当前位置:文档之家› 浅析数列在日常生活中的应用

浅析数列在日常生活中的应用

浅析数列在日常生活中的应用
浅析数列在日常生活中的应用

浅析数列在日常生活中的应用

在实际生活和经济活动中, 很多问题都与数列密切相关.如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决. 与此同时,数列在艺术创作上也有突出的作用. 数学家华罗庚曾经说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学. " 这是对数学与生活关系的精彩描述. 下面笔者将举几个生活中的小例子来浅谈一下数列在日常生活中的运用.

一、在生产生活中

在给各种产品的尺寸划分级别时, 当其中的最大尺寸与最小尺寸相差不大时, 常按照等差数列进行分级. 若为等差数列, 且有an=m,am=n. 则a(m+n)=0.

其实等差数列生活中处处可见, 关键是发现它, 并用以解决实际问题. 在路灯的排列、银行的按揭贷款、银行的利息结算等等.

例如1 台电脑售价为1 万元, 如果采取分期付款, 在1 年内将款全部还清的前提下,商家还提供下表所示的几种付款方案(月利率为1%). 假定你的父母为给你创建更好的学习条件,打算买台电脑,除一次性付款外商家还提供三种分期付款方式. 你能帮他们参谋选择一下吗?

方案分几次付清付款方法每期所付款额

方案1.分6 次付清. 购买后2 个月第1次付款, 再过2 个月第2 次付款……购买后12 个月第6 次付款

方案2.分12 次付清. 购买后1 个月第1次付款, 再过1 个月第2 次付款……购买后12 个月第12 次付款方案3.分3 次付清. 购买后4 个月第1次付款,再过4 个月第2 次付款,再过4 个月第3 次付款

分析:

思路1: 本题可通过逐月计算欠款来处理,根据题意,到期还清即第12 个月的欠款数为0 元.设每次应付x 元,则:

二、细胞分裂中的数列

自然界是由许许多多的细胞组成的,细胞分裂产生新的生命, 人的孕育也是由细胞分裂开始的. 以某种细胞为例我们一起来分析一下细胞是如何分裂的.某种细胞每过30 分钟便由 1 个分裂成 2 个,经过 5 小时,这种细胞由 1 个分裂成几个?经过N 小时,细胞由1 个能分裂成几个?

该细胞分裂数是公比为2 的等比数列方式增加.

显然不用减去那最初的一个母细胞了,因为题目问的是:"经过5 小时, 这种细胞由一个分裂成几个,"当然是1024 了,又不是问由一个分裂"出"几个,那就要减去最初的母细胞了.

显然N 时后,该细胞会由一个分裂"成"2(k-1)个(k

为自然数,k=2N+1)即:N 时后,会有22N个细胞,(其中N 表示整时,单位为时,N=0,1,2,3,……)因此,经过N 时后,细胞由一个分裂成22N个(N=0,1,2,3,…)

三、爬楼梯

小明同学在小的时候喜欢爬楼梯, 不为什么,只是觉得这种阶梯状的建筑非常好玩,等到他长大了,可以一次跨上一级,也可以跨两级,所以,他想知道,有多少种不同的上到楼梯顶端的方案.首先假设楼梯只有一级,那么小明只有一种爬法;如果有 2 级,那么小明可以一级一级地往上爬,也可以一次就上两级,用算式表示为1+1 或2, 说明他上 2 级楼梯有 2 种不同的爬法;如果有 3 级,小明的第一步可以上一级,也可以上二级. 如果上一级,那么还剩下 2 级, 上面已经讨论过了有 2 种不同的爬法;如果上二级,那么还剩下 1 级,上面也已经讨论过了,只有 1 种爬法;合计起来就有2+1=3 种不同的爬法. 有算式表示为3=1+2(2 种不同的爬法)=2+1(1 种不同的爬法);如果有4 级,小明的第一步可以上一级,也可以上二级. 如果上一级, 那么还剩下3级,上面已经讨论过了有3 种不同的爬法;如果上二级,那么还剩下 2 级,上面也已经讨论过了,有 2 种不同的爬法;合计起来就有3+2=5 种不同的爬法. 用算式表示为4=1+3(3种不同的爬法)=2+2(2 种不同的爬法);……照这样推下去, 可以得一串斐波那契数列:1,2,3,5,8,13,21,34,55,89,……由此可知,爬上有10 级台阶的楼梯,一共有89 种不同的爬法.

