当前位置:文档之家› 解析几何大题精选题,共四套(答案)

解析几何大题精选题,共四套(答案)

解析几何大题精选题,共四套(答案)
解析几何大题精选题,共四套(答案)

解析几何大题精选四套(答案)

解析几何大题训练(一)

1. (2011年高考江西卷) (本小题满分12分)

已知过抛物线()022

>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()

22,B x y (12x x <)两点,且9=AB . (1)求该抛物线的方程;

(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.

2. (2011年高考福建卷)(本小题满分12分) 如图,直线l :y=x+b 与抛物线C :x 2

=4y 相切于点A 。 (1) 求实数b 的值;

(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.

3. (2011年高考天津卷)(本小题满分13分)

设椭圆22

1(0)x y a b +=>>的左、右焦点分别为,F F ,点(,)P a b 满足||||PF F F =.

(Ⅰ)求椭圆的离心率e ;

(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22

(1)(16x y ++-=相交于M,N 两点,且

|MN|=5

8

|AB|,求椭圆的方程.

4.(2010辽宁)(本小题满分12分)

设1F ,2F 分别为椭圆22

22:1x y C a b

+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B

两点,直线l 的倾斜角为60o

,1F 到直线l 的距离为

(Ⅰ)求椭圆C 的焦距;

(Ⅱ)如果222AF F B =u u u u r u u u u r

,求椭圆C 的方程.

解析几何大题训练(二)

1.(2010辽宁)(本小题满分12分)

设椭圆C :22

221(0)x y a b a b

+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾

斜角为60o

,2AF FB =u u u r u u u r

.

(I) 求椭圆C 的离心率; (II) 如果|AB|=

15

4

,求椭圆C 的方程.

2.(2010北京)(本小题共14分)

已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。

(Ⅰ)求椭圆C 的方程;

(Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标;

(Ⅲ)设Q (x ,y )是圆P 上的动点,当t 变化时,求y 的最大值。

3.(2010福建)(本小题满分12分)

已知抛物线C :2

2(0)y px p =>过点A (1 , -2)。 (I )求抛物线C 的方程,并求其准线方程;

(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,

且直线OA 与L 的距离等于5

若存在,求直线L 的方程;若不存在,说明理由。

4.(2010湖北)(本小题满分13分)

已知一条曲线C 在y 轴右边,C 上没一点到点F (1,0)的距离减去它到y 轴距离的差都是1。

(Ⅰ)求曲线C 的方程

(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,

都有FA?FB u u u r u u u r

<0若存在,求出m 的取值范围;若不存在,请说明理由。

解析几何大题训练(三)

1、在直角坐标系xOy 中,点P 到两点(0-,

,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.

(Ⅰ)写出C 的方程;

(Ⅱ)若OA u u u r ⊥OB uuu r

,求k 的值。(变式:若AOB ∠为锐角(钝角),则k 的取值范围。)

2、已知直线1+-=x y 与椭圆)0(122

22>>=+b a b

y a x 相交于A 、B 两点.

(1)若椭圆的离心率为

3

3

,焦距为2,求线段AB 的长; (2)在(1)的椭圆中,设椭圆的左焦点为F 1,求△ABF 1的面积。

3、 已知动圆过定点(0,2)F ,且与定直线:2L y =-相切. (I )求动圆圆心的轨迹C 的方程;

(II )若A B 是轨迹C 的动弦,且A B 过(0,2)F , 分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ BQ ⊥.

4.(2010·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =3

2

,连接椭圆的四个顶点得到的菱形的面积为

4.

(1)求椭圆的方程;

(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →

=4,求y 0的值.

解析几何大题训练(四)

1.(2011·山东日照质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为1

2

,直线y =x +6与以原点为圆心,

以椭圆C 的短半轴长为半径的圆相切.

(1)求椭圆C 的方程;

(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点M 、N ,且线段MN 的垂直平分线过定点G (1

8,

0),求实数k 的取值范围.

2.(2009·江苏)在平面直角坐标系xOy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.

