当前位置:文档之家› 韦达定理与二次函数教师版

韦达定理与二次函数教师版

韦达定理与二次函数教师版
韦达定理与二次函数教师版

韦达定理与二次函数

1.已知a、b是方程x2-2x-4=0的两实根,求a 3+8b+6 等于多少?

韦达定理

ab=-4

a+b=2

(a+b)2=a2+b2+2ab 4=a2+b2-8 a2=12-b2

a 3+8b+6=aaa+8b+6

=(12-b2)a+8b+6

=12a-abb+8b+6

=12a+12b+6

30

2.已知关于x的方程x2-mx+2m-1=0的两个实数根的平方和为7,那么m的值是______.

3.设x1,x2是方程x2+px+q=0的两实根,x1+1,x2+1是关于x的方程x2+qx+p=0的两实根,则p=______,q=______.

4.(2016?呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()

A.6 B.3 C.﹣3 D.0

【考点】根与系数的关系;二次函数的最值.

【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.

【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,

∴m,n是关于x的方程x2﹣2ax+2=0的两个根,

∴m+n=2a,mn=2,

∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,

∵a≥2,

∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,

∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,

故选A.

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

【精选】2020年中考考点讲练案第12讲 二次函数(教师版)

第12讲 二次函数 【考点导引】 1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 【难点突破】 1. 二次函数2 y ax bx c =++,配方为2 2424b ac b y a x a a -??=++ ??? ,顶点坐标是(2b a -,244ac b a -),对称轴是a =2b a - ,与y 轴交点坐标是(0,c ),与x 轴交点的横坐标是20ax bx c ++=的根,当a >0时,抛物线开口向上,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0时,抛物线开口向下,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小. 2. 解答有关二次函数图象问题时,要抓住抛物线与x 轴、y 轴的交点、对称轴、顶点坐标、特殊点,解决此类题型常用的方法是从二次函数的图象性质出发,通常采用把已知点坐标代入解析式中找出a 、b 、c 关系,再结合对称轴x =a b 2- ,确定a 、b 之间等量关系,判断与x 轴交点情况则利用判别式b 2-4ac . 3. 抛物线的平移遵循“左加右减,上加下减”的原则,具体为: (1)上下平移:抛物线y =a (x -h )2+k 向上平移m (m >0)个单位,所得抛物线的解析式为y =a (x -h )2+k +m ;抛物线y =a (x -h )2+k 向下平移m (m >0)个单位,所得抛物线的解析式为y =a (x -h )2+k -m . (2)左右平移:抛物线y=a(x -h)2+k 向左平移n (n>0)个单位,所得抛物线的解析式为y=a(x -h+n)2+k ;抛物线y=a(x -h)2+k 向右平移n (n>0)个单位,所得的抛物线的解析式为y=a(x -h -n)2+k. 特别地,要注意其中的符号处理. 【解题策略】 1. (1)二次函数y =2ax bx c ++(≠0)的图象与其表达式中各项系数的符号有着十分密切的关系: ,, 的代数式 决定图象特征 说明 决定抛物线的开口方向 >0 开口向上 <0 开口向下 决定抛物线与y 轴交点 的位置,交点坐标为 >0 与y 轴交点在轴上方 =0 抛物线过原点

二次函数根系数关系

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用. 【知识要点】 1.如果方程(a≠O)的两根为,,那么,, 这就是一元二次方程的根与系数的关系. 2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式. 5.当一元二次方程(a≠O)有两根,时:(1)若,则方 程有一正一负根;(2)若,,则方程有两个正根;(3)若 ,,则方程有两个负根. 【趋势预测】 利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面: ①求方程中字母系数的值或取值范围; ②求代数式的值; ③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题; ⑤证明代数等式,不等式; ⑥与一元二次方程的整数根有关的问题. 【范例解读】 题1(1997·陕西)已知二次方程(ac≠0)有两异号实根m和n,且m0,从而,. 方程的判别式: ,故方程 必有两实根. 设这两个实根为,,则由根与系数关系得 ,,可知,均为负数,故选(A). 题2(1997·上海)若a和b是方程的两个实根,c和d是方程 的两个实根,e和f是方程的两个实根,则