随着科学的进步,数学学科在我们的生活中扮演着一个不可忽视的重要角色,作为跨世纪的中学生, 我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题,这样才能更好地适应社会的发展和需要. 数学既不严峻,也不遥远,它既和所有的人类活动有关,又对每一个真正感兴趣的人有益. 数学研究、科学研究从身边的活动做起. 让我们从一个小小的数列开始,多思考,找规律,相信任何问题都可以迎刃而解的.

数列的实际应用问题

(II )如果将该商品每月都投放市场 (II )要保持每个月都满足供应,则每月投放市场的商品数 P (万 件)应 f (n) 即 1 Pn n(n 1)(35 2n), P 150 1 150 (n 1)(35 2n) 丄(n 2 更n 更) 75 2 2 N ,当n 8时, 1)(35 2n)的最大值为1.14万件即P 至少为1.14万件 练习:听P82例2 例2 ?某外商到一开发区投资 72万美元建起一座蔬菜加工厂,第一年各种经费 12万美兀, 出售该厂;②纯利润总和最大时,以 16万元出售该厂,问哪种方案最合算? 解答:由题意知,每年的经费是以 12为首项,4为公差的等差数列,设纯利润与年数的关 系为 f (n),则 f (n) 50n [12n (1 )纯利润就是要求 f(n) 0 , 血 U 4] 72 2n 2 40n 72 2 2n 2 40n 72 (2)①年平均利润 f(n) n 40 2(n 笑)16当且仅当n = 6时取等 口 号。 数列的实际应用问题 例1 .某地区预计从2005年初的前n 个月内,对某种商品的需求总量 f(n)(万件)与月 1 份 n 的近似关系为 f( n) n(n 1)(35 2n)(n N , n 12) 150 (I)求2005年第n 个月的需求量g(n)(万件)与月份 n 的函数关系式,并求出哪个月份 的需求量超过1.4万件。 P 万件,要保持每月都满足供应,则P 至少为多少万件? 以后每年增加4万美元,每年销售蔬菜收入 50 万美兀。设f (n)表示前n 年的纯收入 (f (n)前n 年的总收入一前n 年的总支出一投资额) (1)从第几年开始获取纯利润? (2 )若干年后,外商为开始新项目,有两种处理方案:①年平均利润最大时以 48万美元 解得2 n 18。由n N 知从第三年开始获利 解答: (I ) 由题意知, g 1 f (1) g(n) f(n) f (n 1): 1 n(n 150 1 150 n[(n 1)(35 2n) (n 1)(37 1 11 又一 1 (12 1) 25 g(1), 25 由丄 n(12 n) 14 得:n 2 12n 25 即6月份的需求量超过 1.4 万件 1 、11 「 当 2时, 1 2 3- n 150 2n)— 150 25 1)(35 (n 1) n[35 2(n 1)] 2n)] 1 n(1 2 25 n) 1 g(n ) n (12 25 n)(n N , n 12) 35 0, 5 n 7,又n N , n 6

高考数学题型全归纳:数列在生活中的应用(含答案)

数列在生活中的应用 在实际生活和经济活动中、很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析、从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、日用之繁、无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策、购置房地产按揭货款(公积金贷款)制度的推出、极大地刺激了人们的消费欲望、扩大了内需、有效地拉动了经济增长。 众所周知、按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的、此外若干月后、还应归还银行多少本金、这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形、得(an+1-a/p)/(an-a/p)=1+p. 由此可见、{an-a/p}是一个以a1-a/p为首项、1+p为公比的等比数列。日常生活中一切有关按揭货款的问题、均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外、在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题、但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此、解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