(1)求抛物线C 的标准方程;

(2)求过点F ,且与直线OA 垂直的直线的方程;

(3)设过点M (m,0)(m >0)的直线交抛物线C 于D ,E 两点,ME =2DM ,记D 和E 两点间的距离为f (m ),求f (m )关于m 的表达式.

3.(2010·安徽)如图,已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =1

2

.

(1)求椭圆E 的方程; (2)求∠F 1AF 2的平分线所在直线l 的方程;

4、(2009辽宁卷文)已知,椭圆C以过点A(1,3

2

),两个焦点为(-1,0)(1,0)。

(1)求椭圆C的方程;

(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

解析几何大题训练(一)

1. (2011年高考江西卷) (本小题满分12分)

(12x x <)两点,且9=AB .

(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.

(1)直线AB 的方程是

,

05x 4px 2y ),2

(22222=+-=-

=p px p

x y 联立,从而有与 所以:4

521p

x x =

+,由抛物线定义得:921=++=p x x AB ,所以p=4, 抛物线方程为:x y 82

=

(2)由p=4,,05x 422=+-p px 化简得0452=+-x x ,从而,4,12

1==x x 24,2221=-=y y ,从而A:(1,22-),B(4,24)

设)24,4()22,1()(3,3λ+-==→

y x OC =)2422,41(λλ+-+,又32

38x y =,即()[]

=-2

1222λ8

(41+λ),即14)12(2

+=-λλ,解得2,0==λλ或. 2. (2011年高考福建卷)(本小题满分12分) 如图,直线l :y=x+b 与抛物线C :x 2

=4y 相切于点A 。 (2) 求实数b 的值;

(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.

【解析】(I )由24y x b x y

=+??=?得2

440x x b --= (*)

因为直线l 与抛物线C 相切,所以2

(4)4(4)0b ?=--?-=,解得1b =-.

(II )由(I )可知1b =-,故方程(*)即为2

440x x -+=,解得2x =,将其代入2

4x y =,得y=1,故点

A(2,1).

因为圆A 与抛物线C 的准线相切,所以圆心A 到抛物线C 的准线y=-1的距离等于圆A 的半径r, 即r=|1-(-1)|=2,所以圆A 的方程为2

2

(2)(1)4x y -+-=.

3. (2011年高考天津卷)(本小题满分13分)

设椭圆22

221(0)x y a b a b

+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =.

(Ⅰ)求椭圆的离心率e ;

(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF

与圆22

(1)(16x y ++-=相交于M,N 两点,且

|MN|=

5

8

|AB|,求椭圆的方程. 【解析】(Ⅰ)设1(,0)F c -,2(,0)F c (0c >),因为212||||PF F F =

2c =,整理得

22()10c c a a +-=,即2210e e +-=,解得12

e =. (Ⅱ)

由(Ⅰ)知2,a c b ==

,可得椭圆方程为2223412x y c +=,直线2PF

的方程为)y x c =-,

A,B

两点坐标满足方程组222

3412)

x y c y x c ?+=??=-??,消y 整理得2

580x cx -=,解得0x =或85c ,所以

A,B

两点坐标为8(

,)55c c

,(0,),所以由两点间距离公式得|AB|=165

c

, 于是|MN|=

5

8

|AB|=2c ,

圆心(-到直线2PF

的距离d =,

因为2

22||()42MN d +=,所以22

3(2)164

c c ++=,解得2c =,所以椭圆方程为2211612x y +

=. 4.(2010辽宁)(本小题满分12分)

设1F ,2F 分别为椭圆22

22:1x y C a b

+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B

两点,直线l 的倾斜角为60o

,1F 到直线l

的距离为

(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =u u u u r u u u u r

,求椭圆C 的方程.

解:(Ⅰ)设焦距为2c ,由已知可得1F 到直线l

2.c ==故所以椭圆C 的焦距为4.

(Ⅱ)设112212(,),(,),0,0,A x y B x y y y <>由题意知直线l

的方程为2).y x =

-

联立2222422

222),

(3)30.1

y x a b y y b x y a

b ?=-?

