之间的间隔必须不超过250mm,只许使用1片非球面,系统必须在波长为0.6328um时测试。 1、打开ZEMAX软件,关闭默认的上一个设计结果,然后新建一个空白透镜。 2、在IMA面(像平面)前使用insert插入4个面,输入相关各面的厚度、曲率半径和玻璃类型值。 3、点击Gen设置入瞳直径为100,点击Wav设置波长为 1.053微米。

4、在主菜单Editors里构建一个优化函数,将第一行操作数类型改为REAY,surf输入5,Py输入1,taiget输入10,weight输入1。 5、在评价函数编辑窗中选工具—默认优化函数。选reset,将“开始在”的值设置为2,

确定。 6、点击Opt进行优化,优化后生产OPD图。

7、将第一面的conic设置为变量(control+z)。再次进行优化,重新生产OPD图并观察。 8、将三个曲率和圆锥西数的变量状态去掉。 9、点击Wav重新配置光波长,将之前的1.053改为0.6328,确定后再次更新OPD图并分析。

10、将第二面的厚度250mm设为可变,然后再次点击Opt优化,重新生成OPD图。此时去掉第二面的可变状态。 11、从主菜单—编辑中调出多重结构编辑窗,在这个窗口的编辑菜单中选“插入结构”来插入一个新的结构配置,双击第一行第一列,从下拉框中选wave,在同样的对话框里为wavelength选择1,确定。在config1下输入 1.053,在config2下输入0.6328。

(完整版)激光扩束望远镜设计

激光扩束望远镜设计 一、 项目研究背景 在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角.这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点.此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、 项目研究内容 1、望远镜系统激光扩束原理 激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为 11221M l f f f M f ττ???+ ? ? ???-+ ??? 式中12,f f 分别表示两镜的焦距,两镜间距 12l f f =++?,其中?表示失调量,2 1f M f τ=-为放大镜的放大率。 设入射光束束腰为0w ,焦参数为 20w f πλ=,物距为s ,经望远镜系统后变为束腰为'0w ,像距为' s 的高斯光束。 其中对于调焦系统有: 2' 12()s M f f M s ττ=-+- '00 w M w τ= 远场发散角0θ与束腰0w 间有反比关系,即 02011M τθθ=,远场发散角被压缩M τ倍,且与物距和像距均无关。当1s f =时,'2s f =,即像方激光束腰位于第二透镜2 L 的后

焦面上;当12s f f >>+时,'2s M s τ≈-,该望远镜系统的扩束比'00w M M w τ==。 2、几种激光扩束望远镜的性能分析 2.1折射式扩柬组远镜系统 使用透镜作物镜的望远系统称为折射式望远镜,根据不同的目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。 伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。 2.2反射式扩束望远镜系统 反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用.在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统 反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标 强脉冲激光发射系统的工作波长为10.6m λμ=,入射光束口径050D mm ≤, 要求出射光束口径200D mm =,在距离激光器100m 范围内,激光光束的口径250D mm ≤,在100m 的目标距离处光斑大小具有一定的可调节性。

扩束整形系统设计

发明名称: 基于组合透镜组的光线扩束与整形系统设计 摘要 本发明涉及一种用于光束整形的光学系统,所述的光学系统包含抛物面镜,凸面镜,凹面镜,柱面镜,且系统具有光轴。利用抛物面良好的无相差特性,将光源置于抛物面的焦点上,将产生平行的入射光线,因为球面镜本身不可避免的存在球差,凸面镜产生负的球差,凹面镜产生正的球差,采用凸凹面镜胶合的方法可以消除在某个方向上消除球差,使得光束的聚焦效果更好;柱面镜仅在一个方向具有汇聚作用,类似于,用于对光束在一个方向进行压缩或扩展,采用一组正交的柱面透镜,用于实现光束不同方向的挤压。由于柱面镜不具有空间的的轴对称特性,将柱面镜旋转 角度,得到光斑也将旋转一定的角度,从而满足不同方向的光斑需求。基于各种透镜的基本作用,本文得到正方形,横矩形,竖矩形,圆形,动态倾斜,以满足不同的生产需求。

