当前位置:文档之家› 利用MATLAB实现最小错误率贝叶斯判别

利用MATLAB实现最小错误率贝叶斯判别

利用MATLAB实现最小错误率贝叶斯判别
利用MATLAB实现最小错误率贝叶斯判别

利用MA TLAB实现最小错误率贝叶斯判别

摘要:Matlab软件平台为用户提供了强大的科学计算与可视化功能,具有简单、易用的用户环境,尤其适合矩阵数据的计算处理。根据Matlab的特点,将其与模式识别原理结合起来,以油水层识别为例,求解基于多元正态概率模型下的最小错误率贝叶斯判别函数和决策面方程。

关键词:Matlab 模式识别贝叶斯判别油水层识别

Abstract:Matlab software provides users with a powerful scientific computing and visualization capabilities.It has a simple and easy-to-use environment.It is especially suitable for the calculation of the matrix data.So it is a good idea to combine Matlab with pattern recognition.This paper showed a method how to distinguish oil layer with Bayes rule by Matlab software.

Keywords:Matlab pattern recognition bayesian discrimination oil-water layer identification

模式识别的分类问题是根据识别对象特征的观察值将其分到某个类别中去。贝叶斯(Bayes)判别法是模式识别方法中的一个基本方法。该方法通过对类别已知样本的学习,提取样本特征并建立判别函数方程,从而来实现对新样本的预测。根据决策规则的不同,贝叶斯判别法又包含最小错误率贝叶斯判别、最小风险贝叶斯判别等。最

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.doczj.com/doc/925865326.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

Bayes 判别分析及应用 201009014119

Bayes 判别分析及应用 班级:计算B101姓名:孔维文 学号201009014119 指导老师:谭立云教授 【摘 要】判别分析是根据所研究个体的某些指标的观测值来推断该个体所属类型的一种统计方 法,在社会生产和科学研究上应用十分广泛。在判别分析之前,我们往往已对各总体有一定了解,样品的先验概率也对其预测起到一定作用,因此进行判别时应考虑到各个总体出现的先验概率;由于在实际问题中,样品错判后会造成一定损失,故判别时还要考虑到预报的先验概率及错判造成的损失,Bayes 判别就具有这些优点;然而当样品容量大时计算较复杂,故而常借助统计软件来实现。本文着重于Bayes 判别分析的应用以及SPSS 的实现。 【关键词 】 判别分析 Bayes 判别 Spss 实现 判别函数 判别准则 Class: calculation B101 name: KongWeiWen registration number 201009014119 Teacher: TanLiYun professor .【Abstract 】Discriminant analysis is based on the study of certain indicators of individual observations to infer that the individual belongs as a type of statistical methods in social production and scientific research is widely used. In discriminant analysis, we often have a certain understanding of the overall sample of the a priori probability of its prediction play a role, it should be taken into account to determine the overall emergence of various prior probability; because of practical problems, samples will result in some loss of miscarriage of justice, so identification must be considered when the prior probability and wrongly predicted loss, Bayes discriminant to have these advantages; However, when the sample is large computing capacity of more complex, often using statistical software Guer to achieve. This article focuses on the application of Bayes discriminant analysis, and implementation of SPSS. 【Key words 】 Discriminant analysis; Bayes discriminant; Spss achieve; Discriminant function; Criteria; 1.1.1 判别分析的概念 在科学研究中,经常会遇到这样的问题:某研究对象以某种方式(如先前的结果或经验)已划分成若干类型,而每一种类型都是用一些指标T p X X X X ),,(21 来表征的,即不同类型的X 的观测值在某种意义上有一定的差异。当得到一个新样品(或

两类正态分布模式的贝叶斯判别

两类正态分布模式的贝叶斯判别 硕633 3106036072 赵杜娟 一.实验目的 1.理解贝叶斯判别原则,编写两类正态分布模式的贝叶斯分类程序; 2.了解正态分布模式的贝叶斯分类判别函数; 3.通过实验,统计贝叶斯判别的正确率。 二.实验原理 (1)贝叶斯判别原则 对于两类模式集的分类,就是要确定x 是属于1ω类还是2ω类,这要看x 来自1ω类的概率大还是来自2ω类的概率大,根据概率的判别规则,可以得到: 如果)|()|(21x P x P ωω> 则 1ω∈x 如果)|()|(21x P x P ωω< 则 2ω∈x (1.1) 利用贝叶斯定理,可得 ) () ()|()|(x p P x p x P i i i ωωω= 式中,)|(i x p ω亦称似然函数。把该式代入(1.1)式,判别规则可表示为: )()|()()|(2211ωωωωP x p P x p > 则 1ω∈x )()|()()|(2211ωωωωP x p P x p < 则 2ω∈x 或写成: ) () ()|()|()(122112ωωωωP P x p x p x l > = 则 1ω∈x ) () ()|()|()(122112ωωωωP P x p x p x l < = 则 2ω∈x (1.2) 这里,12l 称为似然比,2112)()(θωω=P P 称为似然比的判决阈值。该式称为贝 叶斯判别。