数列的实际应用

数列的实际应用 一、要点·疑点·考点 1.复利公式 按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x 2.产值模型 原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x 3.单利公式 利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) 二、课前热身 1.某种细胞开始有2个,1小时后分裂成4个,2小时后分裂成8个,3小时后分裂成16个…,按此规律,6小时后细胞的个数是( ) (A)63 (B)64 (C)127 (D)128 2.一种专门占据内存的计算机病毒开始时占据内存2KB,工作时3分钟自身复制一次(即复制后所占内存是原来的2倍),那么,开机后_______分钟,该病毒占据64MB (1MB=210KB) 3.某产品的成本每年降低q%,若三年后成本是a元,则现在的成本是( ) (A)a(1+q%)3元(B)a(1-q%)3元 (C)a(1-q%)-3元(D)a(1+q%)-3元 4.某人到银行存了10000元,利息按单利计算,年利率为5%,则他在10年后的为____元 三、例题分析 1. 等差数列模型 例1.一梯形的上、下底长分别是12cm,22cm,若将梯形的一腰10等分,过每一个分点作平行于底边的直线,求这些直线夹在两腰之间的线段的长度的和. 2. 等比数列模型 例2.某市2003年共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问: (1)该市在2010年应该投入多少辆电力型公交车? (2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的 1/3?3. 等差、等比数列综合问题模型 例3. 在一次人才招聘上,有A,B两家公司分别开出他们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; B公司允诺第一年月工资数为2000元,以后每年月工资在上一年月工资基础上递增5%,设某人年初被A,B两家公司同时录取,试问: (1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不记其他因素),该人应该选择哪家公司,为什么? 4.递推数列模型 例4.某地区原有森林木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b设an为n 年后该地区森林木材存量。 (1)求an的表达式; (2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于7/9a, 如果b=19/72a,那么该地区今后会发生水土流失吗?若会,需经过几年? 变式练习:某下岗职工准备开办一个商店,要向银行贷款若干,这笔贷款按复利计算(即本年利息计入下一年的本金生息),利率为q(0<q<1).据他估算,贷款后每年可偿还A元,30年后还清. ①求贷款金额; ②若贷款后前7年暂不偿还,从第8年开始,每年偿还A元,仍然在贷款后30年还清,试问:这样一来,贷款金额比原贷款金额要少多少元?

数列在生活中的应用

数列在生活中的应用 摘要: 数学是一门源于生活又用于生活的科学,数学研究是亘古以来人类社会生活中不可缺少的一部分。数列计算是数学学习中一个十分重要的分支,并且由于数列的研究与计算同社会经济、资源生活有着紧密的联系,使得对于数列研究的重视热情逐渐高涨,加之具有的灵活多变的计算,趣味横生的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:数列应用分期付款资源利用 众所周知,数列是数学知识中的一个重要环节,以具体问题为基础,进行答案的解析是数列学习中的一个重要部分,这就注定了数列是以解决实际问题为目的而存在的。数列在经济生活和资源计算等领域,有着广泛的使用,在解决投资分配、汇率计算、资源利用分配等方面问题中有着无可比拟的优势。本文将在简述数列广泛应用的基础上,具体分析数列在以上几个生活领域中的应用情况。 一、例述数列在生活中的应用 数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。以生活中的一个常见问题为例: 在对某地超市进行统计调查后发现,每天购买甲乙两种蔬菜的人数约为200人,且第一天购买甲种蔬菜的第二天会有20%购买乙种蔬菜,第一天购买乙种蔬菜的第二天会有30%购买甲种蔬菜,则据此推算超市应当如何安排甲乙两种蔬菜的进货量。 解决方案:设第n天购买甲乙两种蔬菜的人数分别为An、Bn,则: An+1=0.8An+0.3Bn; Bn+1=0.2An+0.7Bn; 由于An+Bn=200,则可推算得An+1=0.8An+0.3(200-An)

=60+0.5An; 则An+1-120=0.5(An-120); 可得,{An-120}是以A1-120为首项,0.5为公比的等比数列; 假设,第一天购买甲种蔬菜的有a人,则 An=0.5^(n-1)*(a-120)+120 当n趋近于无穷时,易得,An趋近于120且与a的值无关。 则可知,购买甲种蔬菜的人数稳定在120人,购买一种蔬菜的人数稳定在80人。 上述例题,以生活中常见的一类问题为原型,通过理论求解达到了解决实际问题的目的,这是数列在生活中应用的冰山一角。 二、银行储蓄与分期付款中的数列应用 储蓄与贷款与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。 在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。 设储户每期存入银行的金额为M,利率设为p,储户连续存入n期,那么到第n期期末时,本金数额为nM,在这个过程中,第一期存款利率为pMn,第二期的存款利率为PM(n-1)以此类推,到了第(n-1)期时存款利率为2pM,第n 期存款利率为pM。对上述各阶段的利息求和可得: Sn=Mp+2Mp+……+Mp(n-1)+Mpn =Mp(1+2+……+n-1+n) =1/2n(n+1)Mp 期间,纳税金额为:1/2n(n+1)Mp*20%=1/10n(n+1)Mp 最后,实际取出金额为:nA*1/2n(n+1)Mp-1/10n(n+1)Mp =M[n+2/5n(n+1)p] 这是学生在练习中接触到的一种银行金融储蓄计算方式,是数列应用深入生活,影响生活方面的直接体现。随着社会经济的发展,人们的理财观念也渐渐发生了转变,小额贷款成为了社会生活中的一个热门话题。这就是数列在生活中的

第2讲 数列求和及简单应用(教案)