++-=?+=??得

解得22122222

(22)(22)

,.a a y y +-=

=因为22122,2.AF F B y y =-=u u u u r u u u u r 所以

2=

得22

3.4,a a b b =-==而所以

故椭圆C 的方程为22

1.95

x y += 解析几何大题训练(二)

1.(2010辽宁)(本小题满分12分)

设椭圆C :22

221(0)x y a b a b

+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾

斜角为60o

,2AF FB =u u u r u u u r .⑴求椭圆C 的离心率;⑵如果|AB|=15

4

,求椭圆C 的方程.

解:设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0. (Ⅰ)直线l 的方程为

)y x c =

-

,其中c =

联立2222),1

y x c x y a

b ?=-??+=??

得22224

(3)30a b y cy b ++-=

解得22122222(2)(2)

,33c a c a y y a b a b +-==++,因为2AF FB =u u u r u u u r ,所以122y y -=.

2=,得离心率 2

3

c e a ==. ……6分

(Ⅱ)因为21AB y y =-

154=.

23c a =

得3b a =.所以515

44

a =,得a=3

,b = 椭圆C 的方程为22

195

x y +=. ……12分

2.(2010北京)(本小题共14分)

已知椭圆C

的左、右焦点坐标分别是(

,离心率是3

,直线y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。

(Ⅰ)求椭圆C 的方程;(Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标; (Ⅲ)设Q (x ,y )是圆P 上的动点,当t 变化时,求y 的最大值。

解:

(Ⅰ)因为3c a =

,且c =

1a b ===,所以椭圆C 的方程为

2213

x y += (Ⅱ)由题意知(0,)(11)p t t -<<,由22

13

y t

x y =???+=??

得x =所以圆P

,解得t = 所以点P 的坐标是(0

,2

±) (Ⅲ)由(Ⅱ)知,圆P 的方程2

2

2

()3(1)x y t t +-=-。因为点(,)Q x y 在圆P 上。所

y t t =±≤+设cos ,(0,)t θθπ=∈

,则cos 2sin()6

t π

θθθ+=+=+

当3

π

θ=,即1

2

t =

,且0x =,y 取最大值2.

3.(2010福建)(本小题满分12分)

已知抛物线C :2

2(0)y px p =>过点A (1 , -2)。 (I )求抛物线C 的方程,并求其准线方程;

(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,

且直线OA 与L

L 的方程;若不存在,说明理由。

4.(2010湖北)(本小题满分13分)

已知一条曲线C 在y 轴右边,C 上没一点到点F (1,0)的距离减去它到y 轴距离的差都是1。

(Ⅰ)求曲线C 的方程

(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,

都有FA?FB u u u r u u u r

<0若存在,求出m 的取值范围;若不存在,请说明理由。

解析几何大题训练(三)

1、在直角坐标系xOy 中,点P 到两点(03)-,

,(03),的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.

(Ⅰ)写出C 的方程; (Ⅱ)若OA u u u r ⊥OB uuu r

,求k 的值。(变式:若AOB ∠为锐角(钝角),则k 的取值范围。)

解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(03)(03)-,

,,为焦点,长半轴为2的椭圆.它的短半轴2

2

2(3)1b =-=,故曲线C 的方程为2

2

14

y x +=. (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足

2

214 1.y x y kx ?+=??

?=+?

,,消去y 并整理得22

(4)230k x kx ++-=, 故12122223

44

k x x x x k k +=-=-++,.若OA OB ⊥u u u r u u u r ,即12120x x y y +=. 而2

121212()1y y k x x k x x =+++,于是22

12122

2233210444

k k x x y y k k k +=---+=+++,

化简得2

410k -+=,所以12

k =±

. 2、已知直线1+-=x y 与椭圆)0(122

22>>=+b a b

y a x 相交于A 、B 两点.