权利要求书 1.一种用于光束扩束整形的光学系统,所述光学系统包含光源,透镜组,接收器,系统 整体具有光轴,其特征在于,所述的透镜组包含: 阵列反射形抛物面,其阵列几何中心关于光轴对称,用以将点光源变为平行光束,模拟激光的准直特性。 球面凸镜和凹镜组成的胶合透镜组合,凸面镜有负的球差,凹面镜会有正的球差,利用凹面镜可以进行补偿,抵消球差,使得光束的聚焦效果更好。 柱透镜采用一组正交的空间位置组合,通过日常生活,很容易看出,柱透镜在沿母线方向没有放大率,在垂直于母线的方向,由于厚度的变化,对光线有汇聚作用,用于对光束尺寸进行以维压缩或者放大。 2.根据权利要求1所述的阵列抛物面,其特征在于,基于数学模型的创建,得到过焦点的点光源平行出射这一重要结论,用于将点光源转化为一束平行光线,且根据阵列的形状,第一次将光源从一个点调节为阵列形状。 3.根据权利要求1所述的球面凹凸镜组成的胶合子镜组,其特征在于,可以在消除轴向球差的优势下将平行光束汇聚到一点,因为球面镜的轴对称特性,可以实现以及光斑的尺寸缩放(长宽缩放比例相同),只需要将接收器置于不同的位置,根据相似原理,尺寸动态变化,用于聚焦。 4.根据权利要求1所述的柱面镜,其特征在于,是一种短焦距镜头,沿着一个方向光束尺寸不变,沿着另一个与之垂直方向,表现为光束的压缩(凸柱面镜),导致光束最终呈现形式为压缩或放大(长宽非等比例) 5.根据权利要求1所述的胶合镜组与柱面镜,其特征在于,柱面镜位于胶合透镜组后,几何距离上等于胶合组合镜与柱面镜焦距之和,但是柱面镜为短焦镜头,远小于胶合镜组焦距,可以忽略不计。 6.根据权利要求1所述的柱透镜,其特征在于,通过绕着Z轴旋转角度α,光斑也旋转α,通过柱透镜的旋转,用于实现光倾斜角度的动态变化。

激光扩束望远镜设计

激光扩束望远镜设计 一、项目研究背景在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角、这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点、此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、项目研究内容 1、望远镜系统激光扩束原理激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为式中分别表示两镜的焦距,两镜间距,其中表示失调量,为放大镜的放大率。设入射光束束腰为,焦参数为,物距为s,经望远镜系统后变为束腰为,像距为的高斯光束。其中对于调焦系统有:远场发散角与束腰间有反比关系,即,远场发散角被压缩倍,且与物距和像距均无关。当时,,即像方激光束腰位于第二透镜的后焦面上;当时,,该望远镜系统的扩束比。 2、几种激光扩束望远镜的性能分析2、1折射式扩柬组远镜系统使用透镜作物镜的望远系统称为折射式望远镜,根据不同的

目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。2、2反射式扩束望远镜系统反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用、在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标强脉冲激光发射系统的工作波长为,入射光束口径,要求出射光束口径,在距离激光器100m范围内,激光光束的口径,在100m的目标距离处光斑大小具有一定的可调节性。

激光扩束

题目:基于MATLAB的简易激光扩束系统设计

一、实习要求: 1、理解高斯光束q 参数; 2、能够熟练使用CCD 采集光强度图样并用MATLAB 分析信号; 3、学生可以讨论编写MATLAB 仿真程序; 4、能够使用MATLAB 软件分析光强图样; 二、实验仪器: 计算机、CCD 、偏振片、透镜、接收屏、氦氖激光器 三、实验原理: 1)普通球面波在自由空间的传输: 2)普通球面波通过透镜的变化规律: 3)描述高斯光束的方法 ①fz 参数:q(z)=z+if ②WR 参数: 1/q(z)=1/R(z)-i(λ/πw 2 (z)) R2=R1+L 1/R2=1/R1-1/F

q 参数: z f z z R f z f z w /2^)() /2^()(+=+= π λ (f=πw 0^2 /λ) 4)gaussian beam 的复参数q 表示: 复参数q 的定义为: 1/q(z)=1/R(z)-i(λ/πw 2(z)) 将波前的曲率半径R(z)和光斑半径w(z)代入上式: ] 2)^z /2^0w (1[)(2)^2 ^w0(10)(λππλ+=+=z z R z w z w z f z z R f z f z w /2^)()/2^(/)(+=+=πλ 5)高斯光束通过薄透镜的变换 : Q1 ?? ? ???D C B A q2 高斯光束经过透镜矩阵传输方程 D Cq B Aq q ++= 112 ]202 2020 0202 02202 02)(1[])( 1[)(])(1[])(1[])( 1[)(z z z z w z z R z z z z z w w z w z w +=+=+=+=+=λππλπλ 6)双凸透镜扩束法: 设透镜的焦距为F ,物距和象距分别为s01和s02,它们之间 的关系为: 1/s01+1/s02=1/F

