当前位置:文档之家› 韦达定理、判别式与二次函数 专题辅导

韦达定理、判别式与二次函数 专题辅导

韦达定理、判别式与二次函数 专题辅导
韦达定理、判别式与二次函数 专题辅导

韦达定理、判别式与二次函数

王万军

一元二次方程是二次函数的函数值等于零时的特殊

情况。有些二次函数问题,可以利用一元二次方程根与系数的关系(即韦达定理)来解答;一元二次方程根的分布,可以利用二次函数图象直观判定;二次函数的图象与x轴交点、图象的位置,也可以用判别式判断。

对于一元二次方程和二次函数,设。

(1)当△>0时,方程有两个不等实数根,函数图象与x轴有两个不重合的交点()、()。

(2)当△=0时,方程有两个相等的实数根,函数图象与x轴有唯一交点,即图象与x轴相切。

(3)当△<0时,方程无实数解,函数图象与x轴无交点,若a>0,则图象在x轴上方,若a<0,则图象在x轴下方。

例1. 已知抛物线轴交于点A(α,0)和B(β,0),且,求k的值。

解:由题意,α、β是方程的两根,所以。

评注:这是一元二次方程根与系数的关系(即韦达定理)在二次函数中的应用,解二次函数中的有关参数问题,首先考虑的方法就是韦达定理法。

例2. 已知抛物线与x轴的两个交点在点(1,0)两旁,试判断关于x的方程

的根的情况。

解:设抛物线与x轴两个交点的坐标为。

则有。

由题意得

∴此方程无实数根。

例3. 二次函数的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为()

A. 6

B. 4

C. 3

D. 1

解:设

例4. 设,求证:方程有两个不等实数根,并且有一根在a与b 之间,另一根在b与c之间。

证明:构造函数

当时,;

当时,;

当时,

经整理,函数即

这是一个图象开口向上的二次函数。

不妨设,,则其大致图象如下图所示。

显见函数图象与x轴的交点一个在a与b之间,另一个在b与c之间,即方程

有两个不等实数根,且一根在a与b之间,另一根在b与c之间。

例5. 已知方程,其中k为实数且,不解方程

证明:方程的一个根大于1,另一个根小于1。

分析:对二次函数,

当时,若时,,

则其图象与x轴两交点的横坐标满足;当时,若时,,

有,这些结论画出图象显而易见。

证明:构造函数。

显然当。

故一元二次方程,

即,一个根大于1,另一个根小于1。

中考数学 专题八 充满活力的韦达定理培优试题

专题八 充满活力的韦达定理 姓名: 班别: 典例导析 类型一:直接运用公式 例1:若一元二次方程02)2(2=++-a x a x 的两个根分别为3,b ,则____=+b a [点拨] 运用公式a b x x = +21,a c x x =21 [解答] [变式] 已知一元二次方程0562=--x x 之两根为b a ,,则 _____11=+b a 类型二:求方程中的字母系数 例2: 关于x 的方程0122=+++k x x 有两实根21,x x ,如果12121-<-+x x x x ,求整数k 的值。 [点拨] 熟记特殊式子2121x x x x ++的变形式 [解答] [变式] 关于x 的一元二次方程0622=--k x x (k 为常数)之两根为21,x x , 且14221=+x x 。求k 值及方程的两根。 类型三:利用已知根求未知数的值 例3:已知关于x 的方程02=+-n mx x 的两个根是0和-3,则m= ,n= 。 [点拨] 运用公式得方程 [解答]

[变式] 已知方程042=+-m x x 的一个根是2,求方程的另一个根及m 的值。 类型四:利用公式求有关根的代数式的值 例4:已知b a ,是一元二次方程0122=--x x 的两个实数根,求代数式ab b a b a +-+-)2)((的值。 [点拨] 转化成b a +,ab [解答] [变式] 设21,x x 是方程032=-+x x 的两根,求1942231+-x x 的值。 类型五:与判别式的综合运用 例5:已知关于x 的方程22)1(2m x m x --=的两实根为21,x x 。 ①求m 的取值范围。 ②设21x x y +=,当y 取最小值时,求m 值及y 的最小值。 [点拨] 得出y 的表达式,用函数增减性 [解答] [变式]若关于x 的方程012)2(222=++--k x k x 有实根βα,。 ①求实数k 的取值。 ②设k t βα+= ,求t 的最小值。

