当前位置:文档之家› 蛋白质结构论文

蛋白质结构论文

蛋白质结构论文
蛋白质结构论文

LUOYANG NORMAL UNIVERSITY 2015-2016学年第一学期《蛋白质工程》课程论文

蛋白质结构的最新进展

院(系)名称生命科学学院

专业名称12级生物技术

学生姓名高国艳

学号121344029

指导教师程彦伟

完成时间2016年1月13日

蛋白质结构的最新进展

姓名:高国艳学号:121344029 专业:生物技术

指导老师:程彦伟讲师

摘要:本文主要阐述研究蛋白质结构方法及蛋白质结构的模型和不同蛋白结构在领域中的应用。随着蛋白质使用领域的增加 ,迫切需要知道它在不同环境中的结构特征及生物活性。目前 ,测定蛋白质结构的方法很多 ,包括 X射线衍射技术、核磁共振波谱学、圆二色光谱(CD)、FT-IR等。蛋白质的结构包括一级结构、二级结构、超二级结构、三级结构以及四级结构等。并为蛋白质组学和结构生物学的进一步应用提供了见解。

关键词:蛋白质、结构、模型、应用

1引言

自然界生命现象的多样性是由蛋白质的多样性决定的,而蛋白质的功能又与其结构紧密相关。蛋白质的结构极其复杂,目前按结构水平可分为一级结构和高级结构进行研究,发现一级结构决定其高级结构(二、三、四级结构),当一级结构发生改变时,蛋白质功能迥异或完全丧失其活性。新生肤链折登的研究是解决用基因工程和蛋白质工程方法生产有生物活性蛋白质的关键,所以对于蛋白质的空间结构,肤链折叠和生物功能的研究是当今蛋白质科学研究的重大前沿领域。目前, 蛋白质序列数据库的数据积累的速度非常快, 但是已知结构的蛋白质相对比较少。

20世纪60年代后期, Christian Anfinsen[1]首先发现去折叠蛋

白或者说变性蛋白质在允许重新折叠的实验条件下可以重新折叠到原来的结构, 这种天然结构对于行使生物功能具有重要作用, 大多数蛋白质只有在折叠成它们天然结构的时候才能具有完全的生物活性。自从提出蛋白质折叠的信息隐含在蛋白质的一级结构中, 科学家们对蛋白质结构的预测进行了大量的研究, 分子生物学家将有可能直接运用适当的算法,从氨基酸序列出发, 预测蛋白质的结构。

2蛋白质的结构的概念

蛋白质是由20种不同的氨基酸组成的多肽链所构成,它可以描述成4级层次结构。其中,一级结构是指构成多肽链的氨基酸排列顺序,它是一种一维的信息;二级结构是由相邻连续的若干氨基酸在局部空间折叠形成具有一定规则的片段子结构,如α螺旋结构、β折叠结构和回折结构;三级结构是指由规则的二级结构进一步折叠形成的三维空间形状;四级结构是指若干条多肽链相互作用形成稳定的空间结构。一维氨基酸序列在没有进行空间折叠前是没有功能意义的,二级结构是蛋白质空间结构的基本单元,它们之间相互作用,形成超二级结构,它是一种从二级向三级结构转化的中间结构,如αβα。超二级结构进一步组合形成一定功能的结构域,可看成是最基本的功能实体,但其尚不具备完整的生物活性,空间自然折叠的三维形状最终决定蛋白质的功能。[2]

蛋白质的一级结构是指蛋白质肽链中氨基酸的排列顺序。当蛋白质肽链中氨基酸排列顺序相似时,其功能基本相似,如:促甲状腺素释放激素( T R H ),按顺序是焦谷氨酸、组氨酸和脯氨酞胺组成的三肽,

当 T R H中的组氨酸( H is)被基氨酸( P he),色氨酸( Trp)或酪氨酸( Tyr)取代后,虽仍有T R H活性,但有不同程度的减弱。但是特定的氨基酸残基对于它的功能是具有重要作用的,如:催产素和抗利尿激素( A D H )的一级结构很相似,都是八,其中有两个氨基酸不同,因而两者的生理功能虽有类似,但活性差别很大,催产素主要是促进子宫收缩,同时具有微弱的A D H 活性,A D H的主要作用是抗利尿和增血压,但亦具有微弱的催产活性。

蛋白质的二级结构是指蛋白质主链上原子的局部空间排列,它不涉及与其它肽链片段间的相互关系或侧链构象(主要表现链内氢键的稳定的肤链本身旋转折叠方式),共有三种基本类型Q一螺旋,件折叠,卜转角及无规卷曲等。

超二级结构是由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则,在空间上能辨认的二级结构组合体,充当三级结构的构件,但没有完整的结构域 (d。-m al)n。

蛋白质的三级结构是指主链和侧链构象的相互作用,使肤链在二级结构的基础上进一步在空间自由卷曲折迭,包括(1)全Q一螺旋(2) 全卜折叠(3)a一螺旋和件折叠交替(4)a一螺旋和各折叠分别聚集存在,其结构单元是a一螺旋和件折叠两种。

蛋白质的四级结构是由二条或更多条肤链组成,各具有一、二、三级结构,各亚基之间,是以非共价键互相连接契合而成的蛋白质大分子,如血红蛋白是由四个亚基组成一个功能单位的简单四聚体,由两条相同的a链和两条 p链组成,是肌红蛋白的四倍,肌红蛋白的结构

相当于血红蛋白的一个亚基,血红蛋白的Q链、p链和肌红蛋白都有相似量的右平a一螺旋区以及相似的长度、弯折的角度和方向,所以它们的功能相似,不全相同。[3]

3蛋白质结构的研究方法

研究蛋白质结构的方法分为2种,即实验测定和理论预测。实验测定蛋白质三维结构的方法主要采用X射线晶体衍射法(X-ray diffraction method)和核磁共振波谱法(nuclearmagnetic resonance spec-troscopy,NMR)。X射线衍射法[4]是目前最有效的结构测定方法,但包括蛋白质晶体的形成和培养没有普遍适用的规律、晶体结构测定的周期较长、有些蛋白质很难形成结晶(例如膜蛋白一般不溶于水,在水溶液中容易聚集为不溶性物质)等缺点,使X射线衍射法在测定蛋白质结构中的应用受到限制。多维核磁共振波谱法可以直接测定蛋白质在溶液中的构象,一般只能测相对分子质量小于2×104u的蛋白质结构,并且要求蛋白质中不含有大量重复结构,该方法不但对样品纯度的要求较高,而且样品的需要量也大。