(1)若椭圆的离心率为

3

3

,焦距为2,求线段AB 的长; (2)在(1)的椭圆中,设椭圆的左焦点为F 1,求△ABF 1的面积。 解:(1)3

3

,22,33===

a c c e 即Θ2,322=-==∴c a

b a 则 (3分)

∴椭圆的方程为12

32

2=+y x (4分)

联立0365:112

322

2=--??

???+-==+

x x y x y y x 得消去 (5分)

2

12212221221212122114)(])1(1[)()(||5

3,56)

,(),,(x x x x y y x x AB x x x x y x B y x A -+-+=-+-=∴-==

+则设 (8分)

5

3

8512)56(22=+=

(10分)

(2)由(1)可知椭圆的左焦点坐标为F 1(-1,0),直线AB 的方程为x+y-1=0, 所以点F 1到直线AB 的距离

=(12分)

∴△ABF 1的面积S=1

||2

AB d ?

=12= (14分)

3、 已知动圆过定点(0,2)F ,且与定直线:2L y =-相切. (I )求动圆圆心的轨迹C 的方程;

(II )若A B 是轨迹C 的动弦,且A B 过(0,2)F , 分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ BQ ⊥.

解:(I )依题意,圆心的轨迹是以(0,2)F 为焦点,:2L y =-为准线的抛物线上……2分

因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是2

8x y =………………….5分 (II ),AB x Q 直线与轴不垂直: 2.AB y kx =+设 1122(,),(,).A x y B x y …………….6分

22,1.8y kx y x =+???=??

由可得28160x kx --=, 128x x k +=,1621-=x x ………8分

抛物线方程为.4

1

,812x y x y ='=

求导得

所以过抛物线上A 、B 两点的切线斜率分别是 1114k x =,2214k x = ,121212111

14416

k k x x x x ?=?=?=-

所以,AQ BQ ⊥

4.(2010·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =3

2

,连接椭圆的四个顶点得到的菱形的面积为

4.

(1)求椭圆的方程;

(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →

=4,求y 0的值.

解析:(1)由e =c a =

32

,得3a 2=4c 2.再由c 2=a 2-b 2

,得a =2b . 由题意,可知1

2×2a ×2b =4,即ab =2.解方程组?

??

??

a =2

b ,ab =2,得?

??

??

a =2,

b =1.故椭圆的方程为x 2

4

+y 2

=1.

(2)由(1)可知A (-2,0),且直线l 的斜率必存在.设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).

于是A 、B 两点的坐标满足方程组?????

y =k x +2,x 2

4

+y 2

=1.由方程组消去y 并整理,得

(1+4k 2

)x 2

+16k 2

x +(16k 2

-4)=0.

由根与系数的关系,得-2x 1=16k 2-41+4k 2,于是x 1=2-8k 2

1+4k 2,从而y 1=4k

1+4k 2.

设线段AB 的中点为M ,则M 的坐标为? ????-8k 2

1+4k 2,2k 1+4k 2.

以下分两种情况讨论:

①当k =0时,点B 的坐标是(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →

=(2,→→

②当k ≠0时,线段AB 的垂直平分线的方程为

y -2k 1+4k 2=-1k ? ????x +8k 2

1+4k 2.令x =0,解得y 0=-6k 1+4k 2.

由OA →=(-2,-y 0),QB →

=(x 1,y 1-y 0), QA →

·QB →

=-2x 1-y 0(y 1-y 0)=-22-8k 2

1+4k 2

+6k 1+4k 2? ??

??4k

1+4k 2+6k 1+4k 2=416k 4+15k 2

-1

1+4k

22

=4. 整理,得7k 2

=2,故k =±

147.从而y 0=±2145.综上,y 0=±22,或y 0=±2145

. 解析几何大题训练(四)

1.(2011·山东日照质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为1

2

,直线y =x +6与以原点为圆心,

以椭圆C 的短半轴长为半径的圆相切.(1)求椭圆C 的方程;

(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点M 、N ,且线段MN 的垂直平分线过定点

G (18

,0),求实数k 的取值范围.