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理 一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。 韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。 【例题求解】 【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。 思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么 b a a b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2 思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1)恰当组合;(2)根据根的定义降次;(3)构造对称式。 【例3】 已知关于x 的方程:04)2(2 2 =---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。 (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。 思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。 【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

二次函数根系数关系

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用. 【知识要点】 1.如果方程(a≠O)的两根为,,那么,, 这就是一元二次方程的根与系数的关系. 2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式. 5.当一元二次方程(a≠O)有两根,时:(1)若,则方 程有一正一负根;(2)若,,则方程有两个正根;(3)若 ,,则方程有两个负根. 【趋势预测】 利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面: ①求方程中字母系数的值或取值范围; ②求代数式的值; ③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题; ⑤证明代数等式,不等式; ⑥与一元二次方程的整数根有关的问题. 【范例解读】 题1(1997·陕西)已知二次方程(ac≠0)有两异号实根m和n,且m0,从而,. 方程的判别式: ,故方程 必有两实根. 设这两个实根为,,则由根与系数关系得 ,,可知,均为负数,故选(A). 题2(1997·上海)若a和b是方程的两个实根,c和d是方程 的两个实根,e和f是方程的两个实根,则

韦达定理与整数根的问题专题

韦达定理与整数根的问题专题 知识结构图 一.韦达定理与代数式求值 如果的两根是,,则,.(隐含的条件:)特别地,当 一元二次方程的二次项系数为1时,设,是方程的两个根,则,.利用平方差公式、完全平方公式等,对代数式进行变形,代入求值. 二.韦达定理与根的分布 在的条件下,我们有如下结论: 当时,方程的两根必一正一负.若,则此方程的正根不小于负根的绝对值;若,则此方程的正根小于负根的绝对值. 当时,方程的两根同正或同负.若,则此方程的两根均为正根;若,则此方程的两根均为负根. 更一般的结论是: 若,是的两根(其中),且为实数,当时,一般地: ①, ②且, ③且, 特殊地:当时,上述就转化为有两异根、两正根、两负根的条件. 其他有用结论: ⑴若有理系数一元二次方程有一根,则必有一根(,为有理数). ⑵若,则方程必有实数根. ⑶若,方程不一定有实数根. ⑷若,则必有一根. ⑸若,则必有一根. 三.整数根问题 对于一元二次方程的实根情况,可以用判别式来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程有整数根,那么必然同时满足以下条件: 1. 为完全平方数; 2. 或,其中为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中、、均为有理数). 题模一韦达定理与代数式求值 例1.1、设是一元二次方程的两个根,利用根与系数的关系,求下列各式的值:

(1)(2)(3) (4)(5)(6) 例1.2、设实数分别满足,并且,求的值例1.3、已知,是一元二次方程的两个根,求的值 题模二韦达定理与根的分布 例2.1、已知一元二次方程. (1)当a为何值时,方程有一正、一负两个根? (2)此方程会有两个负根吗?为什么? 例2.2、实数k为何值时,关于x的一元二次方程. (1)有两个正根? (2)两根异号,且正根的绝对值较大? (3)一根大于3,一根小于3? 题模三整数根问题 例3.1、已知:关于的一元二次方程 (为实数) (1)若方程有两个不相等的实数根,求的取值范围; (2)求证:无论为何值,方程总有一个固定的根; (3)若为整数,且方程的两个根均为正整数,求的值及方程所有的根 例3.2、已知关于的方程的两根都是整数,求的值. 例3.3、求使关于x的方程的根均为整数的所有整数a.