(2)正态分布模式的贝叶斯分类器判别原理 具有M 种模式类别的多变量正态分布的概率密度函数为: )]()(2 1 exp[) 2(1)|(12 1 2 i i T i i n i m x C m x C x P ---= -πω 2,1=i (1.3) 式中,x 是n 维列向量; i m 是n 维均值向量; i C 是n n ?协方差矩阵;i C 为矩 阵i C 的行列式。且有 {}i i m E x =; ()() { }T i i i i m x m x E C --=;{}i E x 表示对类 别属于i ω的模式作数学期望运算。 可见,均值向量i m 由n 个分量组成,协方差矩阵i C 由于其对称性故其独立元素只有 2)1(+n n 个,所以多元正态密度函数完全由2 ) 1(++n n n 个独立元素所确定。取自一个正态总体的样本模式的分布是聚集于一个集群之内,其中心决定于均值向量,而其分布形状决定于其协方差矩阵,分布的等密度点的轨迹为超椭圆,椭圆的主轴与协方差矩阵的本征向量的方向一致,主轴的长度与相应的协方差矩阵的本征值成正比。 类别的判别函数可表示为:)()|()(i i i P x P x d ωω= 对于正态密度函数,可对判别函数取自然对数,即: )(ln )]|(ln[)(i i i P x P x d ωω+= 将(1.3)代入上式,简化后可以得到: {})()(2 1 ln 21)(ln )(1i i T i i i i m x C m x C P x d ----=-ω 这是正态分布模式的贝叶斯判别函数。显然,上式表明)(x d i 是超二次曲面,所以对于两类正态分布模式的贝叶斯分类器,两个模式类别之间用一个二次判别界面分开,就可以求得最优的分类效果。 对于两类问题,判别界面方程为:()()120d x d x -= 即:)()|(11ωωP x P 0)()|(22=-ωωP x P 判别条件为: 如果0)()(21>-x d x d , 则1ω∈x 如果0)()(21≤-x d x d , 则2ω∈x

贝叶斯分类作业题

作业:在下列条件下,求待定样本x=(2,0)T的类别,画出分界线,编程上机。 1、二类协方差不等 Matlab程序如下: >> x1=[mean([1,1,2]),mean([1,0,-1])]',x2=[mean([-1,-1,-2]),mean([1,0,-1])]' x1 = 1.3333 x2 = -1.3333 >> m=cov([1,1;1,0;2,-1]),n=cov([-1,1;-1,0;-2,-1]) m = 0.3333 -0.5000 -0.5000 1.0000 n = 0.3333 0.5000 0.5000 1.0000 >> m1=inv(m),n1=inv(n) m1 = 12.0000 6.0000 6.0000 4.0000

n1 = 12.0000 -6.0000 -6.0000 4.0000 >> p=log((det(m))/(det(n))) p = >> q=log(1) q = >> x=[2,0]' x = 2 >> g=0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q g = -64 (说明:g<0,则判定x=[2,0]T属于ω1类) (化简矩阵多项式0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q,其中x1,x2已知,x 设为x=[ x1,x2]T,化简到(12x1-16+6x2)(x1-4/3)+(6x1-8+4x2) -(12x1+16-6x2)(x1+4/3)-(-6x1-8+4x2)x2, 下面用matlab化简,程序如下) >> syms x2; >> syms x1; >> w=(12*x1-16+6*x2)*(x1-4/3)+(6*x1-8+4*x2)*x2-(12*x1+16-6*x2)*(x1+4/3)-(-6*x1-8+4*x2)*x 2,simplify(w) w =

贝叶斯决策例题

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。 解:采用贝叶斯决策方法。 (1)先验分析 根据已有资料做出决策损益表。 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8 (2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)