二次函数根的判别式韦达定理

一元二次方的应用及根的判别式、韦达定理 一、根的判别式 1.一元二次方程根的判别式的定义: 运用配方法解一元二次方程过程中得到 222 4()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22 424b b ac x a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ?=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式. 2.判别式与根的关系: 在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ?=-确定. 判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ?=-则 ①0?>?方程2 0(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0?=?方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a ==-. ③0?;有两个相等的实数根时,0?=;没有实数根时,0?<. (2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ?=-判定方程的根的情况 (有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ?=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时?抛物线开口向上?顶点为其最低点; ② 当0a <时?抛物线开口向下?顶点为其最高点. 3.一元二次方程的根的判别式的应用: 一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数; (2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题; (4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题. 二、韦达定理 如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x , ,那么,就有 ()()212ax bx c a x x x x ++=-- 比较等式两边对应项的系数,得 1212 b x x a c x x a ? +=-??? ??=??? ①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系. 因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x , 必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ?=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,

二次函数与方程(组)-教师版

二次函数与方程(组) 1.如图,已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点.点P 在抛物线上且在x 轴上方,15PBC S =△,求P 点坐标. 【答案】解:作//PD y 轴交BC 延长线于D ,如图, 当0y =时,2230x x --=,解得11x =-,23x =,则(3,0)B , 当0x =时,2233y x x =--=-,则(0,3)C -, 设直线BC 的解析式为y kx b =+, 把(3,0)B ,(0,3)C -代入得30 3k b b +=??=-?, 解得1 3k b =??=-? , ∴直线BC 的解析式为3y x =-; 设2(,23)P x x x --,则(,3)D x x -, 2223(3)3PD x x x x x ∴=----=-, 21 3(3)2 PBC PBD PCD S S S x x ???=-=??-, ∴21 3(3)152 x x ??-=, 解得12x =-,25x =, P ∴点坐标为(2,5)-或(5,12).

2.已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,点P 在抛物线上,且在第四象限,若3PBC S =△,求P 点坐标. 【答案】易得()30B , ,()03C -,,直线BC :3y x =- 设()223P x x x --,,作PH x ⊥轴交BC 于D 则()223233PD x x x x x =----=-+ ∵() 21 3332 PBC S x x =??-+=△ ∴2320x x -+= ∴()14P -, 或()23-, 3.如图,抛物线257 266 y x x =-++与x 轴负半轴交于A 点,与y 轴交于B 点,点H 在抛物 线上,BH 交x 轴于M 点,若MBA BAM ∠=∠,求H 点的坐标. 【答案】令257 2066 x x -++=,可得257120x x --=,()()51210x x -+= ∴()10A -, ,()02B , 作MH AB ⊥于H

第2讲 一元二次方程实数根与韦达定理

第二讲 一元二次方程实数根与韦达定理 一 知识要点 实系数一元二次方程:20(0)ax bx c a ++=≠的两个根为12,x x 1. 根的判别式 2. 韦达定理 二. 例题解析 例1.已知方程220()x x m m R --=∈没有实根,试判断关于x 的方程 ()()222212110x mx m x +++-+=有无实根. 例2.k 为何值时,关于x 的方程()22241210x k x k -++-= (1)有两个不相等的实根; (2)有两个相等的实根; (3)没有实数根 例3.方程:()()2212110a x a x --++=只有一个实根,求a 的值 例4.设关于x 的方程:2222(1)(3442)0x a x a ab b ++++++=有实根,求实数,a b 的值。