二次函数根的判别式韦达定理

一元二次方的应用及根的判别式、韦达定理 一、根的判别式 1.一元二次方程根的判别式的定义: 运用配方法解一元二次方程过程中得到 222 4()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22 424b b ac x a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ?=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式. 2.判别式与根的关系: 在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ?=-确定. 判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ?=-则 ①0?>?方程2 0(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0?=?方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a ==-. ③0?;有两个相等的实数根时,0?=;没有实数根时,0?<. (2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ?=-判定方程的根的情况 (有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ?=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时?抛物线开口向上?顶点为其最低点; ② 当0a <时?抛物线开口向下?顶点为其最高点. 3.一元二次方程的根的判别式的应用: 一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数; (2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题; (4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题. 二、韦达定理 如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x , ,那么,就有 ()()212ax bx c a x x x x ++=-- 比较等式两边对应项的系数,得 1212 b x x a c x x a ? +=-??? ??=??? ①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系. 因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x , 必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ?=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,

中考攻略专题-韦达定理应用探讨

【中考攻略】专题 韦达定理应用探讨 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为―韦达定理‖)。人们为了纪念他在代数学上的功绩,称他为―代数学之父‖。 韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212b c x +x =x x =a a -?,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。其逆命题:如果12x x ,满足1212b c x +x =x x =a a -?,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。 韦达定理的应用有一个重要前提,就是一元二次方程必须有解,即根的判别式2=b 4ac 0?-≥。 韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。我们将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用。下面通过近年全国各地中考的实例探讨其应用。 一、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。 典型例题: 例1:(湖北武汉3分)若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是【 】 A .-2 B .2 C .3 D .1 【答案】C 。 【考点】一元二次方程根与系数的关系。 【分析】根据一元二次方程根与系数的关系,得x 1+x 2=3。故选C 。 例2:(湖北武汉3分)若x 1、x 2是一元二次方程x 2+4x +3=0的两个根,则x 1·x 2的值是【 】 A.4. B.3. C.-4. D.-3. 【答案】B 。 【考点】一元二次方程根与系数的关系。 【分析】根据一元二次方程的根与系数的关系,得12c 3x x ===3a 1 ?。故选B 。 例3:(山东烟台3分)下列一元二次方程两实数根和为﹣4的是【 】

第2讲 一元二次方程实数根与韦达定理

第二讲 一元二次方程实数根与韦达定理 一 知识要点 实系数一元二次方程:20(0)ax bx c a ++=≠的两个根为12,x x 1. 根的判别式 2. 韦达定理 二. 例题解析 例1.已知方程220()x x m m R --=∈没有实根,试判断关于x 的方程 ()()222212110x mx m x +++-+=有无实根. 例2.k 为何值时,关于x 的方程()22241210x k x k -++-= (1)有两个不相等的实根; (2)有两个相等的实根; (3)没有实数根 例3.方程:()()2212110a x a x --++=只有一个实根,求a 的值 例4.设关于x 的方程:2222(1)(3442)0x a x a ab b ++++++=有实根,求实数,a b 的值。

例5.已知12,x x 是方程22310x x --=的根,求223321121212 ,,,x x x x x x x x +++ 12221211,x x x x +-的值; 例6若方程2(32)0x x a +--=的两个实根分别为12,x x ,下就根的取值范围,分别求实数a 的取值范围 (1)两实根均大于0; (2)两实根均小于0; (3)两实根一个大于0,一个小于0; (4)两实根均大于1; (5)两实根均小于1; (6)两实根一个大于1,一个小于1; 例7 已知方程2520,x x +-=作一个新的一元二次方程,使它的根分别是已知方程各根的立方的倒数。

例8.已知a 为实数,解关于x 的方程10x x a ++= 例9.已知方程42280x mx ++=的四个根均为整数,求m 的值及方程的根。 例10.对自然数,n 设关于x 的二次方程22(21)0x n x n +++=的两根为,n n αβ,求下式的值: ()()()33442020 1111(1)1(1)1(1)αβαβαβ+++++++++

2013中考数学解题方法及提分突破训练:韦达定理及应用专题

解题方法及提分突破训练:韦达定理及应用专题 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。你能利用韦达定理解决下面的问题吗? 一 真题链接 1.(2012?兰州)若x1、x2是关于一元二次方程ax2+bx+c (a≠0)的两个根,则方程的两个 根x1、x2和系数a 、b 、c 有如下关系:x1+x2=-a b x1?x2=a c 把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c (a≠0)的图象与x 轴的两个交点为A (x1,0),B (x2,0).利用根与系数关系定理可以得到A 、B 连个交点间的距离为: 参考以上定理和结论,解答下列问题: 设二次函数y=ax2+bx+c (a >0)的图象与x 轴的两个交点A (x1,0),B (x2,0),抛物线的顶点为C ,显然△ABC 为等腰三角形. (1)当△ABC 为直角三角形时,求b2-4ac 的值; (2)当△ABC 为等边三角形时,求b2-4ac 的值.