第2讲 数列求和及简单应用 高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想. 热点一 分组转化求和 有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. 例1 (2017届安徽省合肥市模拟)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式; (2)若2(1)n a n n n b a =+-?,求数列{b n }的前n 项和T n . 解 (1)∵{a n }为等差数列, ∴??? S 4 =4a 1 +4×3 2 d =24,S 7 =7a 1 +7×6 2 d =63?????? a 1=3,d =2 ?a n =2n +1. (2)∵2(1)n a n n n b a =+-? =22n +1+(-1)n ·(2n +1) =2·4n +(-1)n ·(2n +1), ∴T n =2(41 +42 + (4) )+[-3+5-7+9-…+(-1)n (2n +1)]=8(4n -1) 3 +G n , 当n =2k (k ∈N *)时,G n =2×n 2=n , ∴T n =8(4n -1)3+n , 当n =2k -1(k ∈N *)时, G n =2×n -1 2-(2n +1)=-n -2, ∴T n =8(4n -1)3 -n -2,

∴T n =??? ?? 8(4n -1) 3 +n ,n =2k ,k ∈N *,8(4n -1)3-n -2,n =2k -1,k ∈N * . 思维升华 在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式. 跟踪演练1 (2017届北京市朝阳区二模)已知数列{a n }是首项a 1=13,公比q =1 3 的等比数列.设 13 2log 1()n n b a n *=-∈N . (1)求证:数列{b n }为等差数列; (2)设c n =a n +b 2n ,求数列{c n }的前n 项和T n . (1)证明 由已知得a n =13·????13n -1=????13n , 所以13 12log ()121(N )3 n n b n n * =-=-∈, 则b n +1-b n =2(n +1)-1-2n +1=2. 所以数列{b n }是以1为首项,2为公差的等差数列. (2)解 由(1)知,b 2n =4n -1, 则数列{b 2n }是以3为首项,4为公差的等差数列. c n =a n +b 2n =????13n +4n -1, 则T n =13+1 9+…+????13n +3+7+…+(4n -1) =13×????1-????13n 1-13+(3+4n -1)·n 2. 即T n =2n 2+n +12-12·????13n (n ∈N * ). 热点二 错位相减法求和 错位相减法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.

(完整版)案例三数列在购房问题中的应用

《数列的应用举例》 一、知识与技能 1、使学生掌握等差数列与等比数列在购物付款方式中的应用; 2、培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识; 二、教学重点难点 重点:抓住分期付款问题的本质分析问题; 难点:建立数学模型,理解分期付款的合理性。 三、过程与方法 通过创设情境、讲授法、讨论法、直观演示法、练习法提高学生发现问题、分析问题、解决问题的能力。 四、情感态度与价值观 通过学生之间,师生之间的交流与配合培养学生的合作意识和团队精神,通过独立运用数学知识解决实际问题,使学生体会学习数学知识的重要性,增强他们对数学学习的兴趣和对数学的情感。 五、实验与教具 多媒体 六、教学过程 创设情境 题型一、等差数列模型(单利问题) 例1、某家庭预购置一套40万元的商品房,要求购房当天首付40% (即16万元),欠款24万元需贷款,贷款期限10年(120个月),每月还欠款2000元,并每月加付欠款利息,月利率为0.4%,购买后下一月当天开始付款,以后每月付款一次,问购买这套商品房实际总价多少元? 解:按等额本金还款方式,设每月还欠款加所欠款产生的利息为数列a n,贝U: 第一月还欠款以及所欠款产生的利息为:a12000 240000 0.4%, 第二月还欠款以及所欠款产生的利息为:a22000 (240000 2000) 0.4%, 第三月还欠款以及所欠款产生的利息为:a32000 (240000 2000 2) 0.4%, 以此类推: 第n月还欠款以及所欠款产生的利息为:a n2000 [240000 2000 (n 1)] 0.4% ???各月还欠款以及所欠款产生的利息成等差数列 ???10 年还清欠款总额为:S120 120(2960 2008) 298080 (元)2 购买这套商品房实际总价为:S 298080 160000 458080 (元) 答:该家庭购买这套商品房实际总价为458080元。 题后感悟:等额本金还款法,等差数列问题 题型二、等比数列模型(复利问题) 例2、某家庭预购置一套40万元的商品房,要求购房当天首付16万元,欠款24万元需贷款,贷款期限10年(120个月),按分期付款的方式偿还欠款,每月等额还款,月利率为