蛋白质序列数据库(Swiss-Prot)的序列数据增长极快,2006年2月报道蛋白质序列条目超过20万[5],相比之下,已测定结构的蛋白质数目却较少(3万多个)。缩小已知序列的蛋白质数量和已测定结构的蛋白质数量二者之间的差距,除了改善实验测定方法之外,急需建立和完善理论分析方法,这也是结构生物学的重要目标之一。此外,对于分析和处理这些海量的蛋白质序列和三维结构数据,理论预测方法的高通量和自动化使其成为最理想的选择。[6]

3.1 X射线晶体衍射法(X-ray diffraction method)

X 射线晶体学是最早也是最主要的测定蛋白质结构的方法,第一个蛋白质的三维结构——血红蛋白的结构就是通过X-ray方法解析的。目前PDB中收录的蛋白质的结构85%左右是利用 X 射线晶体学方法解析的。蛋白质晶体结构的 X射线衍射分析包含样品制备、蛋白质结晶、衍射数据收集和处理、相位求解、模型建立和修正等五个主要步骤。试验的24个蛋白在经过这样的检测和操作后有6 个成功结晶并解出结构。[7]

X射线晶体学的缺点是分子在晶体中往往是被锁定于某一状态,所得到的晶体往往是分子处于基态或不同构象的平均,而分子行使功能时多发生在激发态、过渡态、X- 射线晶体技术很难捕捉到分子的动态信息[8]。但是无论怎样,X-射线晶体学方法无论过去、现在或将来都会是蛋白质结构研究的主要方法。

3.2核磁共振波谱学(nuclear magnetic resonance,NMR)

核磁共振波谱学是对 X- 射线晶体学的有力补充。1971 年,比利时科学家J Jeener 提出二维核磁共振的概念,1985 年,Kurt Wüthrich 在此基础上发明了一种新的方法,他选择生物大分子中的质子(氢原子核)作为测量对象,连续测定所有相邻的两个质子之间的距离和方位,这些数据经计算机处理后就可形成生物大分子的三维结构图。KurtWüthrich 用该方法测定了一个蛋白质的三维结构,从而奠定了NMR 作为确定生物大分子的主要手段之一,他也因此获得了2002 年诺贝尔化学奖。时至今日,N M R 已经成为确定生物大分子

溶液三维空间结构的主要手段[9]。

NMR 技术的缺点是只能测定小蛋白和中等大小的蛋白质分子(相对分子质量一般在 30 000 以下),并且图谱分析工作极为费时,往往需要数月到一年的时间,导致实验周期延长,速度缓慢;另外核磁共振衍射技术的反应是在溶液中进行的,研究对象必须是可溶的蛋白,对不溶蛋白的研究就比较困难;而且样品需要同位素标记等,这些在一定程度上制约了 NMR 技术的应用。随着一些新技术的发现,如 G矩阵傅立叶变换式NMR(G-matrix fouriertransform NMR,GFT-NMR)技术等,使得 NMR 的发展速度也很快,目前 PDB 中收录的蛋白质的结构15%左右是利用 NMR 方法解析的,其快速发展主要归功于以下几个方面:仪器技术的不断发展,计算速度的飞速提升和实验方法上的不断创新和发展[8]。1990 年以前平均每年只能解10 个结构,现在平均每天可以解2 个结构,相信随着NMR 技术不断的改进和发展,NMR 技术在未来结构生物学上的贡献将会越来越大。

3.3圆二色光谱 (CD)

由于光学活性分子对左、右圆偏振光的吸收不同,使得左、右圆偏振光透过后变成椭圆偏振光,这种现象就是圆二色性(CircularDichroism,简称CD)。蛋白质是具有特定结构的生物大分子,由氨基酸通过肽键连接而成,它具有一级结构、二级结构、三级结构、四级结构几个主要结构层次,有的还有结构域或超二级结构。在蛋白质和多肽分子中,肽链骨架中的肽键、芳香氨基酸残基及二硫桥键是主要的光活性生色基团,当平面圆偏振光通过时,这些生色基

团对左右圆偏振光的吸收不同,造成偏振光矢量的振幅差,使得圆偏振光变成了椭圆偏振光,就产生了蛋白质的圆二色性[10]。圆二色光谱是一种差光谱,是样品在左右旋偏振光照射下的吸收光谱差值[11]。3.4FT-IR

蛋白质结构的研究是当代生物化学领域研究的基本内容之一。蛋白质结构的复杂多变性是形成复杂的生物组织的前提和基础;而且 ,许多生理功能的实现也与蛋白质结构密切相关。随着生命科学的进步 ,仪器分析手段的更新 ,傅立叶变换红外光谱 ( FT-IR)附件的发展和运用 ,尤其是近年来 FT-IR在结构和功能方面应用的崛起 ,使这一领域的发展突飞猛进。

FT-IR技术用于蛋白质结构的研究具有如下优点:(1)所需材料少、不受分子量大小的影响;(2)适合各种状态的样品;( 3)不受光散射 ,荧光的影响;(4)适合各种不同环境 , (5)易测定蛋白质的瞬间结构特征 ,说明蛋白质在生理状态下结构与功能的关系;(6)操作简便 ,测量速度快。[12]

4蛋白质结构在领域中的应用

4.1在结构基因组学中的应用

以目前的预测技术水平[13],预测结果的精确度不如X射线衍射分析和NMR等实验手段,但蛋白质结构预测是大规模、低成本和快速获得三维结构的有效途径。例如当目标蛋白质和模板蛋白质的序列相似性超过30%时,以结构预测方法建立的蛋白质三维结构模型就可以用于一般性的功能分析。因而,蛋白质预测技术在结构基因组学中得到

了广泛的应用。

2001年Dmitrij etal建立了可对基因组序列数据进行高通量分析的软件系统PEDANT及其相应的基因组分析服务器。 PEDANT包括输入模块、处理单元、关系数据库管理系统和用户界面4个模块.应用PEDANT预测拟南芥染色体IV,共识别出3744个编码蛋白质的基因,在这些基因相应的蛋白质中,有90%在蛋白质数据库中可以搜索到显著的BLAST匹配。2002年Scottet al开展了极端嗜热菌海栖热袍菌(Thermotogamaritima)蛋白质组的结构基因组学高通量结构测定通道,利用测定通道成功克隆和表达了1376个基因,占总预测数(1877)的73%,并且分析了432个蛋白质的结晶条件,占蛋白质组的23%.2003年Manesh etal建立了基于串线法技术的蛋白质结构预测自动通道PROSPECT,并对线虫(C. ele-gans)、嗜热菌(Pyrococcus furiosus)和3种蓝细菌(cyanobacterial)的基因组进行了结构基因组学预测。

[14]