韦达定理及其应用竞赛题

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定

理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1 -)。 -,1)或(0, 1 -,0),(0,1),(2,1),(2 于是,得以下七个方程,,,,, 1 x2= -,其中0 1 x2= +无实数根,舍去。其余六个方程均为所求。x2= +,0 x 1 + 2 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

中考数学专题八充满活力的韦达定理培优试题无答案

中考数学专题八充满活力的韦达定理培优试题无答案姓名:班别: 典例导析 类型一:直接运用公式 例1:若一元二次方程的两个根分别为3,b,则 [点拨] 运用公式, [解答] [变式] 已知一元二次方程之两根为,则 类型二:求方程中的字母系数 例2:关于的方程有两实根,如果,求整数k的值。 [点拨] 熟记特殊式子的变形式 [解答] [变式] 关于的一元二次方程(k为常数)之两根为, 且。求k值及方程的两根。

类型三:利用已知根求未知数的值 例3:已知关于的方程的两个根是0和-3,则m= ,n= 。[点拨] 运用公式得方程 [解答] [变式] 已知方程的一个根是2,求方程的另一个根及m的值。 类型四:利用公式求有关根的代数式的值 例4:已知是一元二次方程的两个实数根,求代数式的值。 [点拨] 转化成, [解答] [变式] 设是方程的两根,求的值。 类型五:与判别式的综合运用 例5:已知关于的方程的两实根为。

①求m 的取值范围。 ②设,当y 取最小值时,求m 值及y 的最小值。 [点拨] 得出y 的表达式,用函数增减性 [解答] [变式]若关于的方程012)2(222=++--k x k x 有实根。 ①求实数k 的取值。 ②设,求t 的最小值。 培优训练 1、已知是一元二次方程的两个实数根,则代数式 2、已知关于的方程的两实根是,且,求k 值。 3、已知一元二次方程013)13(2=-++-x x 的两根为,求。

4、已知是方程的两个实数根,求的值。 5、关于的方程的一个根是另一个根的2倍,则m 值为 。 6、已知一元二次方程。 ①若方程有两个实数根,求m 的范围。 ②若方程的两个实数根为,且,求m 的值。 7、关于的一元二次方程的两个实数根分别是,且。求的值。 竞赛训练 1、关于的一元二次方程的两实根。 ①求P 的取值范围。 ②若9)]1(2)][1(2[2211=-+-+x x x x ,求P 的值。

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理讲点1:公共点问题 【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围. 【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 讲点2:距离问题 【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D ,在抛物线上共有三个点到直线BC的距离为m,求m 是抛物线的顶点,已知CD 的值. 【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物 线与直线y=2x的最近点之间的距离为,求a的值. 讲点3:隐藏判别式

【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. 【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 讲点4:交点间的距离 【例4】已知二次函数y=x2-2mx+m2+m的图象与函数y=kx+1的图象交于A(x 1 , y 1),B(x 2 ,y 2 )(x 1 <x 2 )两点. (1)如图1,当k=1,m取不同值时,猜想AB的长是否不变?并证明你的猜想;(2)如图2,当m=0,k取不同值时,猜想△AOB的形状,并证明你的猜想. 【例5】如图,抛物线y=x2-4x+5与y轴交于点C,过点N(1,2)作直线l,交抛物线于点P,交y轴于点E,连接PC,若PE=PC,求直线l的解析式. 【练】如图,抛物线C 1 :y=x2+4x+3交x轴于A,B两点,交y轴于点C,将抛物 线C 1沿y轴翻折得新抛物线C 2 ,过点C作直线l交抛物线C 1 于点M,交抛物线C 2 于 点N,若MN=,求直线l的解析式.三、对称问题