=1.36(万元) 完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。 (3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。 从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+ =0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+ =0.69 预报天气好且天气实际也好的概率:

贝叶斯判别习题

1. 办公室新来了一个雇员小王,小王是好人还是 坏人大家都在猜测。按人们主观意识,一个人是好人或坏人的概率均为0.5。坏人总是要做坏事,好人总是做好事,偶尔也会做一件坏事,一般好人做好事的概率为0.9,坏人做好事的概率为0.2,一天,小王做了一件好事,小王是好人的概率有多大,你现在把小王判为何种人。 解:A :小王是个好人 a :小王做好事 B :小王是个坏人 B :小王做坏事 ()(/)(/)()(/)()(/)P A P a A P A a P A P a A P B P a B = +0.5*0.9 0.820.5*0.90.5*0.2==+ ()(/)0.5*0.2 (/)()(/)()(/)0.5*0.90.5*0.2 P B P a B P B b P A P a A P B P a B = =++=0.18 0.82>0.18 所以小王是个好人、 2. 设 m = 1,k = 2 ,X 1 ~ N (0,1) ,X 2 ~ N (3,2 2 ) ,试就C(2 | 1) = 1,C(1 | 2) = 1,且不考虑先验概率的情况下判别样品

2,1 属于哪个总体,并求出 R = (R1, R2 ) 。 解: 2222 121/821 ()()/}1,2 21(2)(20)}0.05421(2)(23)/4}0.176 2i i i P x x i P P μσ--= --== --===--== 由于1(2)P <2(2)P ,所以2属于2π 21/2 121/221(1)(10)}0.242 21(1)(13)/4}0.120 2P P --= --===--== 1(1)P >2(1)P ,所以1属于1π 由 1()P x 22211 }()(3)/4}22x P x x -==-- 即221 exp{}2x -=21exp{(69)}8 x x --+ 2211 ln 2(69)28 x x x -=--+ 解得 1 x =1.42 2 x =-3.14.所以 R=([-3.41,1.42],(-∞,-3.41)U(1.42,+∞)). 3.已知1π,2π的先验分布分别为1q =3 5,2q =25 ,C(2|1)=1,C(1|2)=1,且 11,01()2,120,x x f P x x x <≤??==-<≤???其他 22 (1)/4,13()(5)/4,350,x x f P x x x -<≤?? ==-<≤??? 其他 使判别1x = 95 ,2x =2所属总体。 解:1p (9/5)=2-9/5=1/5 1p (2)=2-2=0 2p (9/5)=(9/5-1)/4=1/5

Bayes分类器设计

实验一 Bayes 分类器设计 【实验目的】 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。 【实验条件】 Matlab 软件 【实验原理】 根据贝叶斯公式,给出在类条件概率密度为正态分布时具体的判别函数表达式,用此判别函数设计分类器。数据随机生成,比如生成两类样本(如鲈鱼和鲑鱼),每个样本有两个特征(如长度和亮度),每类有若干个(比如50个)样本点,假设每类样本点服从二维正态分布,随机生成具体数据,然后估计每类的均值与协方差,在下列各种情况下求出分类边界。先验概率自己给定,比如都为0.5。如果可能,画出在两类协方差不相同的情况下的分类边界。 若第一类的样本为{}12,,n x x x ,则第一类均值的估计为1 1?n k k x n μ==∑,协方差的估计为1 1???()()n T k k k x x n μμ=∑=--∑。则在两类协方差不相同的情况下的判别函数为: 判别边界为g1(x)-g2(x)=0,是一条一般二次曲线(可能是椭圆、双曲线、抛物线等)。 【实验内容】 1、 自动随机生成两类服从二维正态分布的样本点 2、 计算两类样本的均值和协方差矩阵 3、 按照两类协方差不相同情况下的判别函数,求出判别方程曲线。 4、 通过修改不同的参数(均值、方差、协方差矩阵),观察判别方程曲线的变化。 【实验程序】 clear all; close all;

