当前位置:文档之家› (完整版)八年级数学构造中位线巧解题

(完整版)八年级数学构造中位线巧解题

(完整版)八年级数学构造中位线巧解题
(完整版)八年级数学构造中位线巧解题

龙文教育学科导学案

教师:学生: 日期: 2012 年11 月25 日时段:

课题构造中位线巧解题

学情分析学生对中位线相关的辅助线的构造存在一些问题

学习目标与

通过中位线来构造辅助线解几何题是中考常见的考点之一考点分析

学习重点构造中位线

学习难点构造中位线

学习方法举一反三、归纳整理

个性化辅导过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。

一、知识回顾

1、三角形中位线定理:

三角形的中位线平行于第三边,并且等于它的一半。

2、梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

3、应用时注意的几个细节:

①定理的使用前提:三角形或梯形。

②定理使用时,满足的具体条件:

两条边的中点,且连接这两点,成一条线段。

③定理的结论:

位置上:与第三边是平行的;与底是平行的(梯形)

大小上:等于第三边的一半;等于两底和的一半(梯形)。

在应用时,要灵活选择结论。

4、梯形的中位线:

中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L.

L=(a+b)÷2

已知中位线长度和高,就能求出梯形的面积.

S梯=2Lh÷2=Lh

中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。

二、什么情况下该用中位线

1、直接找线段的中点,应用中位线定理

例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm

2、利用等腰三角形的三线合一找中点,应用中位线定理

例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。

3、利用平行四边形对角线的交点找中点,应用中位线定理

例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速度是相同的,且同时从B出发,则谁先到达?

总结:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

三、中位线能带来什么

1、说明角相等

例1已知,如图,四边形ABCD中,AB=CD,E、F分别是AD、BC的中点,

BA、FE的延长线相交于点M,CD、FE的延长线相交于点N。

试说明:∠AME=∠DNE。

A

B F C

D

N

M

E

2、说明线段相等

例2 已知,如图,四边形ABCD中,AC、BD相交于点O,且AC=BD,E、F分

别是AD、BC的中点,EF分别交AC、BD于点M、N。

试说明:OM=ON。

例3:BD、CE分别是的△ABC外角平分线,过A作AF⊥BD,AG⊥CE,垂足分别是F、G,易证FG=

2

1

(AB+BC+AC)。

(1)若BD、CE分别是△ABC的内角平分线,FG与△ABC三边有怎样的数量关系?画出图形(图1)并说明理由;(2)若BD、CE分别是△ABC的内角和外角平分线,FG与△ABC三边有怎样的数量关系?画出图形(图2)并说明理由.

3、说明面积相等

例3 已知,如图3,△ABC的中线AD、BE交于点G。试说明:S△ABG=S四边形CEGD。

4、说明线段垂直

例4 已知,如图4,在梯形ABCD中,AD∥BC,AD+BC=AB,M是CD的中点试说明:AM⊥BM。

总结:三角形中位线辅助线常用口诀

三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。

在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。

D

A B

C

O

E F

M N

P

B

A

C

E

D

G

图4

B C

M

N

A D

三、本次课后作业:

1、已知三角形的三边为6、8、10,顺次连结各边中点,所得到的三角形的周长为多少?

变形题:已知三角形的三边为a、b、c,顺次连结各边中点,所得到的三角形的周长为多少?

2、已知△ABC中,D为AB的中点,E为AC上一点,AE=2CE,CD,BE交于O点,OE=2

厘米。求BO的长。

3、已知△ABC中,BD,CE分别是∠ABC,∠ACB的平分线,AH⊥BD于H,AF⊥CE于F。若AB=14

厘米,AC=8厘米,BC=18厘米,求FH的长。

4、已知在△ABC中,AB>AC,AD⊥BC于D,E,F,G分别是AB,BC,AC的中点。求证:∠BFE=

∠EGD。

5、在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示)。求证:

∠DEF=∠HFE。

四、学生对于本次课的评价:

○特别满意○满意○一般○差

学生签字:

五、教师评定:

1、学生上次作业评价:○非常好○好○一般○需要优化

2、学生本次上课情况评价:○非常好○好○一般○需要优化

教师签字:

教导主任签字:___________

龙文教育教务处

巧构一线三直角解题

巧构一线三直角解题 发表时间:2017-02-14T14:06:18.193Z 来源:《中小学教育》2017年2月第269期作者:鲍玉秀张刚 [导读] 教师在教学时要注意给学生创造机会,让学生学会找基本图形。 山东省淄博市周村区北郊中学255000;山东省淄博市修文外国语学校255000 教师在教学时要注意给学生创造机会,让学生学会找基本图形。通过基本图形的积累,学生在分析题目时,就能唤醒利用这些基本图形,并能直接解题。几何命题的证明方法很多,只要找到规律、找到模型,我们就可以“以不变应万变”,任何问题就能迎刃而解。所以说,模型建立是学好数学的秘密武器。 基本图形:如图1,B、D、C在一条直线上,∠B=∠ADE=∠C=90°。我们称这一图形为“一线三直角”模型,则△ABD∽△DCE(或 △ABD≌△DCE)。 点评:我们在教学中经常遇到此图形,只要见到一直角在一条直线上,我们可以构造两侧的直角三角形,利用相似三角形可以解决一类相关问题。当出现了有相等边的条件之后,相似就转化为全等了。综合性题目往往就会把相似和全等的转化作为出题的一种形式。本文将重点对这一基本图形进行探讨。 一、在旋转中出现一线三直角基本图形(全等) 如图,将AO绕点O按逆时针方向旋转90°,得到A’O。若点A的坐标为(a,b),则点A’的坐标为( )。 解析:过A点作AB⊥x轴,垂足为E,过A’作A’E’⊥x轴,则△A’OE≌△OAE,所以A’E’=OE=a,AE=OE’=b,所以A’的坐标为(-b,a)。 点评:教师在平时教学中就要注意基本图形的构造,为以后学习打下良好的基础。 变式:直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为2。把一块含有45°角的直角三角形如图放置,顶点A、B、C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()。 分析:∠AEC=90°,并在直线l3,此时我们可以构造一线三直角数学模型,△ADE与△BEC全等,所以DB=CE=3。 二、在折叠中构造一线三直角 如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠,使点A落在A’的位置。若OB= 5,tan∠BOC= ,则点A’的坐标是多少? 解析:因为OB= 5,tan∠BOC= ,OA=1,AB=2,△A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1), DE=AB,2a+ (a+1)=2,解得a= ,所以A’的坐标(- ,)。 点评:此题是以矩形折叠为载体,如果利用常规方法勾股定理及全等计算很麻烦。如果构造一线三直角是非常简单的,过A’做AB的平行线,与BC、AO的延长线交于E、D, △A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1),DE=AB,2a+ (a+1)=2,计算量相当简单。 三、画斜为直,找直线构造一线三直角 如图,在平面直角坐标系xoy中,点A的坐标是(-7,1),∠AOB=135°,OB=5。(1)求△AOB的面积。(2)求点B的坐标。 解析:设B(x,y),过B点作BF⊥x轴,过D点作x轴的平行线,与y轴交于G点,过A点作AC⊥CD。因为∠AOB=135°,AO=5 2,所以∠AOD=45°,AD=OD=5,所以△BOF≌△DOG≌△DCA,所以AD=OD=BO,AC=DG=OF,CD=OG=BF,所以△AOB的面积= ×5×5= ,所以x+y=7,1+y=x,所以x=4,y=3。 点评:这是一道一题多解的题,将∠AOB=135°转化为∠AOD=45°,构造等腰直角三角形,再构造模型一线三直角(全等)。 四、在圆中构造一线三直角 如图,在平面直角坐标系中,⊙P与x轴相切于点C,与y轴分别交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、E,连接DC并延长交y轴于点F。若点F的坐标为(0,1),点D的坐标为(6,-1)。(1)求证:DC=FC。(2)求直线AD的解析式。 解析:(1)由△OFC≌△GDC得到OC=CG,过点作DG⊥x轴,连接AC,因为AD为直径,所以∠AGD=90°,△OAG∽△CGD,所以DG∶GC=OG∶OA,所以1∶3=3∶OA,所以OA=9。 点评:从圆中找直角,利用直径得圆周角等于90°,问题便可迎刃而解。 基本图形的教学是初中几何教学的重点,也是难点,教师在平时教学中要注重基本图形的研究,要有足够的耐心等学生慢慢积累。学生的学习达到一定程度就会从复杂的图形中提炼出基本图形,才会出现解决问题时的灵感。