4.2在药物设计中的应用

从基因组数据到新药物的过程分为2个部分:一是选择目标蛋白,二是选择合适的药物[12]。药物分子必需与目标蛋白质分子紧密结合、容易合成且没有毒副作用。传统的药物设计通过筛选大量的天然化合物、已知的底物或配基的类似物(analogs)以及生物化学研究来确定前导物(lead compounds),较少依赖目标蛋白质的三维结构,因而研发周期长、费用巨大,并且带有或多或少的盲目性。随着蛋白质结构数据的增长和结构预测技术的发展,目标蛋白质分子三维结构的信息

对于上述2个过程发挥着越来越大的作用.计算机辅助的药物设计(computer-aided drug design)可以缩短研发周期和降低成本。例如,2003年Xiang etal[14]应用同源建模的方法建立了SARS冠状病毒依赖RNA的聚合酶(SARS-Cov RdRp)的分子模型,对抗SARS药物的设计具有重要作用。

4.3在蛋白质设计中的应用

蛋白质设计的目标是通过计算机辅助的算法以生成符合目标蛋白质三维结构的氨基酸序列。经过漫长的进化,自然界已经筛选出了数量众多的蛋白质,但天然蛋白质只有在自然条件下才发挥最佳功能,这使得人们利用这些蛋白质受到了限制。因此需要对蛋白质进行改造使其能适应特定条件发挥特定的功能。蛋白质分子的设计分为3类:小改、中改和大改[15]。

参考文献:

[1]李明,苏显中,于敏,郑全喜. 蛋白质结构预测研究进展[J]. 生物技术,2009,03:87-90.

[2]郭雨珍,冯恩民. 蛋白质结构研究现状与展望[J]. 生物信息学,2007,04:182-184.

[3]哀慧君.蛋白质结构与功能研究进展与新生肤链的折叠[J].河南职技师院学报,1997,03:33-34.

[4]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999:211 -213.

[5]Swiss-Pro.tSwiss-ProtProteinKnowledgebaseRelease49.5Statistics[EB/OL].[2006 -02 -14]. http://www. expasy. ch /sprot/relnotes /relsta.t htm.l

[6]宁正元,林世强.蛋白质结构的预测及其应用[J].福建农林大学学报(自然科学版),2006,05:308-311.

[7] Pantazatos D, Kim J S, Kolck H E, et al. Rapid refinementof crystallographic protein construct definition employingenhanced hydrogen/deuterium exchange MS. Proc Natl AcadSci USA, 2004, 101(3): 751-756.

[8]蛋白质结构研究方法进展.科学热点[Z].江南大学图书馆情报部, 2006, (2).

[9]阎隆飞, 孙之荣. 蛋白质分子结构[M].北京: 清华大学出版社, 1997: 131-154.

[10]沈星灿,梁宏,何锡文,王新省.圆二色分析蛋白质构象的方法及研究进展.[J]分析化学评述与进展2004.(3):388~394

[11]丁晓岚.高红旗.圆二色光谱技术应用和实验方法[J].实验技术与管理.2008.25(10)48~52.

[12]王建华,卫亚丽,文宗河,何建川.蛋白质结构的 FT-IR研究进展[J].化学通

报,2004.482.

[13]刘东升,王金凤.结构基因组学研究与核磁共振[J].生物化学与生物物理进展,2001,28(6):827 -831.

[14]宁正元,林世强.蛋白质结构的预测及其应用[J].福建农林大学学报(自然科学版),2006,05:310-311.

[15]来鲁华.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993:100 -105.

细胞内蛋白质的合成与运输_论文

细胞内蛋白质的合成与运输 摘要:蛋白质是一切生命的物质基础,这不仅是因为蛋白质是构成机体组织器官的基本成分,更重要的是蛋白质本身不断地进行合成与分解。这种合成、分解的对立统一过程,推动生命活动,调节机体正常生理功能,保证机体的生长、发育、繁殖、遗传及修补损伤的组织。根据现代的生物学观点,蛋白质和核酸是生命的主要物质基础。 关键字:多肽链、蛋白质、翻译、核糖体、运输途径、运输方式,研究前景 前言:国家重大科学研究计划对中国的四项重要科学研究所涉及的领域分别作了详细说明,四个项目分别是蛋白质研究,量子调控研究,纳米研究,发育与生殖研究。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA蛋白质,存在三个层次的调控,即转录水平调控,翻译水平调控,翻译后水平调控。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 一、蛋白质生物合成过程

遗传密码表在mRNA的开放式阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸或其他信息,这种三联体形势称为密码子(codon)。如图,通常的开放式阅读框架区包含500个以上的密码子。 遗传密码的特点 一方向性:密码子及组成密码子的各碱基在mRNA序列中的排列具有方向性(direction),翻译时的阅读方向只能是5ˊ→3ˊ。 二连续性:mRNA序列上的各个密码子及密码子的各碱基是连续排列的,密码子及密码子的各个碱基之间没有间隔,每个碱基只读一次,不重叠阅读。 三简并性:一种氨基酸可具有两个或两个以上的密码子为其编码。遗传密码表中显示,每个氨基酸都有2,3,4或6个密码子为其编码(除甲硫氨酸只有一个外),但每种密码子只对应一个氨基酸,或对应终止信息。 四通用性:生物界的所有生物,几乎都通用这一套密码子表 五摆动性:tRNA的最后一位,和mRNA的对应不完全,导致了简并性 氨基酸活化 在进行合成多肽链之前,必须先经过活化,然后再与其特异的tRNA合,带到mRNA 相应的位置上,这个过程靠tRNA合成酶催化,此酶催化特定的氨基酸与特异的tRNA 相结合,生成各种氨基酰tRNA.每种氨基酸都靠其特有合成酶催化,使之和相对应的tRNA结合,在氨基酰tRNA合成酶催化下,利用A TP供能,在氨基酸羧基上进行活化,形成氨基酰-AMP,再与氨基酰tRNA合成酶结合形成三联复合物,此复合物再与特异的tRNA作用,将氨基酰转移到tRNA的氨基酸臂(即3'-末端CCA-OH)上(图1)。原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。前面讲过运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对tRNA识别的特异性较低。氨基酰tRNA合成酶是如何选择正确的氨基酸和tRNA 呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的tRNA进入合成酶的相应位点,才能合成正确的氨酰基tRNA。现在已经知道合成酶与L形tRNA的内侧面结合,结合点包括接近臂,DHU臂和反密码子臂(图2)。氨基酰-tRNA合成酶与tRNA的相互作用,可见氨酸接受柄、乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些tRNA也确实如此,然而对于大多数tRNA来说,情况并非如此,人们早就知道,当某些tRNA上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和Schimmel的实验证明丙氨酸tRNA酸分子的氨基酸臂上G3:U70这两个碱基发生突变时则影响到丙氨酰tRNA合成酶的正确识别,说明G3:U70是丙氨酸tRNA分子决定其本质的主要因素。tRNA分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰tRNA合成酶可以识别以一组同功tRNA,这说明它们具有共同特征。例如三种丙氨酸tRNA