数列的实际应用举例 教学设计

数列的实际应用举例 清远工贸职业技术学校 班级:13春工学计机3班 蔡健星 【学习目标】 1.掌握以数列知识为数学本质的实际应用问题,涉及增长率问题、复利计算问题等. 2.培养学生用数列知识解决实际问题的能力,提高学生对数学的学习兴趣. 一、复习 1、本单元我们学习了两种数列,分别是:等差数列和等比数列 例如:1,3,5,7,9… 2,5,8,11,14… 2,4,8,16,32… 1,3,9,27,81… 2、两种数列共有八条公式,分别是: 等差数列 等比数列 通项公式: 中项公式: 求和公式: 二、新课讲授 1.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数是( ) A.9 B.10 C.19 D.20 【解析】设堆成n 层,由题意得1+2+3+…+n ≤200,即n(n +1)≤400成立的最大正整数n 代入检验知n =19 2.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是( ) A.1997 B.1999 C.2001 D.2003 d n a a n )1(1-+=11-=n n q a a 2b a A +=ab G ±=2)(1n n a a n S +=d n n na S n 2)1(1-+=q q a S n n --=1)1(1q q a a S n n --=11

【解析】设出第四册的年份为x 由题意得(x -6)+(x -4)+(x -2)+x +(x +2)+(x +4)+(x +6)=13979 即7x =13979,∴x =1997 ∴x +6=2003 3.夏季高山的温度从山脚起每升高100 m ,降低0.7 ℃,已知山顶温度是14.8 ℃,山脚温度是26 ℃,则山的相对高度是 m . 【解析】从山脚到山顶温度降低了26 ℃-14.8 ℃=11.2 ℃ 而每降0.7 ℃,升高100米 11.2 / 0.7 =16 ∴共升高16×100=1600 m . 4、某林厂年初有森林木材存量S 立方米,木材以每年25%的增长率生长,而每年末要砍伐固定的木材量x 立方米,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是( ) A. B. C. D. 【解析】一次砍伐后木材的存量为:S(1+25%)-x 二次砍伐后木材存量为[S(1+25%)-x ](1+25%)-x 由题意知%)501(45)45(2+=--S x x S 解得x =36S 5、银行有一种储蓄业务叫做零存整取,即每月定时存入一笔相同数目的现金,到约定日期可以取出全部本利和。若某人每月初存入100元,月利率为0.3%,问到第12个月末整取时本利和时多少? 【分析】本利=本金+利息。第1个月计利12个月,到期本利时100+100×0.3%×12, 第2个月计利11个月,到期本利时100+100×0.3%×11,… 第12个月计利1个月,到期本利时100+100×0.3%×1, 由此可知,每月存入的100元到期本利构成一个等差数列,其和就是所求的1232S 34S 36S 38S

1-2-1-1等差数列的认识与公式运用学生版

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。 一、等差数列的定义 ⑴ 先介绍一下一些定义和表示方法 定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列. 譬如:2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列 ⑵ 首项:一个数列的第一项,通常用1a 表示 末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。 项数:一个数列全部项的个数,通常用n 来表示; 公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 . 二、等差数列的相关公式 (1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)?公差,11n a a n d =+-?() 递减数列:末项=首项-(项数1-)?公差,11n a a n d =--?() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-?(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1 由通项公式可以得到:11n n a a d = -÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 , 分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145 -+=知识点拨 教学目标 等差数列的认识与公式运用

(湖南专用)高考数学二轮复习 专题限时集训(十)数列求和及数列的简单应用配套作业 文(解析版)

专题限时集训(十) [第10讲 数列求和及数列的简单应用] (时间:45分钟) 1.设等差数列{a n }的前n 项和为S n ,若a 2,a 4是方程x 2 -x -2=0的两个根,则S 5的值是( ) A.52 B .5 C .-5 2 D .-5 2.如果等比数列{a n }中,a 3·a 4·a 5·a 6·a 7=42,那么a 5=( ) A .2 B. 2 C .±2 D .± 2 3.已知等差数列{a n }的前n 项和为S n ,且满足S 15=25π,则tan a 8的值是( ) A. 3 B .- 3 C .± 3 D .- 3 3 4.已知数列{a n }满足a 1=2 3,且对任意的正整数m ,n ,都有a m +n =a m ·a n ,若数列{a n }的 前n 项和为S n ,则S n 等于( ) A .2-23n -1 B .2-23n C .2-2n 3n +1 D .2-2 n +1 3 n 5.已知n 是正整数,数列{a n }的前n 项和为S n ,a 1=1,S n 是na n 与a n 的等差中项,则a n 等于( ) A .n 2 -n B. n (n +1) 2 C .n D .n +1 6.设f (x )是定义在R 上的不恒为零的函数,且对任意的实数x ,y ∈R,都有f (x )·f (y )=f (x +y ),若a 1=12 ,a n =f (n )(n ∈N * ),则数列{a n }的前n 项和S n 的取值范围为( ) A.??????12,2 B.???? ??12,2