激光扩束镜原理讲解

激光扩束镜原理 衍射 通常我们以光束的发散参数作为完美的高斯激光束的特征。发散是指光波在其空间传播过程中以一定角度展开。甚至完美的没有任何异常的光线也会由于衍射效应经历某些光束的发散。衍射是指光线在被不透明的物体,比如刀锋切断的时候产生的弯曲效应。展开(spreading)产生于在切断的边缘发出的次级波面阵。这些次级波和主波会发生干涉,同时相互也会产生干涉,在某些时候就会形成复杂的衍射图案。 衍射使得完美的校准光束成为不可能,或者不能够将光束聚焦到无限小的点。幸运的是衍射的效果是能够被计算的。因此存在着可以预知对于任何衍射极限的透镜光束被准直的程度和光斑大小的理论。 我们现在考虑一束这样由低功率TEM00气体激光器产生的光束,光腰为S0。这样我们就能够假定它能够达到衍射极限同时能够不用考虑任何热透镜效应。它将会显现出由于衍射引起的光腰的弯曲,或者说展开效应: S(x)=S0[1+(λx/πS0²)²]½ 在这里x是指离开光源的距离,λ是指激光波长,如果λx/πS0²»1,那么: S(x)≈λx/πS0² 利用这个近似值,我们可以写出光束由于衍射发散的角度: θ= S(x)/x=λ/πS0 θ我们都知道指的是远场发散角。 改善发散角 光束的远场发散定义了一个给定光束直径最好的准直效果。它也说明了光束的零发散角或者说最好的准直是不可能达到的,因为要做到这些需要有无穷大的光束直径。但是这个等式也表明了改善发散的可能性。 考虑一个已经准直的光束,发散角为θ光腰为S0,我们可以看到如果光束直径能够增大,远场发散角将会减小。这就是扩大光束的优点所在。另外,小的发散能够使高斯光束聚焦得更好。为了实现这些改善,在这里我们将描述几种对准直光束扩束的方法。 伽利略扩束镜 最通用的扩束镜类型起源于伽利略望远镜,通常包括一个输入的凹透镜和一个输出的凸透镜。输入镜将一个虚焦距光束传送给输出镜。一般的低倍数的扩束镜都

第13课带有衍射光学元件的激光扩束器

第13课.带有衍射光学元件的激光扩束器 在第11课中,您了解了如何使用普通球面透镜设计激光扩束器,并了解到需要多个透镜元件才能获得良好的性能。第12课采用相同的设计,使用两个非球面元件,效果极佳。本课程将证明您可以使用DOE(衍射光学元件)。 to within10%.目标是将腰半径为0.35mm的HeNe激光器转换成直径为10mm且均匀至10%以内的光束 这是我们初始的输入文件: RLE!Beginning of lens input file.。 ID KINOFORM BEAM SHAPER WA1.6328!Single wavelength UNI MM!Lens is in millimeters OBG.351!Gaussian object;waist radius-.35mm;define full aperture=1/e**2point. 1TH22!Surface2is22mm from the waist. 2RD-2TH2GTB S!Guess some reasonable lens parameters;use glass type SF6from Schott catalog SF6 3TH20!Surface3is a kinoform on side2of the first element 3USS16!Defined as Unusual Surface Shape16(simple DOE) CWAV.6328!Zones are defined as one wave phase change at this wavelengt HIN1.798855!Assume the zones are machined into the lens.You can also apply!a film of a different index. RNORM1 4TH2GTB S SF6 4USS16 CWAV.6328 HIN1.798855 RNORM1!The first side of the second element is also a DOE 5CV0TH50!Start with a flat surface 7!Surfaces6and7exist AFOCAL!because they are required for AFOCAL output. END!End of lens input file. 我们给第2个表面指定了一个合理RD值。这是现阶段还没有DOE的非球面系数的系统:

激光扩束镜选择指南

激光扩束器选择指南 消色差系列伽利略式激光扩束镜 高功率系列伽利略式激光扩束镜 低功率系列伽利略式激光扩束镜 可变倍率系列伽利略式激光扩束镜 紫外波段伽利略式激光扩束镜 大光束大倍率开普勒式激光扩束镜

