当前位置:文档之家› 北京理工大学.2008.数值分析(B)

北京理工大学.2008.数值分析(B)

北京理工大学.2008.数值分析(B)
北京理工大学.2008.数值分析(B)

课程编号:12000044 北京理工大学2009-2010学年第二学期

2008级计算机学院《数值分析》期末试卷B 卷

班级 学号 姓名 成绩

注意:① 答题方式为闭卷。 ② 可以使用计算器。

请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。

一、 填空题(每空2分,共30分)

1. 拉格朗日插值公式的系数和=∑=n

i i x a 0

)( 。

2. 若函数f (x )=x 7+x 4+3x +5,则f [0,1,2,3,4,5,6,7] =_________。

3. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列

{}()

k X 收敛的充分必要条件是 。

4. 辛普生求积公式的代数精度为 ,n 个求积节点的高斯求积公式的代数

精度为 。

5. 非线性方程f (x )=1-x -sin x =0在[0,1]内有一个根,使用二分法求误差不大于0.5*10-4

的根,需要对分的次数是 。

6. 已知插值节点(-1,3), (1,1), (2,-1),则f (x )的二次牛顿基本差商公式

是 。

7. 设有矩阵??

????-=4032A ,则‖A ‖1=_______。 8. 要使...472135.420=的近似值的相对误差小于0.2%,

至少要取 位有效数字。 9. 用牛顿下山法求解方程03

3

=-x x 根的迭代公式是 ,下山条件是 。

10. 用松弛法 (9.0=ω)解方程组???

??=+-=++--=++3

103220241225322

321321x x x x x x x x x 的迭代公式是

11. 已知n =4时的牛顿-科特斯系数,45

16,907)4(3)

4(0

==C C 则=)

4(1C ,=)

4(2C 。

12. 三次样条插值中的自然边界条件是 。 二、选择填空(每题2分,共10分)

1. 已知数x 1=721 x 2=0.721 x 3=0.700 x 4=7*10-2是由四舍五入得到的,则它们的有效数字的位数应分别为( )。

A. 3,3,3,1

B. 3,3,3,3

C. 3,3,1,1

D. 3,3,3,2

2. 当a ( )时,线性方程组???

??=+-=++-=--2

.9423.8372

.7310322

321321ax x x x x x x x x 的迭代解一定收敛。

A . >6

B . =6

C . <6

D . = |6|

3. 用列主元素法求线性方程组??

?

??=+--=-+--=+-1

340921

33322321321x x x x x x x x x ,第1次消元时选择主元素为( )

A .3

B . 4

C .-4

D .-9

4. 已知多项式P(x )过点(0,0),(2,8),(4,64),(11,1331),(15,3375),它的三阶差商为常数1,一阶、二阶差商均不为0,那么P(x )是( )。

A. 二次多项式

B. 不超过二次的多项式

C. 三次多项式

D. 四次多项式 5. 下列说法不正确的是( )。

A. 二分法不能用于求函数f (x )=0的复根。

B. 方程求根的迭代解法的迭代函数为?(x ),则迭代收敛的充分条件是?(x )<1。

C. 用高斯消元法求解线性方程组AX =B 时,在没有舍入误差的情况下得到的都是

精确解。

D. 如果插值节点相同,在满足插值条件下用不同方法建立的插值公式是等价的。 三、计算题(共60分)

1. 设a 为常数,建立计算a 的牛顿迭代公式,并求115的近似值,计算结果保留小

数点后5位。(6分)

2. 用三点高斯求积公式求?

-+=

1

1

5.1dx x I ,计算结果保留小数点后6位(6分)

3. 对线性代数方程组??

?????=-+-=-+=+-=+-338465123

21432431

42

1x x x x x x x x x x x x ,请写出使雅可比迭代法和高斯-赛德

尔迭代法均收敛的迭代格式,要求分别写出迭代格式(不需要迭代计算),并说明收敛的理由。(6分)

4. 用列消元法解下面的线性方程组。(6分)

???

??-=--=+-=++4

43855

22321

321321x x x x x x x x x 5. 试用复化辛卜生公式计算定积分?

=

1

5

.0dx x I (4等分区间)

。(6分) 6. 设y =sinx ,当取x 0=1.74, x 1=1.76, x 2=1.78建立拉格朗日插值公式计算x =1.75的函数

值时,函数值y 0, y 1, y 2应取几位小数? (10分)

7. 设函数f (x ) 在区间[0,3]上具有四阶连续导数,试用埃尔米特插值法求一个次数不

高于3的多项式P 3(x ),使其满足如下数据表值,并给出截断误差估计公式(10分)

8. 用 Euler 法和改进的欧拉法求解下述初值问题,取h =0.1,计算到x =0.5,要求计算

结果保留小数点后6位。(10分)

??