C.??????12,1 D.???? ??12,1 7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( ) A .18 B .19 C .20 D .21 8.设等差数列{a n }的前n 项和为S n ,若M ,N ,P 三点共线,O 为坐标原点,且ON →=a 15OM →+ a 6OP → (直线MP 不过点O ),则S 20等于( ) A .10 B .15 C .20 D .40 9.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n >0时,n =( ) A .20 B .17 C .19 D .21 10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列???? ?? 1b n b n +1的 前n 项和S n =________. 11.定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一个常数,那么这个数列叫做“等积数列”,这个常数叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=2,公积为5,则这个数列的前n 项和S n 的计算公式为________. 12.设S n 为数列{a n }的前n 项和,把 S 1+S 2+…+S n n 称为数列{a n }的“优化和”,现有一个 共有2 012项的数列:a 1,a 2,a 3,…,a 2 012,若其“优化和”为2 013,则有2 013项的数列:2,a 1,a 2,a 3,…,a 2 012的“优化和”为________. 13.将函数f (x )=sin 14x ·sin 14(x +2π)·sin 1 2(x +3π)在区间(0,+∞)内的全部极值 点按从小到大的顺序排成数列{a n }(n ∈N * ). (1)求数列{a n }的通项公式; (2)设b n =2n a n ,数列{ b n }的前n 项和为T n ,求T n 的表达式.

数学高考二轮专题11 数列求和及数列的简单应用(解析版)

专题11 数列求和及数列的简单应用 【考向解读】 数列求和是数列部分高考考查的两大重点之一,主要考查等差、等比数列的前n 项和公式以及其他求和方法,尤其是错位相减法、裂项相消法是高考的热点内容,常与通项公式相结合考查,有时也与函数、方程、不等式等知识交汇,综合命题. 从全国卷来看,由于三角和数列问题在解答题中轮换命题,若考查数列解答题,则以数列的通项与求和为核心地位来考查,题目难度不大. 【命题热点突破一】分组转化法求和 例1、设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ; (2)求数列{|a n -n -2|}的前n 项和. 【答案】(1)+ -=N ∈,31n a n n (2)+≥? ? ???+--=N ∈,2,2115322n n n n T n n 【命题热点突破二】 裂项相消法求和 例2(本小题满分12分) 已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式; 【答案】(Ⅰ)1=n n a q -; 【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n 3都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -. 由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q+q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N . 【命题热点突破三】 错位相减法求和

第10讲 数列的实际应用

数列的实际应用 主讲教师:庄肃钦 【知识概述】 数列是反映自然规律的重要数学模型,日常生活中的大量实际问题都可以转化为数列问题解决,如增长率、减少率、银行信贷、工厂的生产量、浓度匹配、养老保险、存款利息、出租车收费、校园网问题、放射性物质的衰变等。通过这节课的学习,希望同学们能够掌握数列作为生活工具的应用方法,解决问题。 实际应用题常见的数列模型: 1.储蓄的复利公式:本金为a元,每期利率为r,存期为n期,则本利和y =a(1+r)n. 2.总产值模型:基数为N,平均增长率为p,期数为n,则总产值y = N (1 + p)n. 3.递推猜证型:递推型有a n+1 = f (a n)与S n+1 = f (S n)或S n = f (a n)类,猜证型主要是写出前若干项,猜测结论,并用数学归纳法加以证明. 【学前诊断】 1.[难度] 易 某种细菌在培养过程中每20分钟分裂一次(一次分裂两个),经过3小时,这种细菌由一个可以繁殖为() A.511个B.512个C.1023 D.1024个 2.[难度] 易 某商品降价10%后,欲恢复原价,则应提价_______. 3.[难度] 中 某工厂连续数年的产值月平均增长率为p%,则它的年平均增长率为_______.