例5.已知12,x x 是方程22310x x --=的根,求223321121212 ,,,x x x x x x x x +++ 12221211,x x x x +-的值; 例6若方程2(32)0x x a +--=的两个实根分别为12,x x ,下就根的取值范围,分别求实数a 的取值范围 (1)两实根均大于0; (2)两实根均小于0; (3)两实根一个大于0,一个小于0; (4)两实根均大于1; (5)两实根均小于1; (6)两实根一个大于1,一个小于1; 例7 已知方程2520,x x +-=作一个新的一元二次方程,使它的根分别是已知方程各根的立方的倒数。

例8.已知a 为实数,解关于x 的方程10x x a ++= 例9.已知方程42280x mx ++=的四个根均为整数,求m 的值及方程的根。 例10.对自然数,n 设关于x 的二次方程22(21)0x n x n +++=的两根为,n n αβ,求下式的值: ()()()33442020 1111(1)1(1)1(1)αβαβαβ+++++++++

3讲义特殊的二次函数图像三(教师版)

复习引入: (一)在同一直角坐标系中画出二次函数y = x2与y = (X T)2+1与y = (x-1 )2+1的图像列表(取点原则:取原点及左右对称点) 描点、连线 分 (1)函数y(x 1)2+1与y(x-1 )2+1的图像与y =x2图像有哪些相同处及不同处 析: (2)产生这三个图像的差异的本质原因是什么平移 (3)这三个二次函数若与坐 总结:y =a(x m)2 k的图像性质(左加右减,上加下减)

a 的符号 开口方向 顶点坐标 对称轴 性质 a >0 向上 (-m,k) 直线 x = _m x > —m 时,y 随x 的增大而增大;x £ —m 时, y 随x 的增大而减小;x = -m 时,y 有最小值 k . a cO 向下 (-m, k) 直线 x = -m x > —m 时,y 随x 的增大而减小;x £ —m 时, y 随x 的增大而增大;x = -m 时,y 有最大值 k . 1 ?平移步骤: ⑴ 将抛物线解析式转化成顶点式y =a(x m)2 k ,确定其顶点坐标(-m,k); ⑵ 保持抛物线y 二ax 2的形状不变,将其顶点平移到(-m,k)处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 例题分析 1. 填表 抛物线 开口方向 对称轴 顶点坐标 2 y = -(x -2) +4 下 直线X=2 (2,4) 1 2 厂尹3)2_5 上 直线X=-3 (-3,-5) 2,1 y = —3(x —2) + — 3 下 直线X=2 (2,1/3) —3、2 7 y = ——(x —一) 一 — 12 4 12 下 直线X=3/4 (3/4,-7/12) 向左平移1个单位,再向下平移 3个单位,得到的抛物线的表达式为 y=-5(x+1) 2-3 ___________ 3. 抛物线y =2x 2沿x 轴向 _______ 左 ___ 平移_2 ____ 单位,再沿y 轴向 _______ 下 _______ 移 ¥ y=a(x-h)2 y=ax 2+k ! 向右(h>0)【或左(h<0)】 平移KI 个单位 y=a(x-h)2+k 向上(k>0)【或向下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】 平移|k 个单位 向右(h>0)【或左(h<0)】 平移|k|个单位 向右(h>0)【或左 (h<0)】 平移kl 个单位

韦达定理及其应用竞赛题

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定

理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1 -)。 -,1)或(0, 1 -,0),(0,1),(2,1),(2 于是,得以下七个方程,,,,, 1 x2= -,其中0 1 x2= +无实数根,舍去。其余六个方程均为所求。x2= +,0 x 1 + 2 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

人教版初中数学第二十二章二次函数知识点汇总

第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.1 二次函数 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 22.1.2 二次函数2 y ax =的图象和性质 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小. 例1.若抛物线y=ax 2经过P (1, ﹣2),则它也经过 ( ) A .(2,1) B .(﹣1,2) C .(1,2) D .(﹣1,﹣2) 【答案】 【解析】 试题解析:∵抛物线y=ax 2经过点P (1,-2), ∴x=-1时的函数值也是-2, 即它也经过点(-1,-2). 故选D . 考点:二次函数图象上点的坐标特征. 例2.若点(2,-1)在抛物线2 y ax =上,那么,当x=2时,y=_________