?

?

?

=<<-=1)0(1

0,2'y x y x y y

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

11:数值分析试题2009~2010

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =0.004532是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746) f x d x f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-=若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________. 8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

北航数值分析报告第三次大作业

数值分析第三次大作业 一、算法的设计方案: (一)、总体方案设计: x y当作已知量代入题目给定的非线性方程组,求(1)解非线性方程组。将给定的(,) i i

得与(,)i i x y 相对应的数组t[i][j],u[i][j]。 (2)分片二次代数插值。通过分片二次代数插值运算,得到与数组t[11][21],u[11][21]]对应的数组z[11][21],得到二元函数z=(,)i i f x y 。 (3)曲面拟合。利用x[i],y[j],z[11][21]建立二维函数表,再根据精度的要求选择适当k 值,并得到曲面拟合的系数矩阵C[r][s]。 (4)观察和(,)i i p x y 的逼近效果。观察逼近效果只需要重复上面(1)和(2)的过程,得到与新的插值节点(,)i i x y 对应的(,)i i f x y ,再与对应的(,)i i p x y 比较即可,这里求解 (,)i i p x y 可以直接使用(3)中的C[r][s]和k 。 (二)具体算法设计: (1)解非线性方程组 牛顿法解方程组()0F x =的解* x ,可采用如下算法: 1)在* x 附近选取(0) x D ∈,给定精度水平0ε>和最大迭代次数M 。 2)对于0,1, k M =执行 ① 计算() ()k F x 和()()k F x '。 ② 求解关于() k x ?的线性方程组 () ()()()()k k k F x x F x '?=- ③ 若() () k k x x ε∞∞ ?≤,则取*()k x x ≈,并停止计算;否则转④。 ④ 计算(1) ()()k k k x x x +=+?。 ⑤ 若k M <,则继续,否则,输出M 次迭代不成功的信息,并停止计算。 (2)分片双二次插值 给定已知数表以及需要插值的节点,进行分片二次插值的算法: 设已知数表中的点为: 00(0,1,,) (0,1,,)i j x x ih i n y y j j m τ=+=???=+=?? ,需要插值的节点为(,)x y 。 1) 根据(,)x y 选择插值节点(,)i j x y : 若12h x x ≤+ 或12 n h x x ->-,插值节点对应取1i =或1i n =-,

数值计算方法期末考精彩试题

1. 已知函数 21 1y x = +的一组数据: 求分段 线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 [] 0,1x ∈, ()1010.510.50110x x L x x --= ?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--% 所以分段线性插值函数为 ()[][]10.50,10.80.31,2x x L x x x ?-∈?=? -∈??% ()1.50.80.3 1.50.35 L =-?=% 4. 写出梯形公式和辛卜生公式,并用来分别计算积分1 01 1dx x +?. 计算题4.答案 4 解 梯形公式 ()()()2b a b a f x dx f a f b -≈ ?+???? 应用梯形公式得 1 01111 []0.75121011dx x ≈+=+++? 辛卜生公式为

确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度 ()()()() 1010h h f x dx A f h A f A f h --=-++? 证明题答案

故 ( )()()()40333h h h h f x dx f h f f h -= -++? 具有三次代数精确度。 1.设 3 2 01219 (), , 1, 44f x x x x x ==== (1)试求()f x 在 19,44???? ??上的三次Hermite 插值多项式()x H 使满足''11()(), 0,1,2,... ()()j j H x f x j H x f x === () x H 以升幂形式给出。 (2)写出余项()()()R x f x H x =-的表达式 计算题1.答案 1、(1) ()32142632331 22545045025x x x x H =- ++- (2) ()522191919()(1)(),()(,) 4!164444R x x x x x ξξξ-=---=∈ 3.试确定常数A ,B ,C 和 a ,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的? 计算题3.答案