蛋白质结构及性质论文

蛋白质结构及性质论文 ——动科一班黄细旺(1207010127)&冯志(1207010126) 摘要:蛋白质结构及其理化性质 关键词:蛋白质、结构、理化性质 前言: 蛋白质分子是由许多氨基酸通过肽键相连形成的生物大分子。人体内具有生理功能的蛋白质都是有序结构,每种蛋白质都有其一定的氨基酸百分组成及氨基酸排列顺序,以及肽链空间的特定排布位置。因此由氨基酸排列顺序及肽链的空间排布等所构成的蛋白质分子结构,才真正体现蛋白质的个性,是每种蛋白质具有独特生理功能的结构基础。 蛋白质结构 蛋白质分子结构分成一级、二级、三级、四级结构四个层次,后三者统称为高级结构或空间构象。并非所有的蛋白质都有四级结构,由一条肽链形成的蛋白质只有一级、二级和三级结构,由二条或二条以上多肽链形成的蛋白质才可能有四级结构。 1.蛋白质的一级结构 蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构。一级结构的主要化学键是肽键,有些蛋白质还包含二硫键,它是由两个半胱氨酸巯基脱氢氧化而成。 2.蛋白质的二级结构 蛋白质的二级是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肪酸主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链构象。 (一)肽单元20世纪30年代末L.Panling和R.B.Cory应用X线衍射技术研究氨基酸和寡肽的晶体结构其目的是要获得一组标准键长和键角以推导肽的构象最终提出了肽单元概念。他们发现参与肽健的6个原子位于同一平面Cα1和Cα2在平面上所处的位置为反构型,此同一平面上的6个原子构成了所谓的肽单元其中肽键(C-N)的键长为0132nm.介于C-N的单健长(0149nm)和双键长(0127nm)之问,所以有一定程度双键性能,不能自由旋转。而Cα分别与N和羰基碳相连的键都是典型的单键可以自由旋转。 (二)α-螺旋Paulαing和Core根据实验数据提出了两种肽链局部主链原子空间构象的分子模型,称为α-螺旋和β-折叠,它们是蛋白质二级结构的主要形式,在α-螺旋结构中多肽键的主链围绕中心轴是有规律的螺旋式上升,螺旋的走向为顺时钟方向即右手螺旋,其氨基酸恻键伸向螺旋外侧。每36个氨基酸残基螺旋上升一圈,螺距为0.54nm。a一螺旋的每个肽键N-H和第四个的羧基氧形成氨键,氢键的方向与螺旋长轴基本平行。肽链中的全部肽键都可形成氢键以稳固α-螺旋结构。肌红蛋白和血红蛋白分子中有许多肽链段落呈a一螺旋结构,毛发的角蛋白、肌肉的肌球蛋白以及血凝块中的纤维蛋白它们的多肽链几乎全长

蛋白质组学课程论文

蛋白质组学关键技术研究进展 摘要:蛋白质组学是对蛋白质特别是其结构和功能的大规模研究,是在90年代初期,由Marc Wikins 和学者们首先提出的新名词。蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。本文综述了蛋白质组学的一些关键技术的应用研究进展。 关键词:蛋白质组学;蛋白质组技术;研究方法 蛋白质组学的概念[1]最早是在1995年提出的,它在本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。近年来,高通量蛋白质分离与鉴定技术,如双向电泳、生物质谱、蛋白质芯片、酵母双杂交系统、生物信息学等相继建立并日趋完善,加速了蛋白质组学的发展。 1蛋白质组学概述 随着人类基因组计划的完成和功能基因组时代的到来,蛋白质结构与功能研究越来越重要,蛋白质组学、生物信息学等相关学科已逐渐成为生命科学的前沿。 随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。 目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA、mRNA、蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control),翻译水平调控(Translational control),翻译后水平调控(Post-translational control)。从mRNA 角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相

生物化学论文.蛋白质doc

生物化学论文 —蛋白质 蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新 蛋白质是由α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子化合物。蛋白质就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。、 蛋白质是荷兰科学家格利特·马尔德在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存 。 蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。 人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。

蛋白质结构预测和序列分析软件

蛋白质结构预测和序列分析软件 2010-05-08 20:40 转载自布丁布果 最终编辑布丁布果 4月18日 蛋白质数据库及蛋白质序列分析 第一节、蛋白质数据库介绍 一、蛋白质一级数据库 1、 SWISS-PROT 数据库 SWISS-PROT和PIR是国际上二个主要的蛋白质序列数据库,目前这二个数据库在EMBL和GenBank数据库上均建立了镜像 (mirror) 站点。 SWISS-PROT数据库包括了从EMBL翻译而来的蛋白质序列,这些序列经过检验和注释。该数据库主要由日内瓦大学医学生物化学系和欧洲生物信息学研究所(EBI)合作维护。SWISS-PROT 的序列数量呈直线增长。2、TrEMBL数据库: SWISS-PROT的数据存在一个滞后问题,即把EMBL的DNA序列准确地翻译成蛋白质序列并进行注释需要时间。一大批含有开放阅读框(ORF) 的DNA序列尚未列入SWISS-PROT。为了解决这一问题,TrEMBL(Translated EMBL) 数据库被建立了起来。TrEMBL也是一个蛋白质数据库,它包括了所有EMBL库中的蛋白质编码区序列,提供了一个非常全面的蛋白质序列数据源,但这势必导致其注释质量的下降。 3、PIR数据库: PIR数据库的数据最初是由美国国家生物医学研究基金会(National Biomedical Research Foundation, NBRF)收集的蛋白质序列,主要翻译自GenBank的DNA序列。 1988年,美国的NBRF、日本的JIPID(the Japanese International Protein Sequence Database 日本国家蛋白质信息数据库)、德国的MIPS(Munich Information Centre for Protein Sequences摹尼黑蛋白质序列信息中心)合作,共同收集和维护PIR数据库。PIR根据注释程度(质量)分为4个等级。4、 ExPASy数据库: 目前,瑞士生物信息学研究所(Swiss Institute of Bioinformatics, SIB)创建了蛋白质分析专家系统(Expert protein analysis system, ExPASy )。涵盖了上述所有的数据库。网址:https://www.doczj.com/doc/a05797778.html, 我国的北京大学生物信息中心(https://www.doczj.com/doc/a05797778.html,) 设立了ExPASy的镜像(Mirror)。 主要蛋白质序列数据库的网址 SWISS-PROT https://www.doczj.com/doc/a05797778.html,/sprot 或 https://www.doczj.com/doc/a05797778.html,/expasy_urls.html TrEMBL https://www.doczj.com/doc/a05797778.html,/sprot PIR https://www.doczj.com/doc/a05797778.html,/pirwww MIPS——Munich Information Centre for Protein Sequences http://mips.gsf.de/ JIPID——the Japanese International Protein Sequence Database 已经和PIR合并 ExPASy https://www.doczj.com/doc/a05797778.html, 二、蛋白质结构数据库 1、PDB数据库:

蛋白质结构预测在线软件

蛋白质预测在线分析常用软件推荐 蛋白质预测分析网址集锦 物理性质预测: Compute PI/MW http://expaxy.hcuge.ch/ch2d/pi-tool.html Peptidemasshttp://expaxy.hcuge.ch/sprot/peptide-mass.html TGREASE ftp://https://www.doczj.com/doc/a05797778.html,/pub/fasta/ SAPS http://ulrec3.unil.ch/software/SAPS_form.html 基于组成的蛋白质识别预测 AACompIdent http://expaxy.hcuge.ch ... htmlAACompSim http://expaxy.hcuge.ch/ch2d/aacsim.html PROPSEARCH http://www.e mbl-heidelberg.de/prs.html 二级结构和折叠类预测 nnpredict https://www.doczj.com/doc/a05797778.html,/~nomi/nnpredict Predictprotein http://www.embl-heidel ... protein/SOPMA http://www.ibcp.fr/predict.html SSPRED http://www.embl-heidel ... prd_info.html 特殊结构或结构预测 COILS http://ulrec3.unil.ch/ ... ILS_form.html MacStripe https://www.doczj.com/doc/a05797778.html,/ ... acstripe.html 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。 由NCBI检索蛋白质序列 可联网到:“http://www.ncbi.nlm.ni ... gi?db=protein”进行检索。 利用SRS系统从EMBL检索蛋白质序列 联网到:https://www.doczj.com/doc/a05797778.html,/”,可利用EMBL的SRS系统进行蛋白质序列的检索。 通过EMAIL进行序列检索 当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。 蛋白质基本性质分析 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的

蛋白质的改性论文

蛋白质的改性 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性,以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景。 0 前言 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1 蛋白质的功能特性 蛋白质的功能性质主要分三类: (l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。 (2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形成空间网状结构。 (3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质形成一层膜,可阻止小液滴或气泡聚集,有助于稳定乳化液和气泡。这些功能特性在食品中常被应用。 (4)蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 所谓蛋白质物理改性是指利用热、机械振荡、电磁场、射线等物理作用形式改变蛋白质的高级结构和分子间的聚集方式, 一般不涉及蛋白质的一级结构。如蒸煮、搅打等均属于物理改性技术。

蛋白质结构预测和序列分析软件

蛋白质结构预测和序列分析软件蛋白质数据库及蛋白质序列分析 第一节、蛋白质数据库介绍 一、蛋白质一级数据库 1、 SWISS-PROT 数据库 SWISS-PROT和PIR是国际上二个主要的蛋白质序列数据 库,目前这二个数据库在EMBL和GenBank数据库上均建 立了镜像 (mirror) 站点。 SWISS-PROT数据库包括了从EMBL翻译而来的蛋白质序 列,这些序列经过检验和注释。该数据库主要由日内瓦大 学医学生物化学系和欧洲生物信息学研究所(EBI)合作维 护。SWISS-PROT的序列数量呈直线增长。 2、TrEMBL数据库: SWISS-PROT的数据存在一个滞后问题,即 进行注释需要时间。一大批含有开放阅读 了解决这一问题,TrEMBL(Translated E 白质数据库,它包括了所有EMBL库中的 质序列数据源,但这势必导致其注释质量 3、PIR数据库: PIR数据库的数据最初是由美国国家生物医学研究基金 会(National Biomedical Research Foundation, NBRF) 收集的蛋白质序列,主要翻译自GenBank的DNA序列。 1988年,美国的NBRF、日本的JIPID(the Japanese International Protein Sequence Database日本国家蛋 白质信息数据库)、德国的MIPS(Munich Information Centre for Protein Sequences摹尼黑蛋白质序列信息 中心)合作,共同收集和维护PIR数据库。PIR根据注释 程度(质量)分为4个等级。 4、 ExPASy数据库: 目前,瑞士生物信息学研究所(Swiss I 质分析专家系统(Expert protein anal 据库。 网址:https://www.doczj.com/doc/a05797778.html, 我国的北京大学生物信息中心(www.cbi.

蛋白质组学课程论文

利用蛋白质组学分析技术研究 p53 蛋白的技术路线 课 程 论 文 姓名:高小琪 学号:82101082436 指导老师:邱德文 年级: 08 级 班级:硕士13班

利用蛋白质组学分析技术研究p53蛋白的技术路线指导老师:邱德文学生:高小琪学号:82101082436 p53 基因是一种具有阻滞细胞周期、启动细胞凋亡、维持基因组稳定性作用的、重要的抑瘤基因。p53 基因突变与大多数人类肿瘤发生、发展有关, 至少50 %以上的人类肿瘤存在p53 基因高频率突变失活。p53 蛋白功能失活的主要原因有 4 个, 最常见的原因是p53 基因点突变或缺失。其他3 个p53蛋白功能失活的原因不涉及p53 基因突变, 属于非遗传原因(extragenic)。其一是细胞蛋白与野生型p53蛋白结合, 如MDM2 瘤蛋白与p53 结合后、加速p53 蛋白泛素化和降解; 其二是野生型p53蛋白核外排(nuclear exclusion) , 即p53 蛋白被分隔(sequestration) 于细胞浆, 不能进入细胞核而发挥作用, 如热休克蛋白70 (HSP270) 和HSP290 家族成员可通过此种方式使p53 蛋白功能失活; 其三是病毒蛋白与野生型p53 蛋白结合, 如SV40 大T抗原、HPV E6蛋白、腺病毒E1B 和E4/ F4 蛋白,以及乙肝病毒x 抗原(HBx) 等与p53 蛋白结合使之失活。本路线以p53 蛋白为诱饵,先采用抗p53 抗体免疫共沉淀, 从鼻咽癌细胞中的p53 结合蛋白, 再采用SDS-聚丙烯酰胺凝胶电泳技术对含p53 结合蛋白的复合物进行分离, 然后采用液相色谱-电喷雾串联质谱结合数据库搜索鉴定p53 结合蛋白, 试图阐明鼻咽癌中p53 蛋白聚集及功能异常的分子机制。