samplenum = 50;%样本的个数 n1(:,1) = normrnd(8,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n1(:,2) = normrnd(6,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n2(:,1) = normrnd(14,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n2(:,2) = normrnd(16,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 scatter(n1(1:samplenum,1),n1(1:samplenum,2),'ro');%画出样本 hold on scatter(n2(1:samplenum,1),n2(1:samplenum,2),'g*');%画出样本 u1 = mean(n1);%计算第一类样本的均值 e1=0; for i=1:20 e1 = e1+(n1(i,:)-u1)'*(n1(i,:)-u1);%计算协方差矩阵 end; u2 = mean(n2);%计算第二类样本的均值 e2=0; for i=1:20 e2 = e2+(n2(i,:)-u2)'*(n2(i,:)-u2);%计算协方差矩阵 end; e2=e2/20;%计算协方差矩阵 e1=e1/20;%计算协方差矩阵 %-------------通过改变条件来完成不同的曲线--------- % e2 = e1; %-------------------------------------------------- u1 = u1'; u2 = u2'; scatter(u1(1,1),u1(2,1),'b+');%画出样本中心 scatter(u2(1,1),u2(2,1),'b+');%画出样本中心 line([u1(1,1),u2(1,1)],[u1(2,1),u2(2,1)]); %画出样本中心连线 %求解分类方程 W1=-1/2*inv(e1); w1=inv(e1)*u1; w10=-1/2*u1'*inv(e1)*u1-1/2*log(det(inv(e1)))+log(0.5);%假设w1的先验概率为0.5 W2=-1/2*inv(e2); w2=inv(e2)*u2; w20=-1/2*u2'*inv(e2)*u2-1/2*log(det(inv(e2)))+log(0.5);% 假设w2的先验概率为0.5 syms x y; fn = [x,y]*(W1-W2)*[x,y]'+(w1-w2)'*[x,y]'+w10-w20; ezplot(fn,[0,30]);

Bayes判别

§5.2Bayes 判别 1. Bayes 判别的基本思想 假设已知对象的先验概率和“先验条件概率”, 而后得到后验概率, 由后验概率作出判别. 2. 两个总体的Bayes 判别 (1) 基本推导 设概率密度为1()f x 和2()f x 的p 维总体12,G G 出现的先验概率为

1122(),()p P G p P G ==(121p p +=) 先验概率的取法: (i) 121 2 p p == , (ii) 12 121212 ,n n p p n n n n ==++, 一个判别法 = 一个划分=12(,)R R =R 1212,,p R R R R =?=?=?R 距离判别中

112212{|(,)(,)} {|(,)(,)} R d G d G R d G d G =≤=>x x x x x x 判别R 下的误判情况讨论 2 1(2|1,)()d R P f =?R x x , 或 1 2(1|2,)()d R P f =?R x x 代价分别记为 (2|1),(1|2),(1|1)0,(2|2)0c c c c ==,

在得新x 后, 后验概率为 1111122() (|)()()p f P G p f p f = +x x x x 2221122() (|)()() p f P G p f p f = +x x x x (i) 当(1|2)(2|1)c c c ==时, 最优划分是 112212{:(|)(|)} {:(|)(|))} R P G P G R P G P G =≥?? =

贝叶斯决策的经典例题练习

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:0.2,0.5和0.3。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为0.9、0.06和0.04;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为0.05、0.9和0.05;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为0.04、0.06和0.9。问:企业是否委托专业市场调查机构进行调查? 解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=0.2*80+0.5*20+0.3*(-5)=24.5(万元) E(d2)=40*0.2+7*0.5+1*0.3=11.8(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=24.5(万元) 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益 2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示 由全概率公式 P(H1)=0.9*0.2+0.06*0.5+0.04*0.3=0.232 P(H2)=0.05*0.2+0.9*0.5+0.05*0.3=0.475 P(H3)=0.04*0.2+0.06*0.5+0.9*0.3=0.308 (2)由贝叶斯公式有 P(?1|H1)=0.9*0.2/0.232=0.776 P(?2|H1)=0.06*0.5/0.232=0.129 P(?3|H1)=0.04*0.3/0.232=0.052 P(?1|H2)=0.05*0.2/0.475=0.021 P(?2|H2)=0.9*0.5/0.475=0.947 P(?3|H2)=0.05*0.3/0.475=0.032 P(?1|H3)=0.04*0.2/0.308=0.026 P(?2|H3)=0.06*0.5/0.308=0.097 P(?3|H3)=0.9*0.3/0.308=0.877 (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1)