韦达定理与习题

韦达定理与习题Revised on November 25, 2020

一. 本周教学内容:韦达定理的应用 二. 重点、难点: 灵活应用韦达定理与推论(韦达定理的逆定理) 三.知识回顾 在初中数学的学习中,韦达定理及其逆定理的应用是很广泛的,主要有如下的应用: 1. 已知一元二次方程的一根,求另一根。 2. 已知一元二次方程的两根,求作新的一元二次方程。 3. 不解方程,求关于两根的代数式的值。 4. 一元二次方程的验根。 5. 解一类特殊的二元二次方程组和通过换元等方法求解二次根式方程。 6. 与判别式的综合应用。 【典型例题】 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x则相加,得x 例2:已知方程x-5x+8=0的两根为x,x,求作一个新的一元二次方程,使它的两根分别为和 解:∵ 又

∴代入得, ∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根解:∵二次实数方程实根共轭。 ∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为. 例4:解方程组 解:设 ∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组

∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b。 则2。 又a,b为方程两根。 ∴ab=4m(m-2) ∴S 但a,b为实数且 ∴ ∴ ∴m=5或6 当m=6时, ∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数

韦达定理专项练习

韦达定理专项练习 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两 个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 记住下面公式: 专项练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .

7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 . 二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值: (1)2212x x += ; (2)2 111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = . 三、选择题: 1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( ) (A )0 (B )正数 (C )-8 (D )-4 2、已知方程122-+x x =0的两根是1x ,2x ,那么=++12 21221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -3 3、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 3 1 (C )3 (D) -3 4、下列方程中,两个实数根之和为2的一元二次方程是( ) (A )0322=-+x x (B ) 0322=+-x x (C ) 0322=--x x (D )0322=++x x 5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系 青白江区人和学校彭足琼 凡是学过初中数学的学生,你问他们初中数学中,最难的知识是什么?他们会不约而同地说:“二次函数”。没错,不仅仅是学生觉得二次函数难,包括所有从事初中数学教学的一线教师也会有同样的感受。所以,怎样才能学好二次函数,成为了初中学生和老师最最苦恼的问题。二次函数之所以难,我认为二次函数难就难在函数本身就是一个比较抽象的知识,再加上二次函数有三个参数,比一次函数和反比例函数都多,还有就是二次函数的题目不仅仅考它本身的知识,它还可以把初中所有的代数和几何知识放入其中,可见,二次函数成为各个地区中考的压轴题变成了理所当然的事。 既然二次函数题可以把初中所有的代数和几何知识放入其中,因此,把二次函数与其它知识紧密联系起来,是我们老师和学生必须掌握的本领。这里,我就浅谈一下二次函数和一元二次方程的关系及怎样运用一元二次方程的知识来解决一些二次函数的题目,希望能给同学们和老师一点点启示和收获。 1、二次函数与一元二次方程形式上的联系与区别。我们清楚的明白,形如:ax2+bx+c=0(a、b、c为常数,且a≠0)的方程是一元二次方程,而形如:y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。认真观察一元二次方程:ax2+bx+c=0(a、b、c为常数,且a ≠0)和二次函数:y= ax2+bx+c(a、b、c为常数,a≠0),不难发现,它们在形式上几乎相同,差别也只是一元二次方程的表达式等于

0,而二次函数的表达式等于y。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成了一元二次方程。 2、二次函数与一元二次方程在二次函数图像上的关系。正是因为二次函数与一元二次方程在形式上的类似,使得二者在二次函数的图像上的关系格外密切。二次函数的图像是一条抛物线,在求抛物线:y= ax2+bx+c与x轴的交点坐标时,令y=0,即:ax2+bx+c=0,二次函数一下就变成了一元二次方程,再求出该方程的解,这个方程的解便是抛物线与x轴的交点坐标的横坐标。由于一元二次方程ax2+bx+c=0的根有三种情况①b2-4ac>0时有两个不等的实数根;②b2-4ac=0时有两个相等的实数根③b2-4ac<0时没有实数根,所以相应地:抛物线y= ax2+bx+c与x轴的交点情况有3种:①当b2-4ac>0时,抛物线与x轴有两个交点②当b2-4ac=0时,抛物线与x轴有一个交点③当b2-4ac<0时,抛物线与x轴有没有交点。因此,一元二次方程ax2+bx+c=0的解就是二次函数y= ax2+bx+c的图像与x轴的交点的横坐标;二次函数y= ax2+bx+c的图像与x轴的交点情况与一元二次方程:ax2+bx+c=0的根情况有关。可见二者在二次函数的图像上的关系格外密切。 3、应用一元二次方程解决二次函数问题。正是因为一元二次方程与二次函数无论在形式上,还是在图形上,关系都十分紧密,所以在解决很多二次函数题时,经常都要应用一元二次方程的知识。这里,我就列举几个典型题: 典型例题(1):求证:二次函数y=3x2+(2m+3)x+2m2+1的值