消色差系列伽利略式激光扩束镜 该设计使用一片平-凹单透镜来提供所需的发散度,以及经过优化设计的空气间隔透镜组来平衡像差和重准直光束。调节单透镜控制发散透镜的调节,分度为50微米。所有的设计均提供A (400-650纳米),B(650-1050 纳米)或C(1050-1620纳米)宽带增透膜。 ● 降低光束发散度 ● 提供衍射极限性能,引入的波前误差小于λ/4 ● 光洁度:20-10 ● 增透膜: R avg < 0.5% ● 抗损伤阈值:100W/cm 2 CW 2倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB ) BE02M-A ?8mm 350 - 650 1.035”-40 ¥2240 BE02M-B ?8mm 650 - 1050 1.035”-40 ¥2240 BE02M-C ?8mm 1050 - 1620 1.035”-40 ¥2240 典型波前畸变网格线图

3倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE03M-A?8mm 350 - 650 1.035”-40 ¥2650 BE03M-B?8mm 650 - 1050 1.035”-40 ¥2650 BE03M-C?8mm 1050 - 1620 1.035”-40 ¥2650 5倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE05M-A?4.5mm 350 - 650 1.035”-40 ¥2820 BE05M-B?4.5mm 650 - 1050 1.035”-40 ¥2820 BE05M-C?4.5mm 1050 - 1620 1.035”-40 ¥2820

激光扩束镜设计

一、激光扩束镜设计 一、设计要求: 设计一个激光扩束镜,扩束倍数为三倍,入射孔径为3mm,斜入射角1°,同时要求几何尺寸合适。 二、设计思路: 1.确定第一面透镜 由于激光能量较高,所以光线追迹时,尽量使光束不在镜筒中汇聚,如果采用两面透镜来完成设计,就要保证第一面透镜为凹凸镜,先将光线发散,第二面为凸透镜再将光线汇聚,平行光出射。 2.确定第二面透镜: 在第一面透镜后放置凸透镜才能满足对无限远处对焦的要求。3.几何参数的确定: 由于要求几何尺寸合适,不妨将总尺寸设为160mm,由应用光学知识可以计算,则第一面透镜的焦距应该取-80mm,第二面透镜焦距取为240mm,筒长为160mm(也就是两透镜的几何距离)。 4.做到了平行光出射,并扩束三倍的要求后,下一步需要做的便是减少像差,这个里面可以调整的有透镜的材质,在几何尺寸允许的条件下还可以再对相对距离等参数做出微调,以求能调出像差较小的设计。同时为增加可调自由度,还可以考虑再增加一面或者两面透镜,来达到消像差的目的。 三、设计过程 (1)第一面透镜 在设计第一面透镜时,先大致利用应用光学知识进行计算,估算透镜两个面的曲率半径,这里,大约可以取R1=-50mm,R2=200,材质使用BK7玻璃。这时,可以先看看这一面透镜的相关参数,探究下像差与单面透镜的一些参数的关系,这里,发现,当透镜的曲率半径取得越大时,透镜显示的球差和慧差越大,所以,在实验和实际工程中,建议使用曲率合适的透镜。 同样,根据设计思路,这时需要解决的另一个问题便是确定第一面透镜的焦距,这里可以使用SYNOPSYS软件中的edit solves 功能来确定其焦距,最后,经过调试,选择的是R1=-55,R2=150,选用BK7玻璃。(2)第二面透镜 下一步便是确定第二面透镜的相关参数,根据设计思路中的计算,可以知道两面透镜之间的距离,所以需要确定的是透镜在像差比较小的情况下,能使光纤平行出射的焦距,也就是设计思路里面所确定的240mm。 这时,如何能确定出合适的参数便是需要解决的问题,这里所选用的方法还是利用SYNOPSYS

激光扩束系统设计

光学设计 Optical design 题目名称:准直扩束系统的设计学校:长春理工大学 学院:光电工程学院 专业:光电信息工程 学号: 姓名:魏松岩 目录 第一章绪论 (1) 引言 (1) 激光束及其准直扩束的原理 (1) 折射型扩束器基本结构 (4) 开普勒扩束镜 伽利略扩束镜 第二章光学设计软件ZEMAX概述 (5) 第三章激光准直扩束系统设计 (9) 准直扩束系统的参数确定 (9) 确定激光扩束系统的初始结构 (9) ZEMAX的优化 (11)