解析:(1)根据题意e =12,即c a =12,∴b a =a 2

-c 2

a =1-e 2

=32,

又∵r =

|6|1+1

=b ,∴b =3,a =2,∴椭圆C 的方程为x 24+y 2

3

=1.

(2)设M (x 1,y 1),N (x 2,y 2),由?????

x 2

4+y 2

3

=1,

y =kx +m

消去y 得(3+4k 2)x 2+8kmx +4m 2

-12=0,

∴Δ=(8km )2

-4(3+4k 2

)(4m 2

-12)>0,即m 2

<4k 2

+3.① 由根与系数关系得x 1+x 2=-8km 3+4k 2,则y 1+y 2=6m

3+4k 2,

∴线段MN 的中点P 的坐标为(-4km 3+4k 2,3m

3+4k 2).

又线段MN 的垂直平分线l ′的方程为y =-1k ? ????

x -18,

由点P 在直线l ′上,得3m 3+4k 2=-1k ? ?

???-

4km 3+4k 2-18, 即4k 2

+8km +3=0.∴m =-18k (4k 2

+3),由①得4k 2

+32

64k

2

<4k 2

+3,

∴k 2

>120,即k >510或k <-510.∴实数k 的取值范围是? ????-∞,-510∪? ????510,+∞.

2.(2009·江苏)在平面直角坐标系xOy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.

(1)求抛物线C 的标准方程;

(2)求过点F ,且与直线OA 垂直的直线的方程;

(3)设过点M (m,0)(m >0)的直线交抛物线C 于D ,E 两点,

ME =2DM ,记D 和E 两点间的距离为f (m ),求f (m )关于m 的表达式.

解析:(1)由题意,可设抛物线C 的标准方程为y 2

=2px .因为点A (2,2)在抛物线C 上, 所以p =1.因此,抛物线C 的标准方程为y 2

=2x .

(2)由(1)可得焦点F 的坐标是? ????12,0,又直线OA 的斜率为22=1,故与直线OA 垂直的直线的斜率为-1,因此,所求直线的方程是x +y -1

2

=0.

(3)方法一:设点D 和E 的坐标分别为(x 1,y 1)和(x 2,y 2),直线DE 的方程是y =k (x -m ),k ≠0.

将x =y k +m 代入y 2=2x ,有ky 2

-2y -2km =0,解得y 1,2=1±1+2mk 2

k

.

由ME =2DM 和1+1+2mk 2=2(1+2mk 2-1),化简得k 2

=4m

.

因此DE 2

=(x 1-x 2)2

+(y 1-y 2)2

=(1+1k 2)(y 1-y 2)2

=(1+1k 2)

4

1+2mk

2

k

2

=94

(m 2

+4m ). 所以f (m )=32

m 2

+4m (m >0).

方法二:设D ? ????s 22,s ,E ? ??

??t 22,t .由点M (m,0)及ME →=2DM →得t 2

-m =2(m -s 2

2),t -0=2(0-s ).

因此t =-2s ,m =s 2

.所以f (m )=DE =

2s 2

s 2

2

2

+-2s -s

2

32

m 2

+4m (m >0). 3.(2010·安徽)如图,已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =1

2

.

(1)求椭圆E 的方程; (2)求∠F 1AF 2的平分线所在直线l 的方程;

(3)在椭圆E 上是否存在关于直线l 对称的相异两点若存在,请找出;若不存在,说明理由.

解析:(1)设椭圆E 的方程为x 2a 2+y 2

b

2=1.

由e =12,即c a =12

,得a =2c ,∴b 2=a 2-c 2=3c 2

.

于是椭圆的方程化为x 22+y 2

2=1.

将A (2,3)代入上式,得1c 2+3

c

2=1,解得c =2(负值舍去).

故椭圆E 的方程为x 216+y 2

12

=1.

(2)方法一:由(1)知F 1(-2,0),F 2(2,0),于是直线AF 1的方程为y =3

4(x +2),即3x -4y +6=0,直

线AF 2的方程为x =2.