北航数值分析大作业第二题

数值分析第二次大作业 史立峰 SY1505327

一、 方案 (1)利用循环结构将sin(0.50.2)() 1.5cos( 1.2)() {i j i j ij i j i j a +≠+==(i,j=1,2,……,10)进行赋值,得到需要变换的 矩阵A ; (2)然后,对矩阵A 利用Householder 矩阵进行相似变换,把A 化为上三角矩阵A (n-1)。 对A 拟上三角化,得到拟上三角矩阵A (n-1),具体算法如下: 记A(1)=A ,并记A(r)的第r 列至第n 列的元素为()n r r j n i a r ij ,,1,;,,2,1) ( +==。 对于2,,2,1-=n r 执行 1. 若 ()n r r i a r ir ,,3,2) ( ++=全为零,则令A(r+1) =A(r),转5;否则转2。 2. 计算 () ∑+== n r i r ir r a d 1 2 )( ()( )r r r r r r r r r r d c a d a c ==-=++则取,0sgn ) (,1)(,1若 )(,12r r r r r r a c c h +-= 3. 令 () n T r nr r r r r r r r r R a a c a u ∈-=++) ()(,2)(,1,,,,0,,0 。 4. 计算 r r T r r h u A p /)(= r r r r h u A q /)(= r r T r r h u p t /= r r r r u t q -=ω T r r T r r r r p u u A A --=+ω)()1( 5. 继续。 (3)使用带双步位移的QR 方法计算矩阵A (n-1)的全部特征值,也是A 的全部特征值,具体算法如下: 1. 给定精度水平0>ε和迭代最大次数L 。 2. 记n n ij n a A A ?-==][) 1()1()1(,令n m k ==,1。

数值分析期末试卷

数值分析2006 — 2007学年第学期考试 课程名称:计算方法 A 卷 考试方式:开卷[] 闭卷[V ] 半开卷[] IV 类 充要条件是a 满足 二、(18分)已知函数表如下 1?设 f(0) = 0, f (1) =16 , f( 2) =46,则 f [0,1]= ,f[0,1,2]二 2 ?设 AJ <2 -3 -1 ,则X ,A := A 1 1 j — 3 ?计算积分 xdx ,取4位有效数字。用梯形公式求得的近似值为 "0.5 (辛普森)公式求得的近似值为 ,用 Spsn 4?设f (x )二xe x -3,求方程f (x ) =0近似根的牛顿迭代公式是 ,它的收 敛阶是 5 ?要使求积公式 1 1 [f (x)dx 拓一(0) + A , f (x 1)具有2次代数精度,则 捲= _________________ , 0 4 6 ?求解线性方程组 x 1 ax 2 = 4 , 12_3 (其中a 为实数)的高斯一赛德尔迭代格式收敛的 10 11 12 13 In x 2.3026 2.3979 2.4849 2.5649

三、(20分)构造如下插值型求积公式,确定其中的待定系数,使其代数精度尽可能高, 并指出所得公式的代数精度。 2 f (x)dx : A o f (0) A f (1) A2f(2) o

X 2 4 6 8 y 2 11 28 40 五、(14分)为求方程X ’ -X 2 -1 =0在X o =1.5附近的一个根,将方程改写为下列等价 形式,并建立相应的迭代公式: 试问上述两种迭代公式在 x 0 =1.5附近都收敛吗?为什么?说明理由。 (1)X =1 ?丄,迭代公式 X 1 X k 1 = 1 - X k (2) X 2二1 ,迭代公式 X —1 2 (X k ); X k 1

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

北航数值分析报告大作业第八题

北京航空航天大学 数值分析大作业八 学院名称自动化 专业方向控制工程 学号 学生姓名许阳 教师孙玉泉 日期2014 年11月26 日

一.题目 关于x , y , t , u , v , w 的方程组(A.3) ???? ?? ?=-+++=-+++=-+++=-+++79 .0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。 表A-1 二维数表 t z u 0 0.4 0.8 1.2 1.6 2 0 -0.5 -0.34 0.14 0.94 2.06 3.5 0.2 -0.42 -0.5 -0.26 0.3 1.18 2.38 0.4 -0.18 -0.5 -0.5 -0.18 0.46 1.42 0.6 0.22 -0.34 -0.58 -0.5 -0.1 0.62 0.8 0.78 -0.02 -0.5 -0.66 -0.5 -0.02 1.0 1.5 0.46 -0.26 -0.66 -0.74 -0.5 1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式 ∑∑===k i k j s r rs y x c y x p 00 ),( 要求p (x , y )以最小的k 值达到以下的精度 ∑∑==-≤-=10020 7210)],(),([i j i i i i y x p y x f σ 其中j y i x i i 05.05.0,08.0+==。 2. 计算),(),,(* ***j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼 近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