生物信息学论文汇总

生物信息学论文 学院:生命科学技术学院 专业:生物科学 班级:2013级 老师:高亚梅 学生:王秉政 学号:20134083038

黑曲霉GH75及米曲霉GH76-5基因生物信息学分析王秉政(黑龙江八一农垦大学,生命科学技术学院,2013级生物科学专业,黑龙江省,大庆市) 【摘要】目的:分析和预测黑曲霉GH75和米曲霉GH76-5基因及其编码蛋白质的结构和特征。方法:利用NCBI、CBS和ExPASy网站中的各种信息分析工具,并结合VectorNTIsuite8.0生物信息分析软件包,分析预测黑曲霉GH75和米曲霉GH76-5基因并预测该基因编码蛋白结构的特征和功能。结果:GH75基因全长174bp,编码区具有57个氨基酸,在GenBank同源序列中,其与Aspergillus niger contig An04c0140, genomic contig 基因氨基酸序列一致性达到100%,且有GH75保守域。GH75蛋白相对分子量预测为26257.2,理论等电点为4.69。预测GH75编码蛋白α螺旋(H ) 、β折叠(E )、无规则卷(L )的比例分别是11.07%、25.41%、63.52%,1个GTPase结构域。GH75蛋白为亲水蛋白,有跨膜区,有信号肽。GH76-5基因全长309bp,编码区具有102个氨基酸,在GenBank同源序列中,其与Aspergillus niger contig An14c0130, genomic contig基因氨基酸序列一致性达到100%,且有GH76-5保守域。GH76-5蛋白相对分子量预测为46029.3,理论等电点为5.28。预测GH76-5编码蛋白α螺旋(H ) 、β折叠(E )、无规则卷(L )的比例分别是26.90%、20.71%、52.38%,2个GTPase结构域。GH76-5蛋白为疏水蛋白,无跨膜区,无信号肽。结论:成功预测GH75和GH76-5基因及其编码蛋白生化及其结构特征,为下一步对其进行克隆和表达奠定基础。 【关键词】黑曲霉、米曲霉;糖基水解酶家族(GH75);糖基水解酶家族(GH76-5)生物信息学 黑曲霉是一种重要工业微生物,在酶制剂、异源蛋白、有机酸等领域应用广泛。2007年黑曲霉基因组的公布将黑曲霉的研究引入后基因组时代,各种组学数据如雨后春笋般涌现,人们对黑曲霉高效生产机制的理解上升到系统、分子层次;与此同时,黑曲霉遗传操作系统也不断成熟,为系统地研究和改造黑曲霉、将黑曲霉打造成通用细胞工厂奠定了基础。 米曲霉是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产大肠杆菌不能表达的真核生物活性蛋白的载体。米曲霉基因组所包含的信息可以用来寻找最适合米曲霉发酵的条件,这将有助于提高食品酿造业的生产效率和产品质量。 一、资料与方法 1.1资料 通过ExPASy 数据库的UniProtKB(https://www.doczj.com/doc/a05797778.html,或https://www.doczj.com/doc/a05797778.html,/uniprot)获得黑曲霉的GH75与米曲霉GH76-5基因序列。GH75基因编号为4990860.,NCBI的登录号为XM_001401782.1. ,其他物种的GH75的氨基酸序列均来自Genbank,登录号见图1。GH76-5基因编号为4987208.,NCBI的登录号为XM_001400940.2. ,其他物种的GH76-5的氨基酸序列均来自Genbank,登录号见图2。 1.2方法 利用美国国家生物技术信息中心(NCBI,https://www.doczj.com/doc/a05797778.html,)的基本局部比对搜索工具(BLAST,https://www.doczj.com/doc/a05797778.html,/blast/),运用Blastx完成基因同源性分析。 应用ORF finder(https://www.doczj.com/doc/a05797778.html,/gorf/orfig.cgi)寻找其开放读码框,并推导出可编码蛋白序列。 利用保守结构域(https://www.doczj.com/doc/a05797778.html,/Structure/cdd/wrpsb.cgi)分析预测其保守域。 通过瑞士生物信息学研究所的蛋白分析专家系统(ExPASy,https://www.doczj.com/doc/a05797778.html,)所提供的蛋白组学和分

蛋白质结构预测方法综述

蛋白质结构预测方法综述 卜东波陈翔王志勇 《计算机不能做什么?》是一本好书,其中文版序言也堪称佳构。在这篇十余页的短文中,马希文教授总结了使用计算机解决实际问题的三步曲,即首先进行形式化,将领域相关的实际问题抽象转化成一个数学问题;然后分析问题的可计算性;最后进行算法设计,分析算法的时间和空间复杂度,寻找最优算法。 蛋白质空间结构预测是很有生物学意义的问题,迄今亦有很多的工作。有意思的是,其中一些典型工作恰恰是上述三步曲的绝好示例,本文即沿着这一路线作一总结,介绍于后。 1 背景知识 生物细胞种有许多蛋白质(由20余种氨基酸所形成的长链),这些大分子对于完成生物功能是至关重要的。蛋白质的空间结构往往决定了其功能,因此,如何揭示蛋白质的结构是非常重要的工作。 生物学界常常将蛋白质的结构分为4个层次:一级结构,也就是组成蛋白质的氨基酸序列;二级结构,即骨架原子间的相互作用形成的局部结构,比如alpha螺旋,beta片层和loop区等;三级结构,即二级结构在更大范围内的堆积形成的空间结构;四级结构主要描述不同亚基之间的相互作用。 经过多年努力,结构测定的实验方法得到了很好的发展,比较常用的有核磁共振和X光晶体衍射两种。然而由于实验测定比较耗时和昂贵,对于某些不易结晶的蛋白质来说不适用。相比之下,测定蛋白质氨基酸序列则比较容易。因此如果能够从一级序列推断出空间结构则是非常有意义的工作。这也就是下面的蛋白质折叠问题: 1蛋白质折叠问题(Protein Folding Problem) 输入: 蛋白质的氨基酸序列