第一章绪论 引言 激光扩束系统是激光干涉仪、激光测距仪、激光雷达等诸多仪器设备的重要组成部分,其光学系统多采用通过倒置的望远系统,来实现对激光的扩束,其主要作用是压缩激光束的空间发散角,使扩束后的激光束口径满足其他系统的要求。 激光器发出的光束直径很细小,通常只有零点几到几毫米,激光束的这些特性在某些方面是很有用的。然而在一些应用领域中需要的确是宽光束,如激光全息、光信息处理、激光照明、激光测距等。例如在激光干涉仪的应用中,它要照射比激光束口径大得多的被测物体,然后通过光束的干涉来实现测量。又如在激光的全息应用中,它要照射比激光束口径大得多的全息记录介质,以实现信息的记录和重现。因此需要使用激光扩束系统来实现激光束的准直扩束。 激光束及其准直扩束的原理 激光束的性质是由激光共振腔的几何形状和尺寸决定的,激光束具有特殊的结构,光束呈双曲线形,光束的截面上最小处称束腰(见图,其半径为 其中,b为共振腔的共振参数。共振腔的共焦参数b可由下式求得: 其中,R为共振腔球面镜的曲率半径,d为共振腔二镜面之间的距离。 最通用的扩束镜起源于伽利略望远镜,通常包括一个输入负透镜和一个输出正透镜。输入镜将一个虚焦点光束传送给输出镜,两个透镜是虚共焦结构。一般小于20倍的扩束镜都用该原理制造,因为它简单、体积小、价格也低。尽可能的该扩束镜设计成小的球面相差、低的波前变形和消色差。它的局限性在于不能容纳空间滤波或者进行大倍率的扩束。

激光振镜工作原理

激光振镜工作原理 激光打标设备的核心是激光打标控制系统和激光打标头,因此,激光打标的发展历程就是打标控制系统和激光打标头的发展过程。从1995年起,在激光打标领域就经历了大 幅面时代、转镜时代和振镜时代,控制方式也完成了从软件直接控制到上下位机控制到实时处理、分时复用的一系列演变,如今,半导体激光器、光纤激光器、乃至紫外激光的出现和发展又对光学过程控制提出了新的挑战,振镜式激光打标头(振镜式扫描系统)是最新产品。1998年,振镜式扫描系统在中国的大规模应用开始到来。所谓振镜,又可以称之为电流表计,它的设计思路完全沿袭电流表的设计方法,镜片取代了表针,而探头的信号由计算机控制的-5V—5V或-10V-+10V的直流信号取代,以完成预定的动作。同转镜式扫描 系统相同,这种典型的控制系统采用了一对折返镜,不同的是,驱动这套镜片的步进电机被伺服电机所取代,在这套控制系统中,位置传感器的使用和负反馈回路的设计思路进一步保证了系统的精度,整个系统的扫描速度和重复定位精度达到一个新的水平。 振镜扫描式打标头主要由XY扫描镜、场镜、振镜及计算机控制的打标软件等构成。根据激光波长的不同选用相应的光学元器件。相关的选件还包括激光扩束镜、激光器等。其工作原理是将激光束入射到两反射镜(扫描镜)上,用计算机控制反射镜的反射角度,这两个反射镜可分别沿X、Y轴扫描,从而达到激光束的偏转,使具有一定功率密度的激 光聚焦点在打标材料上按所需的要求运动,从而在材料表面上留下永久的标记,聚焦的光斑可以是圆形或矩形,其原理如右图所示。在振镜扫描系统中,可以采用矢量图形及文字,这种方法采用了计算机中图形软件对图形的处理方式,具有作图效率高,图形精度好,无失真等特点,极大的提高了激光打标的质量和速度。同时振镜式打标也可采用点阵式打标方式,采用这种方式对于在线打标很适用,根据不同速度的生产线可以采用一个扫描振镜或两个扫描振镜,与前面所述的阵列式打标相比,可以标记更多的点阵信息,对于标记汉字字符具有更大的优势。