数值分析

习 题 1. 指出有效数49×102,0.0490,490.00的绝对误差限、相对误差限和有效数字位数. 2. 将 3.142作为π的近似值,它有几位有效数字,相对误差限和绝对误差限各为多少? 3. 要使101的近似值x * 的相对误差限不超过4102 1?×,问查开方表时x * 需要保留几位有效数字? 4. 已知近似数x * 有两位有效数字,试估计其相对误差限. 5. 设x * 为x 的近似数, 证明n x * 的相对误差大约为x * 相对误差的n 1倍. 6. 某矩形的长和宽大约为100cm 和50cm, 应该选用最小刻度为多少cm 的测量工具, 才能保证计算出的面积误差(绝对值)不超过0.15cm 2. 7. 已知三角形面积c ab S sin 2 1=,测量a , b , c 时产生的相对误差为)(*a e r ,)(*b e r ,)(*c e r ,其中2 ,0*π<>2时的情形.用所设计的算法以及二次方程求根公式计算05.240=p ,00.1=q 时方程根的近似值(计算过程保留2位小数),并给出它们的相对误差限(根的准确值为L 0916683.4801?=x , L 002082935.02?=x ).

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

数值分析期末试题

信02数值分析期末试卷 2005.6.20 班级:__________ 姓名:_________ 分数:___________ 一、填空题(每空2分,共10分) 1、计算正方形面积要使相对误差限为2%, 则边长L 时相对误差限为____. 2、设求积公式?∑≈=b a n i i i x f x x f 0 )(d )(ω是插值型的,其中n 为正整数, b x x x a n ≤<<<≤ 10,则其代数精度至少为____,至多为_____. 3、如果某方法的误差) (k X 满足关系式)1() (5.002-?? ????=k k X a X ,其中 ,2,1=k ,并且该方法是收敛的,那么a 的范围是______. 4、四阶Runge-Kutta 方法解常微分方程初值问题的局部截断误差是____. 二、(10分) 证明方程0sin 1=--x x 在]1,0[上有根,写出牛顿迭代公式, 并取初始值为10=)(x 求近似根?)(=2x (保留六位小数)

三、(20分) 求x x f += 11)(在]1,0[上的一次最佳一致逼近多项式和一次最佳 平方逼近多项式.

四、(12分) 考虑利用Gauss-Seidle 迭代法分别求解线性方程组 ??????????=????????????????????24210 1 014120321x x x 和???? ? ?????=????????????????? ???22410 1 120014 321x x x , (1)说明两者的收敛性;(2)并对收敛的迭代法写出计算格式,再由 初始向量T X )0,0,0()0(=,计算=)(4X ?

北航数值分析大作业第二次

《数值分析》计算实习作业 (第二题)

算法设计方案: 1、对矩阵A 赋值,取计算精度ε=1×10-12; 2、对矩阵A 进行拟上三角化,得到A (n-1),并输出A (n-1); 对矩阵A 的拟上三角化,通过直接调用子函数inftrianglize(A)来实现;拟上三角化得到的矩阵A (n-1)输出至文件solution.txt 中。 3、对A (n-1)进行QR 分解并输出Q 、R 及RQ 矩阵; QR 分解通过直接调用子函数QRdescom(A,Q,R, n)实现。 4、运用QR 方法求所有的特征值,并输出; (1)初始时令m=n ,在m>2的条件下执行; (2)判断如果|A mm-1|<ε,则得到一个特征值,m=m-1,转(4);否则转(3); (3)判断如果|A m-1m-2|<ε,则得到两个特征值,m=m-2,转(4); (4)判断如果m ≤2,转(6);否则转(5); (5)执行相似迭代,转(2); k k T k k k k k k k k k k Q A Q A R Q M I D A D tr A M ==+-=+1)2)det(( (6)求出最后的一个或两个特征值; (7)输出全部的特征值至文件solution.txt 中。 5、输出QR 分解法迭代结束之后的A (n-1)至文件solution.txt 中; 6、通过反幂法求出所有实特征值的特征向量并输出。 首先令B=(A-λi I),其中λi 是实特征值;反幂法通过调用子函数Bpowmethod(B,x1)实现,最终λi 对应的特征向量就是x1;最后将所有的实特征值的特征向量输出。

数值分析试题及答案解析

数值分析试题 一、 填空题(2 0×2′) 1. ??????-=? ?????-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用 该迭代函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所 以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ρ(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

《数值计算方法》期末测验考试模拟试题

数值计算方法期末模拟试题二 模拟试题二 一、填空(共20分,每题2分) 1、设,取5位有效数字,则所得的近似值x=_____. 2、设一阶差商, 则二阶差商 3、数值微分中,已知等距节点的函数值 则由三点的求导公式,有 4、求方程的近似根,用迭代公式,取初始值,那么 5、解初始值问题近似解的梯形公式是 窗体顶端 6、,则A的谱半径=,A的= 7、设,则= 和= 8、若线性代数方程组AX=b 的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都_____ 9、解常微分方程初值问题的欧拉(Euler)方法的局部截断误差为_____ 10、设,当时,必有分解式,其中L为下三角阵,当其对角线元素足条件时,这种分解是唯一的. 二、计算题(共60 分,每题15分) 1、设(1)试求在上的三次Hermite插值多