输出: 蛋白质的空间结构 蛋白质结构预测的可行性是有坚实依据的。因为一般而言,蛋白质的空间结构是由其一级结构确定的。生化实验表明:如果在体外无任何其他物质存在的条件下,使得蛋白质去折叠,然后复性,蛋白质将立刻重新折叠回原来的空间结构,整个过程在不到1秒种内即可完成。因此有理由认为对于大部分蛋白质而言,其空间结构信息已经完全蕴涵于氨基酸序列中。从物理学的角度讲,系统的稳定状态通常是能量最小的状态,这也是蛋白质预测工作的理论基础。 2 蛋白质结构预测方法 蛋白质结构预测的方法可以分为三种: 同源性(Homology )方法:这类方法的理论依据是如果两个蛋白质的序列比较相似,则其结构也有很大可能比较相似。有工作表明,如果序列相似性高于75%,则可以使用这种方法进行粗略的预测。这类方法的优点是准确度高,缺点是只能处理和模板库中蛋白质序列相似性较高的情况。 从头计算(Ab initio ) 方法:这类方法的依据是热力学理论,即求蛋白质能量最小的状态。生物学家和物理学家等认为从原理上讲这是影响蛋白质结构的本质因素。然而由于巨大的计算量,这种方法并不实用,目前只能计算几个氨基酸形成的结构。IBM 开发的Blue Gene 超级计算机,就是要解决这个问题。 穿线法(Threading )方法:由于Ab Initio 方法目前只有理论上的意义,Homology 方法受限于待求蛋白质必需和已知模板库中某个蛋白质有较高的序列相似性,对于其他大部分蛋白质来说,有必要寻求新的方法。Threading 就此应运而生。 以上三种方法中,Ab Initio 方法不依赖于已知结构,其余两种则需要已知结构的协助。通常将蛋白质序列和其真实三级结构组织成模板库,待预测三级结构的蛋白质序列,则称之为查询序列(query sequence)。 3 蛋白质结构预测的Threading 方法 Threading 方法有三个代表性的工作:Eisenburg 基于环境串的工作、Xu Ying 的Prospetor 和Xu Jinbo 、Li Ming 的RAPTOR 。 Threading 的方法:首先取出一条模版和查询序列作序列比对(Alignment),并将模版蛋白质与查询序列匹配上的残基的空间坐标赋给查询序列上相应的残基。比对的过程是在我们设计的一个能量函数指导下进行的。根据比对结果和得到的查询序列的空间坐标,通过我们设计的能量函数,得到一个能量值。将这个操作应用到所有的模版上,取能量值最低的那条模版产生的查询序列的空间坐标为我们的预测结果。 需要指出的是,此处的能量函数却不再是热力学意义上的能量函数。它实质上是概率的负对数,即 ,我们用统计意义上的能量来代替真实的分子能量,这两者有大致相同的形式。 p E log ?=如果沿着马希文教授的观点看上述工作 ,则更有意思:Eisenburg 指出如果仅仅停留在简单地使用每个原子的空间坐标(x,y,z)来形式化表示蛋白质空间结构,则难以进一步深入研究。Eisenburg 创造性地使用环境串表示结构,从而将结构预测问题转化成序列串和环境串之间的比对问题;其后,Xu Ying 作了进一步发展,将蛋白质序列表示成一系列核(core )组成的序列,Core 和Core 之间存在相互作用。因此结构就表示成Core 的空间坐标,以及Core 之间的相互作用。在这种表示方法的基础上,Xu Ying 开发了一种求最优匹配的动态规划算法,得到了很好的结果。但是由于其较高的复杂度,在Prospetor2上不得不作了一些简化;Xu Jinbo 和Li Ming 很漂亮地解决了这个问题,将求最优匹配的过程表示成一个整数规划问题,并且证明了一些常用

蛋白质组学(论文)

蛋白质组学 【摘要】当今分子生物学领域内,蛋白质组已成为研究的热点。基因组相对较稳定,而且各种细胞或生物体的基因组结构有许多基本相似的特征;蛋白质组是动态的,随内外界刺激而变化。对蛋白质组的研究可以使我们更容易接近对生命过程的认识。蛋白质组学是在细胞的整体蛋白质水平上进行研究、从蛋白质整体活动的角度来认识生命活动规律的一门新学科,简要介绍蛋白质组学的科学背景及其最新发展。 【关键词】蛋白质组实验技术差异蛋白质组学应用前景 【正文】1、蛋白质组学产生的科学背景 众所周知,始于20世纪90年代初的庞大的人类基因组计划业已取得了巨大的 成就,几个物种(包括人类)的基因组序列已经或即将完成。生命科学已实质性 地跨入了后基因组时代,研究重心已开始从揭示生命的所有遗传信息转移到在分 子整体水平对功能的研究上。这种转向的第一个标志是产生了功能基因组学 (functional genomics)这一新学科,即从基因组整体水平上对基因的活动规 律进行阐述_如在RNA水平上通过DNA芯片技术检测大量基因的表达模式。而第二 个标志则是蛋白质组学的兴起。 蛋白质组(proteome)一词是澳大利亚Macquarie大学的Wilkins和Williams 在1994首次提出,最早见诸于文献是在1995年7月的《Electrophoresis》杂志上 【1~4】。它是指基因组表达的全部蛋白质及其存在方式。蛋白质组学旨在阐明生物 体全部蛋白质的表达模式及功能模式,其内容包括鉴定蛋白质的表达、存在方式 (修饰形式)、结构、功能和相互作用等_国内已有多篇综述文章介绍了蛋白质 组学的产生背景与科学意义,从蛋白质组的定义上就可以清楚看出,蛋白质组学 不同于传统的蛋白质学科之处在于它的研究是在生物体或其细胞的整体蛋白质 水平上进行的,它从一个机体或一个细胞的蛋白质整体活动的角度来揭示和阐明 生命活动的基本规律。 2、概念及相关内容 蛋白质组用来描述一个细胞、组织或有机体表达的所有蛋白质,蛋白质组学 (proteomics)则是研究特定时间或特定条件下这些蛋白质表达情况的科学【5】。 蛋白质组学从其研究目标方面可分为表达蛋白质组学和结构蛋白质组学。前 者主要研究细胞或组织在不同条件如药物或疾病状态下蛋白质的表达和功能,这 将有助于识别疾病特异蛋白、药物作用靶点、药物功效和毒性标记等, 目前蛋白

蛋白质结构预测

实习 5 :蛋白质结构预测 学号20090***** 姓名****** 专业年级生命生技**** 实验时间2012.6.21 提交报告时间2012.6.21 实验目的: 1.学会使用GOR和HNN方法预测蛋白质二级结构 2.学会使用SWISS-MODEL进行蛋白质高级结构预测 实验内容: 1.分别用GOR和HNN方法预测蛋白质序列的二级结构,并对比异同性。 2.利用SWISS-MODEL进行蛋白质的三级结构预测,并对预测结果进行解释。 作业: 1. 搜索一条你感兴趣的蛋白质序列,分别用GOR和HNN进行二级结构预测,解释预测结果,分析两个方法结果有何异同。 答:所选用蛋白质序列为>>gi|390408302|gb|AFL70986.1| gag protein, partial [Human immunodeficiency virus] (1)GOR预测结果: 图1 图1是每个氨基酸在序列中所处的状态,可以看出序列的二级结构预测结果为: 1到9位个氨基酸为无规卷曲,10到33位氨基酸为α螺旋,34到37位为β折叠,38到45位为无规卷曲,46到49位为α螺旋,50到53位为无规卷曲,54到65为α螺旋,66到72位为无规卷曲,73到95位为α螺旋,96到101位为无规卷曲,102到108为β折叠,109到115位为无规卷曲,117位为β折叠。 图2 图2为各种结构在序列中所占的比例,其中Alpha helix占53.85%,Extended strand占11.11%,Random coil占35.04%,无他二级结构。