简单分类器的MATLAB实现

简单分类器的MATLAB实现 摘要:本实验运用最小距离法、Fisher线形判别法、朴素贝叶斯法、K近邻法四种模式识别中最简单的方法处理两维两类别的识别问题,最后对实验结果进行了比较。 关键字:MATLAB 最小距离Fisher线形判别朴素贝叶斯K近邻法 一.M atlab语言简介 Matlab 语言(即Matrix 和Laboratory) 的前三位字母组合,意为“矩阵实验室”,Matlab 语言是一种具有面向对象程序设计特征的高级语言,以矩阵和阵列为基本编程单位。Matlab 可以被高度“向量化”,而且用户易写易读。传统的高级语言开发程序不仅仅需要掌握所用语言的语法,还需要对有关算法进行深入的分析。与其他高级程序设计语言相比,Matlab 在编程的效率、可读性以及可移植性等方面都要高于其他高级语言,但是执行效率要低于高级语言,对计算机系统的要求比较高。例如,某数据集是m*n的二维数据组,对一般的高级计算机语言来说,必须采用两层循环才能得到结果,不但循环费时费力,而且程序复杂;而用Matlab 处理这样的问题就快得多,只需要一小段程序就可完成该功能,虽然指令简单,但其计算的快速性、准确性和稳定性是一般高级语言程序所远远不及的。严格地说,Matlab 语言所开发的程序不能脱离其解释性执行环境而运行。 二.样本预处理 实验样本来源于1996年UCI的Abalone data,原始样本格式如下: 1 2 3 4 5 6 7 8 9 其中第一行是属性代码:1.sex 2.length 3.diameter 4.height 5.whole_weight 6.shucked_weight 7 .viscera weight 8. shell weight 9.age 原始样本是一个8维20类的样本集,就是根据Abalone的第一至第八个特征来预测第九个特征,即Abalone的年龄。为简单其见,首先将原始样本处理成两维两类别问题的样本。选取length和weiht作为两个特征向量,来预测第三个特征向量age.(age=6或者age=9),我们将age=6的样本做为第一类,age=12的样本做为第二类。 处理后的样本: length weight age

典型判别分析与贝叶斯判别的区别

典型判别分析与贝叶斯判别的区别 1.原理不同 典型判别是根据方差分析思想,进行投影,将原来一个维度空间的自变量组合投影到另一维度空间,寻找一个由原始变量组成的线性函数使得组间差异和组内差异的比值最大化。根据样本点计算判别函数,计算判别函数到各类中心的欧式距离,取距离最小的类别。 贝叶斯判别是是利用已知的先验概率去推证将要发生的后验概率,就是计算每个样本的后验概率及其判错率,用最大后验概率来划分样本的分类并使得期望损失达到最小 2.前提条件不同 典型判别不考虑样本的具体分布,只求组间差异和组内差异的比值最大化 贝叶斯判别从样本的多元分布出发,充分利用多元正态分布的概率密度提供的信息计算后验概率,因此需要样本数据服从多元正态分布,方差齐性等。 3.产生的判别函数不同 典型判别根据K类最多产生K-1个判别函数 贝叶斯判别根据K类最多可产生K个判别函数 先验概率在判别分析中的作用 1.所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度,是根据以往经验和分析得到的概率。所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果,它是更接近于实际情况的概率估计。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断 2.样品的先验概率对预测有一定的作用,反应样本分布的总体趋向性。被判断的个案应该属于先验概率最大总体的概率应该高一些,贝叶斯考虑了先验概率的影响提高判别的敏感度,同时利用先验概率可以求出后验概率(基于平均损失函数)和误判率,从而进行判别分析,充分利用数据的概率密度分布,判别效率高。样品归于概率大的类别。 3.这样使误判平均损失最小。既考虑到不同总体出现机会的差异、各错误判断造成损失的不同,又充分尊重了每个总体的分布状态 判别准则的评价 刀切法:基本思想是每次剔除训练样本中的一个样本,利用其余容量的训练样本建立判别函数,再用所建立的判别函数对删除的那个样本做判别,对训练样本中的每个样品重复上述步骤,已其误判的比例作为误判概率的估计。 判别分析结果 Eigenvalues a First 2 canonical discriminant functions were used in the analysis. 1.判别函数的特征根,方差百分比,累计方差百分比

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

模式识别作业--两类贝叶斯分类

深圳大学研究生课程:模式识别理论与方法 课程作业实验报告 实验名称:Bayes Classifier 实验编号:proj02-01 姓名:汪长泉 学号:2100130303 规定提交日期:2010年10月20日 实际提交日期:2010年10月20日 摘要:在深入掌握多维高斯分布性质,贝叶斯分类的基础上,用计算机编程实现一个分类两类模式样本的贝叶斯分类器。用matlab编程,并分析了实验结果,得出贝叶斯分类的一般结论。