【经典例题】 例1. 银行按规定每经过一定时间结算存(贷)款的利息一次,结息后即将利息并入本 金,这种计算利息的方法叫复利,现在有某企业进行技术改造,有两种方案: 甲方案——一次性贷款10万元,第一年便可获利1万元,以后每年比前一 年增加30%的利润; 乙方案——每年贷款1万元,第一年可获利1万元,以后每年比前一年多获 利5千元. 两方案使用贷款期限均为10年,到期一次性归还本息.若银行贷款利息均按 年息10%的复利计算,试比较两种方案哪个获利更多?(计算结果精确到千元, 参考数据:10101.1 2.594,1.313.768==) 例2. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产 业,根据规划,本年度投入800万元,以后每年投入将比上年减少15 ,本年度当地旅游业估计收入为400万元,由于该项目建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14 。 (1) 设n 年内(本年度为第一年)总投入为n a 万元,旅游业总收入为n b 万元,写 出,n n a b 的表达式; (2) 至少经过几年,旅游业的总收入才能超过总投入? 例3. 某城市2009年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的 6%,并且每年新增汽车数量相同,为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆? 例4. 【本课总结】 对于数列应用题的考查,主要考查学生运用观察、归纳、猜想等手段,建立有关等差(比)数列、递推数列的数学模型,再综合其他相关知识来解决问题的能力.解答数列应用性问题,既要有坚实的基础知识,又要有良好的思维能力和分析与解决问题的能力. 解题方法 1.主要模型: (1) 等差数列模型(增加的量或减少的量相同); (2) 等比数列模型(增长率相同或减少率相同); (3) 等差数列与等比数列综合模型; (4) 递推数列模型等等.

2020-2021学年苏教版必修五 数列在生活中的应用 学案

2020-2021学年苏教版必修五数列在生活中的应用学案 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得(an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

数列的概念及简单表示法(学生版)

第二章数列 2.1 数列的概念及简单表示 2.1.1数列的概念与简单表示法(一) 【学习目标】 1.理解数列及其有关概念(难点); 2.理解数列的通项公式,并会用通项公式写出数列的任意一项(重点); 3.对于比较简单的数列,会根据其前几项写出它的一个通项公式. 【要点整合】 1.数列的概念 (1)数列与数列的项 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第项. (2)数列的表示方式 数列的一般形式可以写成a1,a2,…,a n,…,简记为. (3)数列中的项的性质: ①确定性;②可重复性;③有序性. (4)数列与集合的区别:数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性. 2.数列的分类 (1).按项的个数分类 (2).按项的变化趋势分类

3.数列的通项公式 如果数列{a n }的第 项与序号 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式. 【典例讲练】 题型一 数列的概念与分类 例1 (1)下列四个选项中,既是无穷数列又是递增数列的是( ) A. {0,1,2,3,4}; B.sin π7,sin 2π7,sin 3π7 ,… C.-1,-12,-14,-18 ,… D.1,2,3,…,21 (2)设函数f (x )=? ????(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( ) A.????94,3 B.[94,3) C.(1,3) D.(2,3) (3)下列说法:①数列1,3,5,7与数列7,3,5,1是同一数列;②数列0,1,2,3…的一个通项公式为 =-a n 1;③数列0,1,0,1,…没有通项公式;④数列?? +????n n 1是递增数列,其中正确的是( ) A .①③ B .②④ C .②③ D .②③④ 练习1:下列数列哪些是有穷数列?哪些是递增数列?哪些是递减数列?哪些是摆动数列?哪些是常数列? (1)2 010,2 012,2 014,2 016,2 018; (2)0,12,23,…,n -1n ,…; (3)1,12,14,…,12n -1,…; (4)-11×2,12×3,-13×4,14×5 ,…; (5)1,0,-1,…,sin n π2,…; (6) 9,9,9,9,9,9. 题型二 根据通项公式写数列的项 例2 根据下面数列{a n }的通项公式,写出它的前5项: (1)a n =n n +1 ; (2)a n =(-1)n n .

数列在现实生活中中的应用及其求解策略

数列在现实生活中得应用及其求解策略 云南会泽县第一中学 郭兴甫 唐孝敬 邮编:654200 数列就是特殊得函数,其与方程、不等式联系紧密,在现实生活中应用广泛,在利用数列解决现实中得问题时,首先要认真审题,深刻理解问题得实际背景,弄清蕴含在问题中得数学关系,把应用问题转化为数学中得等差数列、等比数列问题,然后求解。本文举例说明数列在现实生活中得应用及其求解策略,以期对同学们得学习有所帮助! 一、方案设计型 例1、某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加%30得利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两次方案得使用期都就是10年,到期一次性归还本息。若银行两种形式得贷款都按年息%5得复利计算,试比较两种方案中,那种获利更多? (参考数据6.555.1,7.133.1,6.105.1101010≈≈≈) 分析:这就是一道比较常见得数列应用问题,方案选择,由于本息与利润就是熟知得概念,对甲方案,每年得获利满足等比数列;对乙方案,每年获利构成等差数列,因此只需建立通项公式,求与公式,并运用所学过得公式求解即可. 解:对甲种方案获利为:9 2%)301(%)301(%)301(1+++++++Λ 3.423.013.110≈-=(万元) 银行贷款本息与:16%)51(1010≈+?(万元) 故甲种方案纯利:3.26163.42=-(万元) 对乙种方案获利:)5.091()5.021()5.01(1?+++?++++Λ 万元)(5.325.02 910110=??+?= 银行贷款本息与:]%)51(%)51(%)51(1[05.192+++++++?Λ