构造中位线巧解圆锥曲线题

构造中位线 巧解圆锥曲线题 徐志平 (浙江金华一中 321000) 在求一些与圆锥曲线有关的题目时,通常需要先构造出三角形或梯形的中位线,然后借助中位线的性质定理来求解,现举例加以分析说明。 1.求点的坐标 例1. 椭圆13 122 2=+y x 的一个焦点为1F ,点P 在椭圆上。如果线段1PF 的 中点M 在y 轴上,那么点M 的纵坐标是 ( ) A. 43± B. 2 2± C. 23± D. 43± M 的坐标,只需先求点P 的坐标即可。 连接PF 2,由于M 是PF 1的中点,O 是F 1F 2的中点, 所以MO 是21F PF ?的中位线,又轴x MO ⊥,则有 轴x PF PF MO ⊥22,//,3312=-=P x 2 3±=,43±=∴M y ,故选(D )。 例2.定长为3的线段AB 的两端点在抛物线y 2 =x 上移动,记线段AB 的中点 为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。 分析:利用抛物线的定义,结合梯形的中位线性质 定理可以解决问题。 解:抛物线的焦点)0,41(F ,准线 方程:41 -=x ,上分别作点A 、B 、M 的射影A 1、B 1、M 1,则由MM 1 是梯形AA 1B 1B )(21 )(21111BF AF BB AA MM +=+= ,在ABF ?可以取等号) 通径∴>≥+AB AB BF AF (,2 211=≥AB MM ∴M 到y 轴的最短距离= 。 4 5 4123=-即45=M x 。 ∴显然这时弦AB 过焦点),(04 1F 。设A (x 1,y 1),B (x 2,y 2),则有12 1x y = ① 22 2x y = ②,①-②得M y x x y y x x y y y y 21))((2121212121=--?-=-+

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

【精品】2021年八年级数学解题技巧训练7构造中位线解题的五种常用方法含答案与试题解析

2021年八年级数学解题技巧训练7构造中位线解题的五种常用 方法含答案与试题解析 一、经典试题 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 二、技巧分类 技巧1 连接两点构造三角形的中位线 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN; (2)求∠MPN的度数. 技巧2 已知角平分线及垂直构造中位线 3.(2019秋?诸城市期末)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为() A.3B.9 2C.5D. 15 2 4.(2018春?吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD ⊥AD于点D,E为BC中点.求DE的长.

技巧3 倍长法构造中位线 5.如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°, M为AF的中点,求证:ME=1 2CF. 技巧4 已知两边中点,取第三边中点构造三角形的中位线 6.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=√2MN. 7.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于 点N,求证:AN=1 3AC.

2021年构造中位线解题的五种常用方法 参考答案与试题解析 一.试题(共7小题) 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 【专题】证明题. 【解答】证明:延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线, ∴∠CBN=∠ABN, ∵BN⊥AG, ∴∠ABN+∠BAN=90°,∠G+∠CBN=90°, ∴∠BAN=∠AGB, ∴AB=BG, ∴AN=GN, 同理AC=CF,AM=MF, ∴MN为△AFG的中位线,GF=BG+CF﹣BC, ∴MN=1 2(AB+AC﹣BC). 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN;

三角形中位线中的常见辅助线

三角形中位线中的常见 辅助线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证: 2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证: 2AB DE =.

全等三角形解题方法与技巧

“三步曲”证全等 牢记判定定理:SSS SAS ASA AAS HL 一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离 出基本图形) 二看条件: (一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。) 1、利用公共边(或公共角)相等 例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么? 练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B

2、利用对顶角相等 例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗? 练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等 例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由. 练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 A E D C B A B C D E F O

4、利用平行线的性质得出同位角、内错角相等 例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数. 练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 (二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。 例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△. 例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 . 例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC . (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE . 图1 图2 C E B F D A E

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

直角三角形典型例题总结

勾股定理与勾股定理逆定理典型例题 类型一、勾股定理的构造应用 例1、如图,已知:在中,,,. 求:BC 的长. 思路点拨:由条件,想到构造含角的直角三角形 总结反思: 举一反三【变式1】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 【变式2】

类型二:方程的思想方法 例1、如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 思路点拨:由,再找出、的关系即可求出和的值 总结升华: 举一反三: 【变式1】如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2, 求CD 的长度。 【变式2 】C A

类型三:转化的思想方法 我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决. 例1.如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。 思路点拨:现已知BE 、CF ,要求EF ,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD . 总结升华: 【变式1】如图,已知:,,于P . 求证:. 【变式2】如图,ADC ?和BCE ?都是等边三角形, 30=∠ABC , 求证:2 22BC AB BD +=