二元一次方程判别式与韦达定理专题

二元一次方程判别式与韦达定理专题 知识小结: 1、对于一个一元二次方程ax 2+bx +c =0(a ≠0).我们把把b 2-4ac 叫做一元二次方程ax 2+bx +c =0的根的判别式,通常用符号“△”表示. 当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根; 当△<0时,没有实数根. 反之亦然. 2、韦达定理:如果方程ax 2+bx+c=0(a ≠0)的两个根是X 1 , X 2 , 那么a c x x a b x x =?-=+2121,(能用韦达定理的前提条件为△≥0 ) 巩固练习: 一、填空题 1.已知2-240x x c -+=的一个根,则方程的另一个根是 . 2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= , (x 1-x 2)2 = 。 3.已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-3 5 ,则m= ,这时方程的两 个根为 . 4.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m = 。 5.方程2x(mx -4)=x 2-6没有实数根,则最小的整数m= ; 6.已知方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,则m= ; 7.设关于x 的方程x 2-6x+k=0的两根是m 和n ,且3m+2n=20,则k 值为 ; 三、解答题 8.已知方程012=--x x 的两个实数根为21,x x ,求: (1) (2) (3)x 12+ x 1x 2+2 x 1 10.关于x 的方程04 )2(2 =+ ++k x k kx 有两个不相等的实数根. (1)求k 的取值范围。(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理 讲点1:公共点问题 【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围. 【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 讲点2:距离问题 【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点,已 知CD ,在抛物线上共有三个点到直线BC的距离为m,求m的值. 【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物线与直线y=2x的最近

,求a的值. 讲点3:隐藏判别式 【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. 【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 讲点4:交点间的距离

《根与系数关系(韦达定理)》专题

《根与系数关系(韦达定理)》专题 班级 姓名 忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 请根据以上的观察发现进一步猜想: 方程ax 2+bx +c =0(a ≠0)的根x 1,x 2与a 、b 、c 之间的关系:____________. 我们尝试证明一下 若方程20ax bx c ++=(a ≠0)的两根为1x ,2x 则1x = ,2x = 。 则12x x += 12.x x = 归纳 一元二次方程的根与系数之间存在下列关系 ①2 0ax bx c ++= (0a ≠)的两个根为1x , 2x , 则12x x +=______ , 12x x ?=______ . ② 方程20x px q ++=的两根为1x , 2x , 则12x x +=______ , 12x x ?=_______. 注意事项:使用一元二次方程根与系数的关系时要注意两个问题: ①必须为一元二次方程(0a ≠); ②一定在有根的条件下(△≥0). 不解方程,求下列各方程的两根之和与两根之积: (1)2310x x ++=;(2)23210x x --= (3)2230x -+=; (4)2250x x += 【类型一】已知方程一根,求另一根及未知系数的值. 例1 已知方程ax 2 -7x -6=0(a ≠0)一根为2,求方程的另一根及a 的值. 1.已知方程2230x x m --=的一个根是1 2 ,求它的另一个根和m 的值. 2.若一元二次方程 22(1)230m x m m -++-=的一根为零,求m 的值.