由点A 在椭圆E 上的位置知,直线l 的斜率为正数. 设P (x ,y )为l 上任一点,则

|3x -4y +6|

5

=|x -2|. 若3x -4y +6=5x -10,得x +2y -8=0(因其斜率为负,故舍去). 于是由3x -4y +6=-5x +10,得2x -y -1=0. 故直线l 的方程为2x -y -1=0.

方法二:∵A (2,3),F 1(-2,0),F 2(2,0), ∴AF 1→=(-4,-3),AF 2→

=(0,-3). ∴

AF 1

AF 1→+AF 2

|AF 2→|

=15(-4,-3)+13(0,-3)=-4

5(1,2). 从而k 1=2,l :y -3=2(x -2),即2x -y -1=0.

(Ⅲ)方法一:假设存在这样的两个不同的点B (x 1,y 1)和C (x 2,y 2), ∵BC ⊥l ,∴k BC =

y 2-y 1x 2-x 1=-1

2

. 设BC 的中点为M (x 0,y 0),则x 0=

x 1+x 2

2

,y 0=

y 1+y 2

2

.

由于M 在l 上,故2x 0-y 0-1=0.① 又点B 、C 在椭圆上,于是有

x 1216+y 12

12

=1与x 2216+y 22

12

=1.

两式相减,得x 22-x 1216

y 22-y 12

12=0.

x 1+x 2

x 2-x 1

16

y 1+y 2

y 2-y 1

12

=0.

将该式整理为18·x 1+x 22+y 2-y 1x 2-x 1·16·y 1+y 2

2=0,并将直线BC 的斜率k BC 和线段BC 的中点表示代入该

表达式中,得18x 0-1

12

y 0=0,即3x 0-2y 0=0.②

①×2-②,得x 0=2,y 0=3.

即BC 的中点为点A ,这是不可能的. 故不存在满足题设条件的相异两点.

方法二:假设存在B (x 1,y 1),C (x 2,y 2)两点关于直线l 对称,则l ⊥BC ,从而k BC =-1

2

.

设直线BC 的方程为y =-12x +m ,将其代入椭圆方程x 216+y 212=1,得一元二次方程3x 2

+4? ???

?-12x +m 2=48.

即x 2

-mx +m 2

-12=0,且x 1与x 2是该方程的两个根,由根与系数的关系得x 1+x 2=m . 于是y 1+y 2=-12(x 1+x 2)+2m =3m

2

.

从而线段BC 的中点坐标为? ??

??m 2,3m 4.

又线段BC 在直线y =2x -1上,于是3m

4=m -1,得m =4.

即线段BC 的中点坐标为(2,3),与点A 重合,矛盾. 故不存在满足题设条件的相异两点. 4、(2009辽宁卷文)已知,椭圆C 以过点A (1,3

2

),两个焦点为(-1,0)(1,0)。 (3) 求椭圆C 的方程;

(4) E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为

定值,并求出这个定值。

解:(Ⅰ)由题意,c=1,可设椭圆方程为 ,将点A 的坐标代入方 程: ,解得 , (舍去) 所以椭圆方程为 。 (Ⅱ)设直线AE 方程为:3

(1)2

y k x =-+,代入22143x y +=得 2223

(34)4(32)4()1202k x k k x k ++-+--=

设(x ,y )E E E ,(x ,y )F F F ,因为点3

(1,)2

A 在椭圆上,所以

22

3

4()12

2x 34F k k

--=+ 3

2E E y kx k =+- ………8分 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以—K 代K ,可得

2

219

14(1)

a a +=-24

a =22114

a c =<=22

1

4

3

x y +

=

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

(完整版)解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (1) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (2) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在 抛物线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求 的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次 项,所以直线设为或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂 直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