实验七多重结构的激光扩束器

多重结构的激光扩束器 设计一个激光光束扩展器,使用的波长为λ=1.053μm,输入光束直径为100mm,输出光束的直径为20mm,且输入光束和输出光束平行。如果全长没有限制,这个设计是比较容易的,但是为了使之变得复杂一点,我们将加上几条限制条件: 1)只使用两片镜片。 2)设计必须是伽利略式的(没有内部焦点)。 3)在镜片之间的间隔必须不超过250mm。 4)只允许使用1片非球面。 5)系统必须在λ=0.6328μm时测试。 本实验不只是要矫正像差,而是在两个不同wave lengths的情况下都要做到符合设计要求。 条件2中什么是伽利略式呢?Galilean 就是光线从入射到离开 光学系统,在光学系统内部不能有焦点的现象,在本例中即beams 在两个镜片之间不能有focus。 本设计不是同时在2个wavelengths 下操作,所以在操作时我们可以变动某些共轭数。 现在开始设计,依据下图的LDE表键入各surface 的相关值。 注意 “Glass”列右边的好几列才是“Focal Length”列。表头“Focal Length”只在你将表面类型从“Standard”改变为“Paraxial”后才会显示。

不是所有的列都会清楚地显示出来。 其中surface 5 的surface type 从Standard 改为Paraxial,这时在镜片后面的focal length 项目才会出现。 注意到使用paraxial lens 的目的是把collimated light(平行光)给focus。

同时把surface 5 的thickness 及focal length 皆设为25。 entrance pupil 的diameter 定为100 wavelength 只选一个1.053 microns 即可,记住不要在设第二个wavelength。 调出merit function,在第1 列中把operand type 改为REAY 这

多波长激光扩束系统的设计

文章编号:0258-7025(2001)08-0714-03 多波长激光扩束系统的设计 李良钰 1,3  李常春2 李银柱1 戴亚平1 刘 诚1 程笑天1 朱健强1 王仕 3 (1 中国科学院上海光机所高功率激光物理国家实验室 上海201800;2 重庆通信学院 重庆400035;3电子科技大学应用物理系 成都610054) 提要 在ICF 高功率激光驱动器中,用双胶合透镜代替扩束望远系统中的较大透镜,或用两反射镜做成反射式扩束系统,两种情形都能对多种波长进行扩束,达到了设计要求。关键词 激光扩束,双胶合透镜,像差,非球面 中图分类号 TL 632+.1;TH 743 文献标识码 A Design of Laser Expanding Systems for Multi -wave Length LI Liang -yu 1,3  LI Chang -chun 2 LI Yin -zhu 1 DAI Ya -ping 1 LIU Cheng 1  CHENG Xiao -tian 1  ZHU Jian -qiang 1  WANG Shi -fan 3 (1 State Key Lab of High Lase r Physics ,Shanghai Institute of Optics and Fine Mec hanics ,The Chinese A cademy of Sc ienc es ,Shanghai 2018002 Institute of Chongqing Commniuc ation ,Chongqing 400035 3 Department of A pplied Physics ,Unive rsity of Ele ctronic Science and Technology of China ,Chengdu 610054) A bstract In the ICF high power laser drivers ,a cemented doublet lens laser expanding system and reflectional expanding s y stem for multi -wave length are given . Key words expand ing of laser ,cemented doublet ,aberration ,asphere 收稿日期:2000-12-05;收到修改稿日期:2001-04-05 1 引 言 激光光学系统有时需要有较宽的光束,故应对激光束进行扩束。一般的激光扩束系统结构如图1所示,图中(a )为开普勒望远系统,在扩束系统的中间焦点处加一小孔光阑,以限制聚焦光点的大小,这种结构外型尺寸较长,在激光扩束中用得不多;(b )为伽利略望远系统,由于其外型尺寸小,作为扩束系统更具有其优越性而被经常采用。当采用伽利略望远系统时,图1(b )左边是一小孔径负透镜,右边是一大孔径正透镜,为了校正轴上像差,正透镜的一面采用非球面。这种典型的目镜和物镜都是单片透镜的扩束系统,只能对某一波长的激光扩束。由于色差的存在,要对另一波长的激光进行扩束,必须针对该波长另设计扩束系统,这样很不方便,也不经济。 图1扩束望远系统 (a )开普勒望远系统;(b )伽利略望远系统 Fig .1Expanding telescope (a )Keplerian telescope ;(b )Galileo tel esc ope   第28卷 第8期2001年8月 中 国 激 光 CHINESE JOURNAL OF LASERS Vol .A28,No .8 August ,2001