【类型二】已知方程两根的关系,求未知系数的值 例2若方程2380x x m -+=的两根之比为3:2,求m 的值. 1. 已知方程x 2-2(m +1)x +m 2 -2=0,m =___ _时,方程两根互为相反数; m = 时,方程两根互为负倒数. 2. 若方程20x px q ++=的一个根是另一个根的2倍,则p 、q 之间的关系是 【类型三】不解方程 求与根有关的代数式的值 例3 设1x 、2x 是一元二次方程 22510x x -+=的两个根,利用根与系数关系求下列各式的值: (1)12(3)(3)x x --; (2)2212(1)(1)x x +++; (3)211211x x x x +++; (4)12x x -. 【类型四】根据题意,求方程中某些待定字母系数的值 例4 已知关于x 的方程 22(21)10k x k x +-+=有两个不相等的实数根1x 、2x . ⑴求k 的取值范围; ⑵k 为何值时,1x 与2x 互为倒数. 1.已知方程22(21)20x k x k +++-=的两实根的平方和等于11,k 的取值是( ) A .-3或1 B .-3 C .1 D .3 2.当m = 时,方程250x x m ++=的两根之差是7. 例5已知关于x 的方程2320x mx +-=的两根的平方和为13 9 ,求m 的值. 例6已知关于x 的一元二次方程2(21)10x k x k +---= (1)试判断此一元二次方程根的存在情况; (2)若方程有两个实数根21x x 和,且满足1112 1 =+x x ,求k 的值.

韦达定理、二次函数图像及性质

韦达定理、二次函数的图像与性质 知识要点:1.韦达定理: 一元二次方程的根和系数的关系; 2.求二次函数的图象的顶点坐标、对称轴方程及最值的方法 知识点回顾: 1. 如何求一元二次方程x 2 -2x-8=0的根?有几种方法? 2.二次函数解析式的几种形式: ①一般式: ②顶点式: ③交点式: 3.二次函数的图像及性质 探索1:方程x 2 -2x-8=0的两根之和,两根之积。观察方程两个根与方程的系数之间的关系,你有什么发现? 对于一元二次方程2x 2 -3x+1=0是否也具备这个特征? x 1+x 2=_______,x 1·x 2=________, 由此得出,一元二次方程的根与系数的关系.—韦达定理 结论: 如果ax 2 +bx+c=0(a ≠0)的两个根是x 1,x 2, 韦达(法国1540-1603) 那么x 1+x 2=_______,x 1·x 2=________。 对应练习 1.判断对错 1)2x 2-11x+4=0两根之和为11,两根之积为4。 2)4x 2 +3x=5两根之和为43-,两根之积为4 5。 3)x 2+x+1=0两根之和为-1,两根之积为1。 2. 1)关于x 的方程x 2 -2x +m=0 的一根为2 ,求另一根和m 的值。 2)已知方程 3x 2+mx+n=0 的两根为1,2,求m,n 的值。 探究2. 二次函数求抛物线的顶点、对称轴和最值的方法 探究3.若方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2,则函数y ax bx c =++2 (a ≠0)的图象与x 轴的两交点坐标为 , ;此时二次函数 y ax bx c =++2 (a 、b 、c 为常数,a ≠0)的顶点和对称轴如何表示? 典型例题 例1. 二次函数 y ax bx c =++2 的图象如图所示,对称轴为x =1,则下列结论中正确的是( ) A. ac >0 B. b <0 C. b ac 240-< D. 20a b += 例2. (1)二次函数y=-x 2+6x+3的图像顶点为_________对称轴为_________。二次函数122--=x x y 的顶点坐标为 ,对称轴为 。 (2)二次函数y=2x 2-4的顶点坐标为________,对称轴为__________。 练习2: 1.已知抛物线342++=x x y ,请回答以下问题: (1)它的开口向 ,对称轴是直线 ,顶点坐标为 ; (2)图像与x 轴的交点为 ,与y 轴的交点为 。 2.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 . 3.二次函数2243y x x =--,当x = 时,函数y 有最 值是 . 4.二次函数y=2x -mx+3的对称轴为直线x=3,则m=________。 5.二次函数y=x 2+6x-2的最小值为______. 6. 二次函数y=ax 2+bx+c 的图像如图所示,则下列结论正确的是( ) A.a >0,b <0,c >0 B.a <0,b <0,c >0 C.a <0,b >0,c <0 D.a <0,b > 0,c >0 7.已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图像经过点(2,3),求这个函数的关系式. 你的收获:

相关主题
文本预览
相关文档 最新文档