【解析】 试题分析:先把(2,-1)直接代入2 y ax =即可得到解析式,再把x=2代入即可. 由题意得14-=a ,41-=a ,则2 4 1x y -=, 当2=x 时,.144 1-=?-=y 考点:本题考查的是二次函数 点评:解答本题的关键是掌握二次函数图象上的点适合这个二次函数的关系式. 2. 2y ax c =+的性质: 上加下减. 例1.若抛物线 y=ax 2+c 经过点P (l ,-2),则它也经过 ( ) A .P 1(-1,-2 ) B .P 2(-l , 2 ) C .P 3( l , 2) D .P 4(2, 1) 【答案】A 【解析】 试题分析:因为抛物线y=ax 2+c 经过点P (l ,-2),且对称轴是y 轴,所以点P (l ,-2)的对称点是(-1,-2),所以P 1(-1,-2)在抛物线上,故选:A. 考点:抛物线的性质. 例2.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】 试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2), ∴a b 3b 2+=??=-?,解得a 5b 2=??=-? . ∴a ﹣b=5+2=7.

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理讲点1:公共点问题 【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围. 【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 讲点2:距离问题 【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D ,在抛物线上共有三个点到直线BC的距离为m,求m 是抛物线的顶点,已知CD 的值. 【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物 线与直线y=2x的最近点之间的距离为,求a的值. 讲点3:隐藏判别式

【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. 【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 讲点4:交点间的距离 【例4】已知二次函数y=x2-2mx+m2+m的图象与函数y=kx+1的图象交于A(x 1 , y 1),B(x 2 ,y 2 )(x 1 <x 2 )两点. (1)如图1,当k=1,m取不同值时,猜想AB的长是否不变?并证明你的猜想;(2)如图2,当m=0,k取不同值时,猜想△AOB的形状,并证明你的猜想. 【例5】如图,抛物线y=x2-4x+5与y轴交于点C,过点N(1,2)作直线l,交抛物线于点P,交y轴于点E,连接PC,若PE=PC,求直线l的解析式. 【练】如图,抛物线C 1 :y=x2+4x+3交x轴于A,B两点,交y轴于点C,将抛物 线C 1沿y轴翻折得新抛物线C 2 ,过点C作直线l交抛物线C 1 于点M,交抛物线C 2 于 点N,若MN=,求直线l的解析式.三、对称问题

人教版初中数学二次函数知识点

人教版初中数学二次函数知识点 一、选择题 1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( ) A .1 B .2 C .3 D .4 【答案】C 【解析】 【分析】 【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确; 根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:- 2b a =3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确; 根据函数的交点以及函数图像的位置可得④正确. 点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论. 2.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )

韦达定理与习题

韦达定理与习题Revised on November 25, 2020

一. 本周教学内容:韦达定理的应用 二. 重点、难点: 灵活应用韦达定理与推论(韦达定理的逆定理) 三.知识回顾 在初中数学的学习中,韦达定理及其逆定理的应用是很广泛的,主要有如下的应用: 1. 已知一元二次方程的一根,求另一根。 2. 已知一元二次方程的两根,求作新的一元二次方程。 3. 不解方程,求关于两根的代数式的值。 4. 一元二次方程的验根。 5. 解一类特殊的二元二次方程组和通过换元等方法求解二次根式方程。 6. 与判别式的综合应用。 【典型例题】 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x则相加,得x 例2:已知方程x-5x+8=0的两根为x,x,求作一个新的一元二次方程,使它的两根分别为和 解:∵ 又

∴代入得, ∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根解:∵二次实数方程实根共轭。 ∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为. 例4:解方程组 解:设 ∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组

∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b。 则2。 又a,b为方程两根。 ∴ab=4m(m-2) ∴S 但a,b为实数且 ∴ ∴ ∴m=5或6 当m=6时, ∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数

7-4-4 二次函数的应用.题库教师版

【例1】 某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该 设施的下部ABCD 是矩形,其中AB=2米,BC=1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆. (1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积; (2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数; (3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说 明理由. E C D 【考点】二次函数的应用 【难度】5星 【题型】解答 【关键词】2009年,日照 【解析】(1)由题意,当MN 和AB 之间的距离为0.5米时,MN 应位于DC 下方,且此时△EMN 中 MN 边 上的高为0.5米.所以,S △EMN =1 20.52 ??=0.5(平方米).即△EMN 的面积为0.5平方米. (2)①如图1所示,当MN 在矩形区域滑动,即0<x ≤1时, △EMN 的面积S =1 22 x ??=x ; ②如图2所示,当MN 在三角形区域滑动,即1<x <1 如图,连接EG ,交CD 于点F ,交MN 于点H , ∵ E 为AB 中点, ∴ F 为CD 中点,GF ⊥CD ,且FG 又∵ MN ∥CD , ∴ △MNG ∽△DCG . ∴ MN GH DC GF = ,即MN = 故△EMN 的面积S =12x =2(1x ++; 综合可得: ( ) (201111x x S x x x ≤?? =??++ ? ??? ,<.<< (3)①当MN 在矩形区域滑动时,S x =,所以有01S <≤

二次函数第一课时(教师版)

例1、判断:以下函数中哪些是二次函数?哪些不是二次函数?假设是二次函数,指出,,a b c 〔1〕34y x = 〔2〕20.51y x =-+ 〔3〕21y x x = + 〔4〕()22 3y x x =+- 〔5〕232s t =- 〔6〕232y x =- 〔7〕y = 〔8〕210s r π= 解:〔2〕,-0.5、0、1; 〔5〕,-2、0、3; 〔8〕10π、0、0. 例2、函数72 )3(--=m x m y 是二次函数,求m 的值. 解:m=-3 3、〔1〕当m 满足什么条件时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数? 解:m ≠0且m ≠1 〔2〕当m 满足什么条件时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的一次函数? 解:M=1 【二】函数解析式 例1、用20米的篱笆,一面靠墙〔墙的长足够长〕,围成一个矩形花圃,如图,在BC 边上留一个2米的门,设AB 边的长为x 米,花圃的面积为y 平方米,求y 关于x 的函数解析式及函数的定义域。 解:2 222(010)y x x x =-+<<

2、用20米的篱笆,两面靠墙〔墙的长足够长〕,围成一个直角梯形花圃,如图,AD ∥BC,AB ⊥BC,其中AD CD 、是已有的墙,0135ADC ∠=,设AB 边的长为x 米,花圃的面积为y 平方米,求y 关于x 的函数解析式及函数的定义域。 答案:23 20(010)2 y x x x =-+<< 3、二次函数y=4x2+5x +1,求当y=0时的x 的值. 二次函数y=x2-kx-15,当x=5时,y=0,求k . K=2 【三】二次函数2y ax = 的图像 ①函数2y ax =图像?? ???开口方向: 对称轴:顶点坐标: ②增减性: ③最值: 例1、先分别说出以下函数图像的开口方向、对称轴、顶点坐标,然后再画出大致的图像。 〔1〕y=-3x2, 〔2〕 y=23 1x , 〔3〕y=5x2, 〔4〕 y=24 3x -. 2、函数()()2110y k x k =++≠的图像的顶点坐标是 〔0,0〕 ,对称轴是 x=0 。 当k >-1 时,图像的开口向上,这是函数有最 小 值; 当k <-1 时,图像的开口向下,这是函数有最 大 值. 例2、函数的增减性 〔1〕当0x >时,函数27y x =-的值随着自变量x 的增大而 减小 ;当x =0 时,函数值最 大 ,最 大 值是 0 。 〔2〕当0x <时,函数223 y x =的值随着自变量x 的减小而 增大 ;当x =0 时,函数值最 小 ,最 小 值是 0 。 〔3〕A 〔1,y1〕、B 〔-2,y2〕、C 〔-2,y3〕在函数y=24 1 x 的图像上,那么y1、y2、y3的大小关系是 y1