3. 类型五:利用勾理作长为 的线段 例1. 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于 ,直角边为和1的直角三角形斜边长就是,类似地可作D C B A

全等三角形解题技巧

造全等三角形解题的技巧 全等三角形是初中几何《三角形》中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制胜,现举几例供大家参考。 友情提示:证明三角形全等的方法有SAS、SSS、AAS、ASA、HL(Rt△)。 一、见角平分线试折叠,构造全等三角形 例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC。 求证:∠B:∠C=2:1。 证法一:在线段AC上截取AE=AB,连接DE。 在△ABD和△AED中 ∵AE=AB,∠1=∠2,AD=AD,∴△ABD△AED。∴DE=DB,∠B=∠AED。 ∵AB+BD=AC,∴AE+DE=AC。 又∵AE+CE=AC,∴DE=CE。∴∠C=∠EDC。 ∵∠AED=∠C+∠EDC,∴∠AED=2∠C,即∠B=2∠C。∴∠B:∠C=2:1。 证法二:延长AB到F,使BF=BD,连接DF。∴∠F=∠BDF。 ∵∠ABC=∠F+∠BDF,∴∠ABC=2∠F。 ∵AB+BD=AC,∴AB+BF=AC,即AF=AC。 在△ADF和△ADC中, ∵AF=AC,∠1=∠2,AD=AD,∴△ADF△ADC。∴∠F=∠C。 又∵∠ABC=2∠F,∴∠ABC=2∠C,即∠ABC:∠C=2:1。 点评:见到角平分线时,既可把△ABD沿AD折叠变成△AED,也可把△ACD沿AD折叠变成△AFD,利用全等三角形的性质,可使问题得以解决。

练习:如图3,△ABC中,AN平分∠BAC,CN⊥AN于点N,M为BC中点,若AC=6,AB=10,求MN的长。 图3 提示:延长CN交于AB于点D。则△ACN△ADN,∴AD=AC=6。 又AB=10,则BD=4。可证为△BCD的中位线。 ∴。 点评:本题相当于把△ACN沿AN折叠成△AND。 二、见中点“倍长”线段,构造全等三角形 例2 如图4,AD为△ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。 图4 证明:延长AD到G,使DG=AD,连接BG。 ∵AD为BC上的中线,∴BD=CD, 在△ACD和△GBD中, ∵AD=DG,∠ADC=∠BDG,BD=CD,∴△ACD△GBD。∴AC=BG,∠CAD=∠G。 ∵AF=EF,∴∠CAD=∠AEF。∴∠G=∠AEF=∠BEG,∴BE=BG, ∵AC=BG,∴BE=AC。 点评:见中线AD,将其延长一倍,构造△GBD,则△ACD△GBD。 例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC 图5 试判断△EMC的形状,并说明理由。 解析:△EMC为等腰直角三角形。

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

构造三角形中位线的方法

构造三角形中位线的方法

构造三角形中位线的方法 方法1 连接两点构造三角形的中位线 1.已知:如图,△ABC是锐角三角形,分别以AB、AC为边向外作两个正△ABM和△CAN,D、E、F分别是MB,BC,CN的中点,连结DE、FE,求证:DE=EF 证明:连接、, 和是等边三角形, ,,, , 即, 在与中 , , , 、、分别是、、的中点, ,, .

(2)延长BD交CA的延长线于E, ∵AD为∠BAC的平分线,BD⊥AD, ∴BD=DE,AB=AE=12, ∴CE=AC+AE=18+12=30, 又∵M为△ABC的边BC的中点, ∴DM是△BCE的中位线, ∴MD=1/2CE=15. 3.如图 , 在 Rt△ABC 中 ,∠ACB=90°,D 为△ABC 外一点 , 使∠DAC=∠BAC,E 为 BD 的中点 ,∠ABC=60°,求∠ACE 的度数。 解:延长 AD 、 BC 交于F. ∵在△ABC 与△ACF 中, ∠DAC=∠BAC,AC=AC,∠ACB=∠ACF=90°,∴△ABC ≌△ACF(ASA) , ∴BC=FC,∠F=∠ABC=60°, ∴∠CAF=30°,

∵E 为 BD 的 中点, ∴EC ∥ AF , ∴∠ACE=∠ CAF=30°. 方法3倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC =90°,BA =BC ,△BEF 为等腰直角三角形, ∠BEF =90°,M 为AF 的中点,求证:CF ME 2 1 . 证明:如图,延长EF 到D ,使DE=EF ,连接AD 、BD , ∵△BEF 为等腰直角三角形,∠BEF=90°, ∴∠BFE=45°,BE ⊥DF , ∴BE 垂直平分DF ,