1. 贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。 1.1 两类情况 两类情况是多类情况的基础,多类情况往往是用多个两类情况解决的。 ① 用i ω,i =1, 2表示样本x (一般用列向量表示)所属的类别。 ② 假设先验概率()P ω1,()P ω2已知。(这个假设是合理的,因为如果先验概率未知,可以从训 练特征向量中估算出来,即如果N 是训练样本总数,其中有,N N 12个样本分别属于 2,1ωω,则相应的先验概率: ()/P N N ω≈11,2 ()/P N N ω≈2) ③ 假设(类)条件概率密度函数 (|),i p ωx i =1,2 已知,用来描述每一类中特征向量的分 布情况。如果类条件概率密度函数未知,则可以从可用的训练数据中估计出来。 1.2贝叶斯判别方法 贝叶斯分类规则描述为: 如果2(|)(|)P ωP ω>1x x ,则x ∈1ω 如果2(|)(|)P ωP ω<1x x ,则x ∈2ω (2-1-1) 贝叶斯分类规则就是看x ∈ω1的可能性大,还是x ∈2ω的可能性大。(|)i P ωx , i =1,2解释为当样本x 出现时,后验概率(|)P ω1x 和(|)P ω2x 的大小从而判别为属于 1ω或属于2ω类。 1.3三种概率的关系――――贝叶斯公式 ()() (|)= () i i i p |P P p ωωωx x x (2-1-3) 其中,()p x 是x 的概率密度函数(全概率密度),它等于所有可能的类概率密度函数乘以相应的先验概率之和。 ()(|)()i i i p p P ωω==∑2 1 x x

贝叶斯判别、费希尔判别法的计算机操作及结果分析

贝叶斯判别、费希尔判别法的计算机 操作及结果分析 一、实验内容、目标及要求 (一)实验内容 选取140家上市公司作为样本,其中70家为由于“财务状况异常”而被交易所对其股票实行特别处理(Special Treatment,简称ST)的公司,另外70家为财务正常的公司。为了研究上市公司发生财务困境的可能性,以“是否被ST”为分组变量,选择资产负债率、总资产周转率和总资产利润率几个财务指标作为判别分析变量,这三个指标分别从上市公司的偿债能力、资产管理能力和获利能力三个不同的角度反映了企业的财务状况。(二)实验目标 贝叶斯判别、费希尔判别法的计算机操作及结果分析。 (三)实验要求 要求学生能熟练应用计算机软件进行判别分析并对结果进行分析,培养实际应用能力。 二、实验准备 (一)运行环境说明 电脑操作系统为Windows XP及以上版本,所需软件为SPSS 16.0。

(二)基础数据设置说明 将数据正确导入SPSS,设置相应的变量值。 三、实验基本操作流程及说明 (一)系统界面及说明 同实验一。 (二)操作步骤 1. 选择菜单项Analyze→Classify→Discriminate,打开Discriminate Analysis对话框,如图4-1。将分组变量st移入Grouping Variable列表框中,将自变量x1-x3选入Independents列表框中。 选择Enter independents together单选按钮,即使用所有自变量进行判别分析。若选择了Use stepwise method单选按钮,则可以根据不同自变量对判别贡献的大小进行变量筛选,此时,对话框下方的Method按钮被激活,可以通过点击该按钮设置变量筛选的方法及变量筛选的标准。 图4-1 Discriminate Analysis对话框

贝叶斯分类器

实验报告 一. 实验目的 1、 掌握密度函数监督参数估计方法; 2、 掌握贝叶斯最小错误概率分类器设计方法。 二.实验内容 对于一个两类分类问题,设两类的先验概率相同,(12()()P P ωω=),两类的类条件概率密度函数服从二维正态分布,即 11(|)~(,)P N ω1x μΣ2(|)~(,)P N ω22x μΣ 其中,=[3,6]T 1μ,0.50=02???? ?? 1Σ,=[3,-2]T 2μ,20=02??????2Σ。 1) 随机产生两类样本; 2) 设计最大似然估计算法对两类类条件概率密度函数进行估计; 3) 用2)中估计的类条件概率密度函数设计最小错误概率贝叶斯分类器,实现对两类样本的分类。 三.实验原理 最大似然估计 1. 作用