项式H(x)使满足H(x)以升幂形式给出. (2)写出余项的表达式 2、已知的满足,试问如何利用构造一个收敛的简单迭代函数,使0,1…收敛? 3、试确定常数A,B,C和,使得数值积分公式有尽可能高的代数精度.试问所得的数值积分公式代数精度是多少?它是否为Gauss型的? 4、推导常微分方程的初值问题的数值解公式: 三、证明题 1、设

(1)写出解的Newton迭代格式(2)证明此迭代格式是线性收敛的 2、设R=I-CA,如果,证明: (1)A、C都是非奇异的矩阵 (2) 参考答案: 一、填空题 1、2.3150 2、 3、 4、1.5 5、 6、 7、 8、收敛 9、O(h)

10、 二、计算题 1、1、(1) (2) 2、由,可得 因故 故,k=0,1,…收敛. 3、,该数值 求积公式具有5次代数精确度,它是Gauss型的 4、数值积分方法构造该数值解公式:对方程在区间上积分,得 ,记步长为h,对积分 用Simpson求积公式得 所以得数值解公式: 三、证明题 1、证明:(1)因,故,由Newton迭代公式: n=0,1,…

数值分析学期期末考试试题与答案(A)

期末考试试卷 (A 卷) 2007学年第二学期 考试科目:数值分析 考试时间:120_分钟 学号 _____________ 姓名 ____________ 年级专业 ________________ 1000 1 1. 用计算机求 1100 时,应按照n 从小到大的顺序相加。 n z ? n 2. 为了减少误差,应将表达式? 20011999改写为 进行计算。() √2001 +√1999 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 () 4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。() 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有 关,与常数项无关。 () 二、填空 题(每空 2分,共36分) 1. ___________________________________________________ 已知数a 的有效数为0.01 ,则它的绝对误差限为 ____________________________________________ ,相对误差限为 ___________ 一1 0 -n - 0 1 2.设 A = 0 2 1 ,χ = -5 ,则 I A^ ,χ∣2 = J AXl L —1 3 0 一 ■ 一1 一 3. 已知 f (X) =2X 5 4X 3 -5x,则 f [-1,1,0] = , f[-3,-2, -1,1,2,3] = _. 1 4. 为使求积公式 j f (x)dx A ∣ f ( A= _______ , A= ________ , A^= _______ ,此时公式具有 ___________ 次的代数精度。 5. n 阶方阵A 的谱半径?(A)与它的任意一种范数 A 的关系是 _________________________ . 6. 用迭代法解线性方程组 AX =B 时,使迭代公式 X ( j I) = MX (Iυ ? N (k = 0,1,2,∣ll)产 生的向量序列IX (k) [收敛的充分必要条件是 ____________________________ . 7. 使用消元法解线性方程组 AX =B 时,系数矩阵A 可以分解为下三角矩阵 L 和上三角矩 -^) A 2f (0) A 3f (f)的代数精度尽量高,应使

北航数值分析作业第一题题解

北航数值分析作业第一题: 一、算法设计方案 1.要求计算矩阵的最大最小特征值,通过幂法求得模最大的特征值,进行一定 判断即得所求结果; 2.求解与给定数值接近的特征值,可以该数做漂移量,新数组特征值倒数的绝 对值满足反幂法的要求,故通过反幂法即可求得; 3.反幂法计算时需要方程求解中间过渡向量,需设计Doolite分解求解; 4.|A|=|B||C|,故要求解矩阵的秩,只需将Doolite分解后的U矩阵的对角线相 乘即为矩阵的Det。 算法编译环境:vlsual c++6.0 需要编译函数:幂法,反幂法,Doolite分解及方程的求解 二、源程序如下: #include #include #include #include int Max(int value1,int value2); int Min(int value1,int value2); void Transform(double A[5][501]); double mifa(double A[5][501]); void daizhuangdoolite(double A[5][501],double x[501],double b[501]); double fanmifa(double A[5][501]); double Det(double A[5][501]); /***定义2个判断大小的函数,便于以后调用***/ int Max(int value1,int value2) { return((value1>value2)?value1:value2); } int Min(int value1,int value2) { return ((value1

相关主题
文本预览
相关文档 最新文档