激光扩束器

激光扩束器 光源发出的激光一般是一束准直的细圆柱光束,直径为1~2mm,而实际要求激光束有一定的宽度.下面讨论两种常用扩束方法. 1) 棱镜扩束法 由于棱镜材料的折射,使出射光方向与入射光方向不同,其入射角与棱镜顶角的变化可以引起光束宽度的改变.棱镜扩束示意图如图1a .每个棱镜的扩束比为 D/d=M=cos[arcsin(sinφ/μ p )]/cosφ′ 式中D为出射光的宽度;d为入射光的宽度;M为扩束比;φ为入射角;φ′ 为折射角;μ p 是棱镜的折射率.玻璃棱镜的μ p =1.54.根据现有的数据,d=2mm, D=47mm,则总的扩束比为 M n =D/d=23.5 图1 棱镜扩束系统 若想用3个棱镜完成扩束比,则每个棱镜的扩束比应为 M=M1/3 n =2.8 由M=cos[arcsin(sinφ/μ p )]/cosφ′=2.8 ,可近似算得φ=81°. 由折射定律μ p =sinφ/sinφ′,可得φ′=53°. 在选择棱镜的顶角时,应使得出射光束尽可能垂直于出射面,以使这个出射面反射最小.由几何学可知,应取棱镜顶角ψ=φ′=53°.实际的棱镜扩束光路如图1b.和下面的透镜扩束相比,具有体积小,无象差等优点,并同时使入射光方向转了近90°,用在系统光路中即扩展了光束,也使光线方向发生改变,起到了扩束镜和反射镜的双重作用.总尺寸为10cm×10cm.

2) 透镜扩束法 设透镜的焦距为F,物距和象距分别为S 01和S 02 ,它们之间的关系为 当S 01=F时,S 02 =∞,说明透镜焦点上的一个点光源经过透镜后为一平行光; 当S 02=F时,S 01 =∞,表明当入射光为一平行光时,经过透镜后,聚焦在透镜的焦 点上,如图2所示. 图2 透镜聚光原理 利用这一特点,采用两个焦距不同的透镜,可以构成如图3所示的扩束和准 直系统.F 1、F 2 分别为两个透镜的焦距,由几何光学原理很容易得出束宽放大比 率为 M=F 2/F 1 设激光束直径为d,光束宽度为D,那么 M=D/d=F 2/F 1 图3 扩束系统 和棱镜相比,透镜存在相差的影响,其中最主要的是球差.球差是由于非傍轴光线通过透镜时屈折得过分利害引起的,从而引起聚焦不好,如图4a.但是如果把一块透镜想象成两块棱镜在底部连接而成,那么明显的是:当入射光线同镜面和出射光线同镜面大致成同样大小的角度时,入射光线的偏转将最小,在图4b中,只要把透镜翻转过来,就使球差显著减小,当入射光是平行光时,对一

扩束系统在激光加工系统中的重要作用讲解

第23卷第6期 1999年12月激光技术LASER TECHNO LOGY Vol . 23, No . 6December , 1999 扩束系统在激光加工系统中的重要作用 赵侠 (华中理工大学激光加工国家工程研究中心, 武汉, 430074 摘要:介绍了扩束系统的结构, 从理论上计算了扩束系统对激光光束质量的影响, 并对其进 行了分析和讨论。 关键词:扩束系统激光加工发散角光斑导光系统 The importance of the beam expander in laser processing system Zhao X ia (N ational Engineering Research Center for L aser Processing , HUS T , Wuhan , 430074 A bstract :T he construction of the beam ex pander has been introduced . T he influence of the beam ex pander on the laser beam quality has been discussed and analyzed theoretically . Key words :beam ex pander laser processing divergence beam spot beam delivery system 引言

近年来, 随着激光器件的性能与激光功率的不断提高, 激光加工在工业生产中所占的比例越来越大。在激光加工应用中, 对激光的光束质量有不同的要求。其中又以激光切割和激光打标对光束质量的要求最为苛刻。例如, 对激光光束的平行度, 即发散角和聚焦光斑的要求就很高[1]。 为了获得高质量的光束, 在激光切割和打标系统中, 我们采用了激光扩束系统以达到良好的聚焦效果。 1扩束系统的结构 扩束系统是由至少两个光学元件组成的光学系统, 主要用于扩展平行光束的横截面积。其设计在原理上与倒装望远镜一致。扩展倍数对应于望远镜的放大倍数。 一般来说, 扩束的基本方式可分为两种, 即伽俐略法和开普勒法 1. 1伽俐略法 光束通过一个凹透镜(组产生发散, 以这种放大的状态再通过一个凸透镜(组复原成平行光, 凹透镜(组的焦点F 1′必须与凸透镜(组的焦点F 2重合。这两个元件(组之间的距离 由它们实际的焦距决定, 如图1a 所示。 1. 2开普勒法