(通用版)(新课标)高考数学二轮复习作业手册 专题限时集 第10讲 数列求和及数列的简单应用 文

[第10讲 数列求和及数列的简单应用] (时间:45分钟) 1.若数列{a n }是等差数列,且a 3+a 7n }的前9项和S 9等于( ) A .9 B .18 C .36 D .72 2.已知数列{b n }是首项为12,公比为1 2 的等比数列,则数列{nb n }的前n 项和T n =( ) A .2-? ????12n -1 B .2-? ????12n C .2-n +22n D .2-n +12 n 3.若数列{c n }的通项c n =(2n -1)·? ?? ??13n ,则数列{c n }的前n 项和R n =( ) A .1-n +13n B .1-n 3n C .1+n 3n D .1+n +1 3 n 4.已知等差数列{a n },a 1=3,d =2,前n 项和为S n ,设T n 为数列???? ?? 1S n 的前n 项和,则T n =( ) A.12??????n n +1-n 2(n +2) B.12??????1n +1-12(n +2) C.12??????1n +1+12(n +2) D.12???? ??n n +1+n 2(n +2) 5.数列{c n }的通项为c n =2 n (2n -1)(2n +1 -1) ,则其前n 项和S n =________. 6.数列{2n·3n }的前n 项和T n =________. 7.已知数列{a n }的前n 项和为S n n H n 来表示.对 于a n =3n ,其“和谐和”H n =( ) A.3n +2-6n -94 B.3n +1-6n -94 C.3n +1+6n -94 D.3n +6n -94 8.设两数列{a n }和{b n },a n =? ????-13n -1,b n =n +11×2+n +12×3+…+n +1n (n +1),则数列???? ??b n a n 的 前n 项的和为( ) A.1-(4n -1)(-3)n 16 B.1+3n (4n +1)16 C.1-3n (4n +1)16 D.1-(4n +1)(-3)n 16 9.已知数列{a n },a n +1=a n +2,a 1=1,数列?? ?? ??1a n a n +1的前n 项和为18 37,则n =________. 10.已知等差数列{a n }的前n 项和为S n ,且a 2=5,S 9=99,

数列在生活中应用技术

河北师范大学汇华学院 本科生毕业论文 (2012 届) 题目:数列在生活中的应用 系别:数学系 专业:数学与应用数学 班级:三班 作者姓名:王海静学号:2008511915 指导教师:张金莲职称:副教授学历:本科论文成绩: 2012 年 5 月

数列在生活中的应用 摘要: 数学是一门源于生活又用于生活的科学,数学研究是亘古以来人类社会生活中不可缺少的一部分。数列知识有着广泛的应用,如生物种群数量变化,银行中的利息计算,人口增长,粮食增长、住房建设等等问题,都会用到高中的数列知识。本文举例说明,有助于学生认识和理解数列知识。数列计算是数学学习中一个十分重要的分支,并且由于数列的研究与计算同社会经济、资源生活有着紧密的联系,使得对于数列研究的重视热情逐渐高涨,加之具有的灵活多变的计算,趣味横生的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:数列应用分期付款资源利用 Mathematics is a source from life and for life science, mathematics study is the ancient human society is an indispensable part of life. Sequence calculation is in mathematics learning is a very important branch, and as the series of the study and calculation of the social and economic life, resources are closely linked, which makes the series research attention enthusiasm to upsurge gradually, together with the flexible calculation, interesting problems, makes for the series of research by more and more attention. Key words: application of series installment resource utilization 1, 引言 数列在我们生活中有着广泛的应用,比如资源计算等领域,在解决投资分配、汇率计算、资源利用分配等方面问题中有着无可比拟的优势。本文将在简述数列广泛应用的基础上,具体分析数列在以上几个生活领域中的应用情况 2,主要内容 第一章:等差等比数列在生活中的应用 一、等差数列的应用题 涉及到等差数列的应用问题时,首先应弄清数列的首项和公差,然后用其通项公式和前n项和公式,并借助不等式的性质解决问题。

相关主题
文本预览
相关文档 最新文档