解析几何综合运用练习题含答案

学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知直线 1:210 l ax y ++=与直线2:(3)0 l a x y a --+=,若12//l l,则a 的值为() A.1 B.2 C.6 D.1或2 2.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与 直线x+y+3=0相切,则圆C的方程为( ) A.(x+1)2+y2=2 B.(x-1)2+y2=1 C.(x+1)2+y2=4 D.(x-2)2+y2=4 3.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆 过点(0,2),则C的方程为( ) A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 4.双曲线x21( ) A. B. m≥1 C.m>1 D. m>2

二、填空题(题型注释) 5.经过圆x 2+2x +y 2 =0的圆心C ,且与直线x +y =0垂直的直线方程是________. 6.已知抛物线y 2 =4x 的焦点F 恰好是双曲线22x a -2 2y b =1(a>0,b>0)的右顶点,且双曲线的渐近线方程为y =±3x ,则双曲线方程为________. 三、解答题(题型注释) 7.已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程. 8.如图,在直角坐标系中,已知△PAB 的周长为8,且点A ,B 的坐标分别为(-1,0),(1,0). (1)试求顶点P 的轨迹C 1的方程; (2)若动点C(x 1,y 1)在轨迹C 1上,试求动点Q 11,322x y ?? ??? 的轨迹C 2的方程.

数学 解析几何 经典例题 附带答案

数学解析几何经典例题~ 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.双曲线x 22-y 21 =1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1) C .(3,0),(-3,0) D .(0,3),(0,-3) 解析: c 2=a 2+b 2=2+1,∴c = 3. ∴焦点为(3,0),(-3,0),选C. 答案: C 2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立; 当直线x +y =0与直线x -ay =0垂直时,a =1. 所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件. 答案: C 3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .x 2+y 2+2x =0 B .x 2+y 2+x =0 C .x 2+y 2-x =0 D .x 2+y 2-2x =0 解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D. 答案: D 4.方程mx 2+y 2=1所表示的所有可能的曲线是( ) A .椭圆、双曲线、圆 B .椭圆、双曲线、抛物线 C .两条直线、椭圆、圆、双曲线 D .两条直线、椭圆、圆、双曲线、抛物线 解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线. 答案: C 5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2 所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0 C .-x +2y +4=0 D .x +2y +4=0 解析: 由题意知所求直线与直线2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12 (x -0), 即x +2y +4=0. 答案: D 6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为 ( ) A.32 B.34 C .2 5 D.355

解析几何大题带答案

三、解答题 26.(18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点,过坐 标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C , 连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐 标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线 . 32 21 1| 32 3432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y =代入 22221,421212x y x k k μ+==++解得记 则)0,(),,(),,(μμμμμC k A k P 于是--

故直线AB 的斜率为,20k k =++μ μμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2(32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y 因此.,11PB PA k k ⊥-=所以 28. (理19) 已知椭圆2 2:14x G y +=.过点(m,0)作圆 22 1x y +=的切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率; (II )将 AB 表示为m 的函数,并求 AB 的最大值. (19)(共14分) 解:(Ⅰ)由已知得,1,2==b a

04-14浙江历年高考题解析几何大题

浙江高考历年真题之解析几何大题 2004年(22)(本题满分14分) 已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,3 3[∈k ,求实数m 的取值范围; (Ⅱ)当12+= m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程. (2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.

(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e= 23. (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2 AT AF AF = 。 (2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

(2008年)已知曲线C 是到点P (83,21-)和到直线8 5-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。 (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得 QA QB 2为常数。 (2009年)已知抛物线C :x 2=2py (p >0)上一点A (m ,4)到焦点的距离为 174 . (I )求p 于m 的值; (Ⅱ)设抛物线C 上一点p 的横坐标为t (t >0),过p 的直线交C 于另一点Q ,交x 轴于M 点,过点Q 作PQ 的垂线交C 于另一点N.若MN 是C 的切线,求t 的最小值;

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围000180α≤< (2)经过两点的直线的斜率公式 是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地, 当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=-g 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的 直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式A,B,C为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知 112233 (,),(,),(,), A x y B x y C x y若 123AB AC x x x k k === 或,则有A、B、C三点共 线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。

相关主题
文本预览
相关文档 最新文档