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解 【学习目标】 1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形; 2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题. 【要点梳理】 要点一、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h为斜边上的高. 要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法 已知条件解法步骤 Rt△ABC 两 边两直角边(a,b) 由求∠A, ∠B=90°-∠A, 斜边,一直角边(如c,a) 由求∠A, ∠B=90°-∠A, 一边一直角边 和一锐角 锐角、邻边 (如∠A,b) ∠B=90°-∠A, ,

一 角 锐角、对边 (如∠A ,a) ∠B=90°-∠A , , 斜边、锐角(如c ,∠A) ∠B=90°-∠A , , 要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边. 要点三、解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图, 坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.

(完整word版)解直角三角形思想方法中考题型

思想方法中考题型 一、方程思想 根据题意设适当的未知数,从已知和未知中寻求等量关系,构造出方程或方程组,从而使问题获解. 例1如图1,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号). 解:过A点作AB⊥CD交CD的延长线于点B,设AB=x 在Rt△ABC中,因为∠ACB=∠CAE=30°,所以AC=2ABC=2x,BC=3AB=3x 在Rt△ABD中,因为∠ADB=∠EAD=45°,所以DB=AB=x 因为CD=50,所以 解得x=25(1+3)。答:缆绳AC的长为() 5013 +米. 说明先得出边角之间的关系,再构造方程求解,这是直角三角形的边角关系应用的常见方法,应值得注意. 二、数形结合思想 将数量和图形巧妙结合来寻找解题思路 例2如图2,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆。已知A、B、C所处位置的海拔高度分别为124m、400m、1100m,如图建立直角坐标系,即A(a,124)、B(b,400)、C(c, 1100),若直线AB的解析式为y=1 2x+4,直线BC与水平线BC1的交角为45°. ⑴分别求出A、B、C三个缆车站所在位置的坐标; ⑵求缆车从B站出发到达C站单向运行的距离(精确到1m). A(240,124)、B(792,400)、C(2192,1100);(2)7002≈990(米). 三、转化思想 抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法. 例3如图3,学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成26°角,斜坡CD与水平地面成30°的角.求旗杆AB的高度(精确到1米).(tan26°=0.43) 解:延长AD、BC交于点E,过点D作DF⊥CE于F.则依据题意可知,∠E=°,∠DCE=°。 在Rt△CFD中,得DF=4,CF=43≈6.928, 在Rt△DFE中, 在Rt△ABE中, 答:旗杆AB的高度约为. 四、建模思想 所谓建模思想就是认真分析题意,将实际问题抽象、转化为数学问题,建立数学模型,再通过对数学模型的探索达到解决问题的目的. 例4如图4,MN表示一段高速公路的设计路线图.在点M测得点N在它的南偏东30°的方向.测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向.以点A为圆心,500m为半径的圆形区域为某居民区.已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区? 解:过点A作AC⊥MN于点C.依题意,得∠AMC=60°-30°=30°,∠ABC=75°-30°=45°.设AC为x m, 图2 B A 图4 M 30° 60° 75° 北 北 N C 图1 F 图3 E D C B A

用三角形中位线定理解题

用三角形中位线定理解题 三角形中位线定理是平面几何中十分重要的定理,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何命题,如: 1.证明线段的倍分关系 例1 如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F. 证明:取CF的中点H,连接DH,则DH为△CBF的中位线,EF为△ADH的中位线,故DH=1 2 BF, EF=1 2 DH. 2.证明两线平行 例2 如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为垂足.求证DE∥ BC. 证明延长AD、AE交BC与CB的延长线于M、N. 由∠1=∠2,BD⊥AM,可得AD=DM;同理可得AE=EN.故DE为△ANM的中位线. ∴DE∥MN,即DE∥BC 3.证线段相等 例3 如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD 的中点,直线MN分别交AB、AC于P、Q.求证AP=AQ