在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数θ作为真实* θ的参数估计。 2. 离散型 设X 为离散型随机变量, 12=(,,...,)k θθθθ为多维参数向量,如果随机变量 1,...,n X X 相互独立且概率计算式为 {}1(;,...) i i i k P x p x θθX ==,则可得概率函数为 {}1111,...,(;,...)n n n i k i P x x p x θθ=X =X ==∏,在 12=(,,...,)k θθθθ固定时,上式表示11,...,n n x x X =X =的概率;当 11,...,n n x x X =X =已知的时候,它又变成 12=(,,...,)k θθθθ的函数,可以把它记为12111(,,...,)(;,...,)n k k i L p x θθθθθ==∏,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值 11,...,n n x x X =X =,那么它出现的可能性应该是较大的,即似然 函数的值也应该是比较大的,因而最大似然估计就是选择使12(,,...,) k L θθθ达到最 大值的那个θ作为真实* θ的估计。 3. 连续型 设X 为连续型随机变量,其概率密度函数为1(;,...) i k f x θθ, 1,...n x x 为从该总体中 抽出的样本,同样的如果 1,...n x x 相互独立且同分布,于是样本的联合概率密度为12111(,,...,)(;,...,) n k k i L f x θθθθθ==∏。大致过程同离散型一样。 最大后验概率判决准则 先验概率 1() P ω和 2() P ω,类条件概率密度 1(|) P X ω和 2(|) P X ω,根据贝叶斯公 式1 (|)() (|)(|)() i i i c j j j p x P P X p X P ωωωωω== ∑,当 12(|)(|) P P ωω>x x 则可以下结论,在x 条件 下,事件 1ω出现的可能性大,将x 判定为1ω类。

贝叶斯判别函数和决策面.docx

实验一贝叶斯判别函数和决 策面 一、实验结果 1、第一种情况:^.= cr2/,z = 1,2,L 决策面如图1所示: 从图1可以看出,各类样木落入以坷为中心的同样大小的一些超球体内,两类的决策而是一个超平而。当两类的先验概率相等,P(?) = P(?)二0.5时,决策面通过绚与叫连线屮点并与连线正交;当两类先验概率不相等,P(?) 二0.2 , P(?)二0.8时,决策面仍通过坷与弘2连线并与连线止交,但向先验概率较小的类偏移。 2、第二种情况:=; 2 ' i=l,2,如=;‘ “2 二决策面如图2所不: pv/1=0.2, pw2=0.8时'决策面 pw1=0.2/ pw2=0.8时,槪率密度及次策面 0.15 0.05 pw1=0.5^ pw2=0.5时,槪率密度及次策面 1 1=1,2,"产3

从图2可以看出,各类样木落入以冷为中心的同样大小的一些超椭球内,两 类的决策面是一个超平面。当两类的先验概率相等,P(?)二P(?)二0.5时,决 策血通过旳与u 2连线中点;当两类先验概率不相等,戶(?)二0?2,卩(5)二0?8 时,决策面仍通过绚与“2连线,但向先验概率较小的类偏移。 3、第三种情况: ,z, j = 1,2,L ,c '5 0_ _ 1 0_ T _5_ ,11\ — ,= 0 5_ 厶2 _0 1 1 _3_ Z _3_ pw1=0.2, pw2=0.8时,槪潔密度及决策面 pw1=0.2, pw2=0.8时,块策 面 pw1=0.5. pv/2=05时,槪潔密度及决策 面

如图3-1所示,当各个随机变量的方差类内相等、类间不相等时,决策而是 是一个超球面,投影是圆,且将方差较小的类包围。当两类先验概率和等时,决 策面过吗与“2连线屮点,当两类先验概率不相等时,决策而偏向先验概率小 的类。 1 u x = 1 3 如图3-2所示,当两个随机变量各类方差都不相等时,概率密度曲线是椭圆, 决策面也是椭圆。当两类先验概率不相等时,决策面会向偏先验概率小的类。 「10] 「10] 「1] 「5「 ⑶工计0 5f 工2计° 1}坷甘 鬥3. 0.3 0 u 2 pw1=0.2^ pw2=0.8B 寸,概率密度及决茉面 pw1=O2, pw2=08时,决策面 pw1=0.5> pw2=0.5时,概率密度及决茉面

相关主题
文本预览
相关文档 最新文档