新人教版初三数学二次函数公式及知识点总结

新人教版初三数学二次函数知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。 2. 二次函数 的结构特征:⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式: 的性质:a 的绝对值越大,抛物线的开口越小。 的符号开口方向顶点坐标对称轴性质 向上轴时,

随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 2. 的性质:上加下减。

的符号开口方向顶点坐标对称轴性质 向上轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .

3. 的性质:左加右减。 的符号开口方向顶点坐标对称轴性质 向上X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值

. 4. 的性质: 的符号开口方向顶点坐标对称轴性质 向上X=h 时, 随 的增大而增大;时, 随 的增大而减小;时, 有最小值 . 向下X=h 时, 随 的增大而减小;时, 随 的增大而增大;

时, 有最大值 . 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ; ⑵ 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二: ⑴

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系 青白江区人和学校彭足琼 凡是学过初中数学的学生,你问他们初中数学中,最难的知识是什么?他们会不约而同地说:“二次函数”。没错,不仅仅是学生觉得二次函数难,包括所有从事初中数学教学的一线教师也会有同样的感受。所以,怎样才能学好二次函数,成为了初中学生和老师最最苦恼的问题。二次函数之所以难,我认为二次函数难就难在函数本身就是一个比较抽象的知识,再加上二次函数有三个参数,比一次函数和反比例函数都多,还有就是二次函数的题目不仅仅考它本身的知识,它还可以把初中所有的代数和几何知识放入其中,可见,二次函数成为各个地区中考的压轴题变成了理所当然的事。 既然二次函数题可以把初中所有的代数和几何知识放入其中,因此,把二次函数与其它知识紧密联系起来,是我们老师和学生必须掌握的本领。这里,我就浅谈一下二次函数和一元二次方程的关系及怎样运用一元二次方程的知识来解决一些二次函数的题目,希望能给同学们和老师一点点启示和收获。 1、二次函数与一元二次方程形式上的联系与区别。我们清楚的明白,形如:ax2+bx+c=0(a、b、c为常数,且a≠0)的方程是一元二次方程,而形如:y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。认真观察一元二次方程:ax2+bx+c=0(a、b、c为常数,且a ≠0)和二次函数:y= ax2+bx+c(a、b、c为常数,a≠0),不难发现,它们在形式上几乎相同,差别也只是一元二次方程的表达式等于

0,而二次函数的表达式等于y。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成了一元二次方程。 2、二次函数与一元二次方程在二次函数图像上的关系。正是因为二次函数与一元二次方程在形式上的类似,使得二者在二次函数的图像上的关系格外密切。二次函数的图像是一条抛物线,在求抛物线:y= ax2+bx+c与x轴的交点坐标时,令y=0,即:ax2+bx+c=0,二次函数一下就变成了一元二次方程,再求出该方程的解,这个方程的解便是抛物线与x轴的交点坐标的横坐标。由于一元二次方程ax2+bx+c=0的根有三种情况①b2-4ac>0时有两个不等的实数根;②b2-4ac=0时有两个相等的实数根③b2-4ac<0时没有实数根,所以相应地:抛物线y= ax2+bx+c与x轴的交点情况有3种:①当b2-4ac>0时,抛物线与x轴有两个交点②当b2-4ac=0时,抛物线与x轴有一个交点③当b2-4ac<0时,抛物线与x轴有没有交点。因此,一元二次方程ax2+bx+c=0的解就是二次函数y= ax2+bx+c的图像与x轴的交点的横坐标;二次函数y= ax2+bx+c的图像与x轴的交点情况与一元二次方程:ax2+bx+c=0的根情况有关。可见二者在二次函数的图像上的关系格外密切。 3、应用一元二次方程解决二次函数问题。正是因为一元二次方程与二次函数无论在形式上,还是在图形上,关系都十分紧密,所以在解决很多二次函数题时,经常都要应用一元二次方程的知识。这里,我就列举几个典型题: 典型例题(1):求证:二次函数y=3x2+(2m+3)x+2m2+1的值