激光扩束镜原理与应用讲解

激光扩束镜原理与应用 2006年6月28日 9:24 来源:广州安特激光技术有限公司作者:陈义红 The most common type of beam expander is derived from the Galilean telescope which usually has one negative input lens and one positive output lens, as shown in Figure 1. The input lens presents a virtual beam focus at the output. For low expansion ratios (1.3-20′), the Galilean telescope is most often employed due to its simplicity, small package size, and low cost. Figure 1: Diagram of a beam expander As shown in Figure 1, the lens M3 focuses the laser beam onto the front focus plane and the new beam waist w¢0and divergence angle q¢ can be represented as (1) and (2)

(3) where w(l) is the radius of the beam entering the lens M3, l is the distance between the lens M3 and the beam waist w0 from the laser generator, and f3 is the focal length of the lens M3. Since w0¢ lies on the back focus plane of the lens M4 with a longer focal length, f4, the Gaussian beam with a beam waist w¢0 will be collimated by the beam expander. The collimation ratio of the beam expander for a Gaussian beam is as follows (4) where T1 = f4/f3. The beam waist w20and divergence angle q2 after the beam expander are (5) and (6) Substituting Equation (1) into Equation (5), the following expression can be obtained (7) From Equations (4)-(7), it is concluded that the beam expansion ratio and the collimation ratio for a Gaussian beam depend not only on the specifications of the beam expander, but also on the laser beam parameters as well as the positions of the optical lenses. The function of a beam expander is to reduce the divergence angle of laser beams and thus make the focused beam diameter smaller.

激光扩束镜原理

衍射 通常我们以光束的发散参数作为完美的高斯激光束的特征。发散是指光波在其空间传播过程中以一定角度展开。甚至完美的没有任何异常的光线也会由于衍射效应经历某些光束的发散。衍射是指光线在被不透明的物体,比如刀锋切断的时候产生的弯曲效应。展开(spreading)产生于在切断的边缘发出的次级波面阵。这些次级波和主波会发生干涉,同时相互也会产生干涉,在某些时候就会形成复杂的衍射图案。 衍射使得完美的校准光束成为不可能,或者不能够将光束聚焦到无限小的点。幸运的是衍射的效果是能够被计算的。因此存在着可以预知对于任何衍射极限的透镜光束被准直的程度和光斑大小的理论。 我们现在考虑一束这样由低功率TEM00气体激光器产生的光束,光腰为S0。这样我们就能够假定它能够达到衍射极限同时能够不用考虑任何热透镜效应。它将会显现出由于衍射引起的光腰的弯曲,或者说展开效应: S(x)=S0[1+(λx/πS0²)²]½ 在这里x是指离开光源的距离,λ是指激光波长,如果λx/πS0²1,那么: S(x)≈λx/πS0² 利用这个近似值,我们可以写出光束由于衍射发散的角度: θ= S(x)/x=λ/πS0 θ我们都知道指的是远场发散角。 改善发散角 光束的远场发散定义了一个给定光束直径最好的准直效果。它也说明了光束的零发散角或者说最好的准直是不可能达到的,因为要做到这些需要有无穷大的光束直径。但是这个等式也表明了改善发散的可能性。

考虑一个已经准直的光束,发散角为θ光腰为S0,我们可以看到如果光束直径能够增大,远场发散角将会减小。这就是扩大光束的优点所在。另外,小的发散能够使高斯光束聚焦得更好。为了实现这些改善,在这里我们将描述几种对准直光束扩束的方法。 xx扩束镜 最通用的扩束镜类型起源于伽利略望远镜,通常包括一个输入的凹透镜和一个输出的凸透镜。输入镜将一个虚焦距光束传送给输出镜。一般的低倍数的扩束镜都用该原理制造,因为它简单、体积小、价格也低。一般的尽可能的被设计为小的球面相差,低的波前变形和消色差。它的局限性在于不能容纳空间滤波或者进行大倍率的扩束。 开普勒扩束镜 事实上在需要空间滤波或者进行大倍率的扩束的时候,人们一般使用开普勒设计的望远镜。开普勒望远镜一般有一个凸透镜作为输入镜片,把实焦距聚焦的光束发送到输出元件上。另外,可以通过在第一个透镜的焦点上放置小孔来实现空间滤波。

相关主题
文本预览
相关文档 最新文档