证明取BC中点F,连接MF与NF. ∵BM=ME,BF=FC. 同理可得NF∥BD,且 又BD=CE,∴MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3, ∴∠1=∠2,故AP=AQ. 4.证两角相等 例4 如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E分别为MN与BC的中点,AP∥DE交BC于P. 求证:∠BAP=∠CAP. 证明连接BN并取中点Q,连接DQ与EQ,则DQ∥BM,且DQ=1 2 BM,EQ∥CN,且EQ= 1 2 CN, 又BM=CN. ∴DQ=EQ,故∠1=∠2, 又∵∠1=∠BAP,∠2=∠CAP, ∴∠BAP=∠CAP. 5.证比例式 例5 如图5,AD为△ABC的中线,过点C的任一直线与AD、AB分别相交于E与F,求

构造直角三角形来解题

构造直角三角形巧解题 山东省博兴县锦秋街道清河学校 张海生 256500 有些几何题,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化,就会收到化难为易、事半功倍的效果.下面举例介绍构造直角三角形解题的若干常用方法,供同学们复习时参考. 一、利用已知直角构造直角三角形 例1:如图1,在四边形ABCD 中,∠A=060,∠B=∠D=090,AB=2,CD=1.则BC 和AD 的长分别为_______和_______. 解析:考虑到图中含有090和060的角,若延长AD 、BC 相交于E ,则可以构造出Rt △AEB 和Rt △CED ,易知∠E=030,从而可求出DE=3,AE=4,BE=23,故AD=4-3,BC=23-2. 二、利用勾股定理构造直角三角形 例2:如图2,在四边形ABCD 中,AB=AD=8,∠A=060,∠ADC=0150,已知四边形ABCD 的周长为32,求四边形ABCD 的面积. 解析:四边形ABCD 是一个不规则的四边形,要求其面积,可设法变成特殊的三角形求解.连接BD ,则△ABD 是等边三角形, △BDC 是直角三角形,由于AB=AD=BD=8,,求△ABD 的面积不难解决,关键是求△BDC 的面积.可运用周长和勾股定理联合求出DC ,从而求出△BDC 的面积. 解答:连接BD.∵AB=AD ,∠A=060,∴△ABD 是等边三角形. ∴∠ADB=060,BD=AD=AB=8. 因为∠ADC=0150,∴∠BDC=090, 故△BDC 是直角三角形, 因为四边形ABCD 的周长为32, AB=AD=8, ∴BC+DC=32-16=16,BC=16-DC. 在Rt △BDC 中,222BC DC BD =+, 即()222168DC DC -=+.解得DC=6. ∴248621=??=?B DC S .用勾股定理求出等边△ABD 的高为3482 3=?. 3163482 1=??=?A B D S .∴24316+=+=??B DC A B D A B CD S S S 四. 说明:⑴求不规则的图形面积应用割补法把图形分解为特殊的图形;⑴四边形中通过添加辅助线构造直角三角形;⑶边长为a 的等边三角形的高为a 23,面积为24 3a . 三、利用高构造直角三角形 例3:如图3,等腰△ABC 的底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直. 解析:本题是一道探究性的动态问题,假设P 在某一时刻有PA ⊥AC ,此时P 点运动了几秒,这是解决问题的着手点.设BP=x ,PC=8-x ,在Rt △PAC 中,由于PA 不知道,无法建立关系式.考虑△ABC 是等腰三角形,如作底边上的高AD ,则可用x 的代数式表示AP ,用勾股定理便可求出x ,进而求出运动时间.当P 点运动到D 与C 之间时,也存在AP ⊥AB 的情况,故要分类 讨论. 解答:作底边BC 的高AD ,则AD ⊥BC ,垂足为D. 设BP=xcm ,PA ⊥AC. 图1 图2 图3

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法 ?名师点金? 三角形的中位线具有两方面的性质: 一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。 典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N. 求证:MN=21(AB+AC-BC) 解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=2 1(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。 方法1:连接两点构造三角形的中位线 1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。 (1)求证PM=PN ; (2)求∠MPN 的度数。 方法2:已知角平分线及垂直构造中位线 2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。 方法3:倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF 方法4:已知两边中点,取第三边中点构造三角形的中位线 5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN 方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线 6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=3 1AC

初二数学培优之直角三角形

初二数学培优之直角三角形 阅读与思考 直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余; 边的关系:斜边的平方等于两直角边的平方和; 边角关系:30o 所对的直角边等于斜边的一半. 这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面. 在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法. 熟悉以下基本图形基本结论: 例题与求解 【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________. (2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________. D C (太原市竞赛试题) 解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手. 【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°

(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础. 【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数. B C (“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键. 【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD. B A C (上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明. 【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222 += BD AB BC B (北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中. 【例6】斯特瓦尔特定理:

相关主题
文本预览
相关文档 最新文档