[初中数学]二次函数说课稿人教版

二次函数说课稿 一、教材分析 1.教材的地位和作用 二次函数是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数 学模型,应用非常广泛,许多实际问题往往可以归结为二次函数加以研究. 在历年来的中考题中二次函数也占有较大比例。在本节课之前,学生已经系统的学习过了反比例函数和一次 函数。学生对两个变量之间的函数关系已经有一个基础的认识。本章内容,既是对之前所学 函数知识的一个补充,又是高中阶段进一步学习函数知识的基础。同时,二次函数和以前学 过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法 提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次 函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整 个教材中具有承上启下的重要作用。 2.教学目标 知识技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并 了解如何根据实际问题确定自变量的取值范围。 数学思考:通过用二次函数表述实际问题中的数量关系,体会模型思想,建立符号意识。 问题解决:能应用二次函数的相关知识解决简单的数学问题及实际问题 情感态度:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的 数学思维,增强学好数学的愿望与信心. 3.重难点 根据教学内容和学生的实际情况,将本节课的教学重点确定为:对二次函数概念的理解,初 步学会用函数描述实际问题中两个变量之间的依赖关系.教学难点确定为由实际问题确定函 数解析式和确定自变量的取值范围 . 二、教法学法分析。 教法分析:采用自学式、讨论式以及讲练结合的教学方法。自学可引导学生积极参与,学会学习,培养自主学习的能力,逐步自主学习的习惯,有利于终身学习。本节课以学生自主学习 为前提、给他们一个平台,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在展示交流时,给学生留出足够的思考时间和空间,让学生去探索,从真正意义上完成对知识的自我构建。 学法分析:采用分组合作学习的形式,让学生在导学中有目标、有计划地独立学习,互相讨论,互相交流,合作探究,主动地进行学习,在执行任务过程中,通过独立思考、实践、讨论、 交流与合作,培养学生良好的学习习惯和学习方法,充分发挥学生在学习中的积极性和主动 性,提高自身的学习能力,充分体现了以学生发展为本的教学理念。 我设计了“情境导学—自学梳理—合作解疑—点拨校正—巩固应用—归纳小结—达标检测” 七环节进行教学. 三、教学过程 (一)情境导学 根据学习内容的安排和需要,本节课我创设了如下问题情境 1.什么叫函数?我们之前学过了那些函数?它们的形式是怎样的 ? (一次函数,反比例函数y=kx+b ,k ≠0; y=x k , k ≠0) (板书) 【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定 义的理解.以备与二次函数进行比较.

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理 讲点1:公共点问题 【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围. 【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 讲点2:距离问题 【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点,已 知CD ,在抛物线上共有三个点到直线BC的距离为m,求m的值. 【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物线与直线y=2x的最近

,求a的值. 讲点3:隐藏判别式 【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. 【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 讲点4:交点间的距离

二次函数实际问题学生(含教师版)

二次函数实际问题 1.矩形窗户的周长是6m ,写出窗户的面积y (m 2)与窗户的宽x (m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x 的取值范围,并画出函数的图象. 2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶. 3.如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O 点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式; (2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)

4.如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m). (1)如果所围成的花圃的面积为45m2,试求宽AB的长; (2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果 不能,请说明理由. 5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x. (1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式; (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少? 6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品. (1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?

相关主题
文本预览
相关文档 最新文档