图3 图3为各个氨基酸在序列中的状态以及二级结构在全序列中二级结构分布情况。 (2)HNN预测: 图4 图4是每个氨基酸在序列中所处的状态,可以看出序列的二级结构预测结果为: 1到6位个氨基酸为无规卷曲,7到34位氨基酸为α螺旋,35到37位为β折叠,38位为α螺旋,39到44位为无规卷曲,45到49位为α螺旋,50到55位为无规卷曲,56到65为α螺旋,66到71位为无规卷曲,72到83位为α螺旋,84到86位为无规卷曲,87到95位为α螺旋,96到102为无规卷曲,103到108位为β折叠,108到117位为无规卷曲。 图5 图5为各种结构在序列中所占的比例,其中Alpha helix占55.56%,Extended strand占7.69%,Random coil占36.75%,无他二级结构。

蛋白质结构预测在线软件

蛋白质预测分析网址集锦? 物理性质预测:? Compute PI/MW?? ?? SAPS?? 基于组成的蛋白质识别预测? AACompIdent???PROPSEARCH?? 二级结构和折叠类预测? nnpredict?? Predictprotein??? SSPRED?? 特殊结构或结构预测? COILS?? MacStripe?? 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。? 由NCBI检索蛋白质序列? 可联网到:“”进行检索。? 利用SRS系统从EMBL检索蛋白质序列? 联网到:”,可利用EMBL的SRS系统进行蛋白质序列的检索。? 通过EMAIL进行序列检索?

当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。? 蛋白质基本性质分析? 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的例子是在羧基端含有KDEL序列特征的蛋白质将被引向内质网。WEB中有很多此类资源用于帮助预测蛋白质的功能。? 疏水性分析? 位于ExPASy的ProtScale程序(?)可被用来计算蛋白质的疏水性图谱。该网站充许用户计算蛋白质的50余种不同属性,并为每一种氨基酸输出相应的分值。输入的数据可为蛋白质序列或SWISSPROT数据库的序列接受号。需要调整的只是计算窗口的大小(n)该参数用于估计每种氨基酸残基的平均显示尺度。? 进行蛋白质的亲/疏水性分析时,也可用一些windows下的软件如,bioedit,dnamana等。? 跨膜区分析? 有多种预测跨膜螺旋的方法,最简单的是直接,观察以20个氨基酸为单位的疏水性氨基酸残基的分布区域,但同时还有多种更加复杂的、精确的算法能够预测跨膜螺旋的具体位置和它们的膜向性。这些技术主要是基于对已知

蛋白质论文

蛋白质论文 摘要:蛋白质是以氨基酸为基本单位构成的生物大分子。每种蛋白质都有其一定的氨基酸百分组成及氨基酸排列顺序,以及肽链空间的特定排布位置。蛋白质是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。关键词:蛋白质结构性质功能作用 一.蛋白质结构 蛋白质分子结构分成一级、二级、三级、四级结构四个层次,后三者统称为高级结构或空间构象。并非所有的蛋白质都有四级结构,由一条肽链形成的蛋白质只有一级、二级和三级结构,由二条或二条以上多肽链形成的蛋白质才可能有四级结构。 1.蛋白质的一级结构 蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构。一级结构的主要化学键是肽键,有些蛋白质还包含二硫键,它是由两个半胱氨酸巯基脱氢氧化而成。 2.蛋白质的二级结构 蛋白质的二级是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肪酸主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链构象。 (一)α-螺旋 Pauling和Core根据实验数据提出了两种肽链局部主链原子空间构象的分子模型,称为α-螺旋和β-折叠,它们是蛋白质二级结构

的主要形式,在α-螺旋结构中多肽键的主链围绕中心轴是有规律的螺旋式上升,螺旋的走向为顺时钟方向即右手螺旋,其氨基酸恻键伸向螺旋外侧。 (二)β-折叠 β-折叠与α螺旋的形状截然不同,呈折纸状。在β折叠结构中,多肽链充分伸展,每个肽单元以Ca为旋转点依次折叠成锯齿状结构,氨基酸残基侧链交替位于锯齿状结构的上下方。 (三)β-转角和无规卷曲 除α-螺旋和β一折叠外蛋白质二级结构还包括β-转角和无规卷曲β-转角常发生于肽链进行180°回折时的转角上。 (四)模体 在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体(五)氨基酸残基的侧链对二级结构的形成的影响 蛋白质二级结构是以一级结构为基础的。一段肽链其氨基酸残基的侧链适合形成a-螺旋或β-折叠它就会出现相应的二级结构。3.蛋白质的三级结构 (一)三级结构 蛋白质的三级结构是指整条肽级中全部氨基酸残基的相对空间位置也就是整条肽键所有原子在三维空间的排布位置。 (二)结构域

蛋白质结构论文

LUOYANG NORMAL UNIVERSITY 2015-2016学年第一学期《蛋白质工程》课程论文 蛋白质结构的最新进展 院(系)名称生命科学学院 专业名称12级生物技术 学生姓名高国艳 学号121344029 指导教师程彦伟 完成时间2016年1月13日

蛋白质结构的最新进展 姓名:高国艳学号:121344029 专业:生物技术 指导老师:程彦伟讲师 摘要:本文主要阐述研究蛋白质结构方法及蛋白质结构的模型和不同蛋白结构在领域中的应用。随着蛋白质使用领域的增加 ,迫切需要知道它在不同环境中的结构特征及生物活性。目前 ,测定蛋白质结构的方法很多 ,包括 X射线衍射技术、核磁共振波谱学、圆二色光谱(CD)、FT-IR等。蛋白质的结构包括一级结构、二级结构、超二级结构、三级结构以及四级结构等。并为蛋白质组学和结构生物学的进一步应用提供了见解。 关键词:蛋白质、结构、模型、应用 1引言 自然界生命现象的多样性是由蛋白质的多样性决定的,而蛋白质的功能又与其结构紧密相关。蛋白质的结构极其复杂,目前按结构水平可分为一级结构和高级结构进行研究,发现一级结构决定其高级结构(二、三、四级结构),当一级结构发生改变时,蛋白质功能迥异或完全丧失其活性。新生肤链折登的研究是解决用基因工程和蛋白质工程方法生产有生物活性蛋白质的关键,所以对于蛋白质的空间结构,肤链折叠和生物功能的研究是当今蛋白质科学研究的重大前沿领域。目前, 蛋白质序列数据库的数据积累的速度非常快, 但是已知结构的蛋白质相对比较少。 20世纪60年代后期, Christian Anfinsen[1]首先发现去折叠蛋

相关主题
文本预览
相关文档 最新文档